http://elec3004.com

Digital Control Design & State-Space

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 19

(with material from FPW and Cannon (Discrete Systems))

elec3004@itee.uq.edu.au
http://robotics.itee.ug.edu.au/~elec3004/

© 2016 School of Information Technology and Electrical Engineering at The University of Queensland

May 16, 2016

Lecture Schedule:

Week Date Lecture Title
) 29-Feb|Introduction
3-Mar|Systems Overview
5 7-Mar|Systems as Maps & Signals as Vectors
10-Mar|Data Acquisition & Sampling
3 14-Mar|Sampling Theory
- 17-Mar|Antialiasing Filters
4 21-Mar|Discrete System Analysis
24-Mar|Convolution Review
i?ﬁ: Holiday
4-Apr|Frequency Response & Filter Analysis
5 -
7-Apr|Filters
6 11-Apr|Digital Filters
14-Apr|Digital Filters
7 18-Apr|Digital Windows
21-Apr|FFT
3 25-Apr|Holiday
28-Apr|Introduction to Feedback Control
9 3-May|Holida
5-May|Feedback Control & Regulation
10 9-May|Servoregulation/PID
12-May|Introduction to (Digital) Control
11 16-May|Digital Control Design & State-Space
19-May|Observability, Controllability & Stability of Digital Systems
12 23-May|Digital Control Systems: Shaping the Dynamic Response & Estimation
26-May |Applications in Industry
13 30-May|System Identification & Information Theory
2-Jun|Summary and Course Review
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Lab 4 — LevilLab Il:

[AKA “Revenge of the Tuning!”]
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* “not a long time ago in a lab down, down the way’
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Effects of Increasing Gain

Effects of inCreaS| n g a parameter independently

Parameter Risetime | Overshoot | Sctiing ST Stability™™!
time error
KP Decrease Increase el Decrease Degrade
change
K Decrease Increase Increase Eliminate Degrade
- Minor No effect in Improve
Ky change Decrease | Decrease theory it K small
Matlab helps with PID tuning: .o
G system=[???]; H=[1]; ’
D _compensator = pidtune(G_system, 'PIDF')
CL_system = feedback(series(D_compensator,G_system), H)

step (CL_system)

PID Review

ELEC 3004: Systems 16 May 2016 - 6




PID Control

A continuous PID controller has transfer function:

D(s) = ;8 = K(l T ﬁ 1 TDS)

In the time domain, u(t) and e(t) are related by a differential equation:
du K{de 1 dze}

el Sy c T, EE
dt T Y TE

Using Euler's approximation (for 1st and 2nd derivatives)
gives approximate discrete time controller:

Up — Ug—1 S ek —€r_1 1 €r —2ex_1 + ex_o
— =K |———— + —e,. + T,
T [ T + T er+1p T2 }
B i T Tp 2T To
= Uk—uk—1+ﬁ|:(1+,r_r+ T)Gk (l-l- T )ek—1+ TE’k—z}
i.e. a linear recurrence equation: ug = —ai1ug—1 + boeg + biex—1 + haep_2
PID Control
Example
Servo-motor speed-y rads™* Y(s) G(s) = 3.6 x 10°
input:u Volts U(s) ~ (s +60)(s + 600)

PID controller parameters: K =5, Tp =8 x 107% Ty =3 x 1073

Continuous controller step response:

15 T T T T T T T

0.5F 1

Speed (rad/s)

0 1 2 3 4 5 6 7 8
Time (ms)

Bandwidth ~ 1/(4 ms) = 250 Hz

== need to sample at 30 x 250 = 7.5 kHz




PID Control

Check the bandwidth estimate ...

open loop bode magnitude plot, closed loop bode magnitude plot,
20 1og| G (jw) 20 log cv({w_)D(Jw_) :

1+ G(jw)D(jw)
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... closed loop system bandwidth = 1.5 x 10° rads™!

=~ 250 Hz
PID Control
Discrete controller with 10 kHz sample rate:
15
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Discrete controller with 3.3 kHz sample rate:
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PID Control

Try to improve response at 3.3 kHz sample rate by changing K, Tp & T}

Increase damping by:

* reducing K i e
. ) eg. K =32 Tp=1.1x 10" (trial and error)
* increasing I'p

New response at 3.3 kHz sample rate:

15 T T T T T T T

o e
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o
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0 1 1 1 1 1 1 1
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Time (ms)

State-Space
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Or more aptly...

Welcome to

State-Space!

(It be stated -- Hallelujah!)

« More general mathematical model
— MIMO, time-varying, nonlinear

« Matrix notation (think LAPACK = MATLAB)
» Good for discrete systems

* More design tools!

Affairs of state

* Introductory brain-teaser:
— If you have a dynamic system model with history (ie. integration)
how do you represent the instantaneous state of the plant?

Eg. how would you setup a simulation of a step response, mid-step?

start




State-Space Control

X = Fx

(That can not be all of it? There has to be more to it than this...)

State-Space Control

x = Fx 4+ Gu

Benefits:

+ Characterises the process by systems of coupled, first-order
differential equations

» More general mathematical model

— MIMO, time-varying, nonlinear

Mathematically esoteric (who needs practical solutions)

Yet, well suited for digital computer implementation

— That is: based on vectors/matrices (think LAPACK = MATLAB)




Difference Equations & Feedback

|anuIz_> H _oyusz> SN 5]\—><%>—> k H

» Start with the Open-Loop:
y = kHu
* Close the loop:
u=ke=k(@-y)2y=Hk@ -]
_ Hk .
"~ 14Hk

» Alleasy! (yesa!)

Difference Equations & Feedback

£

Input H +put 5; % k H

* Now add delay (image the plant is a replica with a delay 1)

y(t) =u(t —1)
 Close the loop:

u(t—1)=ke(t—1)=k[yt—1) -y -1)]
Py =k [§(t—-1) -yt —1)]

 Notice we have a difference equation!




Difference Equations & Feedback

Inplall_> H output :> 5]\ % k H y

« What happens with a single delay and a unit step?
u(t) = kforO<t< t
y(t) = u(t — ) for t<t<2t
« Then with feedback we get:
u(®) =k(1—k) =k —k?
y&) =k —k*+k3+ -+ (-1 k"1
« Ifk<1: then:

Slim y(t) = -

1+k

Introduction to state-space

 Linear systems can be written as networks of simple dynamic
elements:

s+2 2 N -1
s2+7s+12 s+4 s+3

1
u 1 2 j,%)_,y
S

—12

(AN




Introduction to state-space

» We can identify the nodes in the system
— These nodes contain the integrated time-history values of the
system response
— We call them “states”

1
X X
u 1 y y 2%—»)’
S

—12

[

Linear system equations

» We can represent the dynamic relationship between the states
with a linear system:

Xy ==7x1—12x, + u
X, = x4+ 0Ox;+0u
y = x1+ 2x,+0u

11



State-space representation

» We can write linear systems in matrix form:
. _[-7 12 1
I D EE

y =[1 2]x+0u

Or, more generally:

X = Ax + Bu “State-space
y =Cx+Du equations”

State-Space Terminology

nl—

x(0) ’J)
ut)| g Tx(i:) —’Cl)x(t)C ()

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

12



LTI State-Space

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

« If the system is linear and time invariant,
then A,B,C,D are constant coefficient

— = Az + Bu

—y =Cx 4+ Du

Discrete Time State-Space

(1) = A@)z () + B (@) u(t)
y(@)=C@® =z )+ D#)u(?)

* If the system is discrete,
then x and u are given by difference equations

Salk41] = A[K] @ [K] + B[k u K]
y [k] = C [k] z [k] + D [k] u [K]
—>x+=A$—|—Bu

y=Czx+ Du

13



Block Diagram Algebra in State Space

« Series:

X(s) - - Y(s)

X(s) Y(s) rg| _ |Ae BeCr||2g B Dp
| F)6s | [r;.] - [ 0  Ap ||ze| 7| Be |*

System 1: |:ij| — {C'G DGC[_:| [IG} + |:Dc,'D}-:| ”

vy = Arz + Bru Dr
yr = Crrr + Dru

System 2:
1'2; = Agrg + Bgyr
ye = Cgrg + Dgyr

Block Diagram Algebra in State Space

« Parallel:

x(s) [ F6) E Y(s)
G(s)

al=18 a5

=] C’z}[ii]+(D1+D2)u

14



State-space representation

+ State-space matrices are not necessarily a unique
representation of a system
— There are two common forms

 Control canonical form
— Each node — each entry in x — represents a state of the system
(each order of s maps to a state)

« Modal form
— Diagonals of the state matrix A are the poles (“modes”) of the
transfer function

Why is this “Kind of awesome”?

» The controllability of a system depends on the particular set of
states you chose

* You can’t tell just from a transfer function whether all the
states of x are controllable

» The poles of the system are the Eigenvalues of F, (p;).




State evolution

 Consider the system matrix relation:
x =Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt=to) x(ty) + f = eF(t=?) Gu(r)dr
to
If you didn’t know, the matrix exponential is:

1 1
eKt =1+ Kt +§K2t2 +§K3t3 +

Great, so how about control?

» Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F — GK) <0

* Infact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

16



Solving State Space...

* Recall:

r= f(x,u,t)
» For Linear Systems:

7 (t) = A(t)z () + B () u(t)
y(@)=C@® =z )+ D#)u(?)

 ForLTI:
— x = Axz + Bu

—y = Cz + Du

=» Solutions to State Equations

x =Ax + Bu
sX(s) —x(0) = AX(s) + BU(s)
X(s) = (sl —A) x(0) + (sI — A)~1BU(s)

X(s) = L[e4t]x(0) + L[e4t]BU(s)

t
x(t) = f et Bu(1)dr
0

= edt

17



=» State-Transition Matrix ©

o ®(t) =et =L7Y(sI -—A)1]

« It contains all the information about the free motions of the
system described by x = Ax

LTI Properties:

o ®(0) =e% =]

« O7Y(t) = o(-1)

o O(t; +ty) = D(t)P(ty) = P(t)P(¢y)
o [@(D)]" = d(nt)

=>» The closed-loop poles are the eignvalues of the system matrix

Example: PID control

+ Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x5 = x,

1
x= 1
-2

y=1[0 1 O0]x+0u

x—Ku

X, 1S the output state of the system;
x41s the value of the integral;
x3 IS the velocity.

18



Example: PID control [2]

» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2—K;
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

Digital State Space:

« Difference equations in state-space form:

xn+ 1] = Az[n| + Bun]
yn] = Cx|n] + Du|n]

» Where:
— u[n], y[n]: input & output (scalars)
— x[n]: state vector

19



Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

% =Fx + Gu, (6.1)
and (2.44),
y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k + 1) = &x(k) + Tulk),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /n eF1dnG, (6.4b)

A Systematic Procedure for Determining State Egs.

1.

Choose all independent capacitor voltages and inductor
currents to be the state variables.

Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

Write the loop equations and eliminate all variables other
than state variables (and their first derivatives) from the
equations derived in Steps 2 and 3.

See also: Lathi § 13.2-1 (p. 788)

20



A Quick Example

-
=
=

<
<
<

A
ZAl
AAA

20 -
AAA -
VVy
* >
x i S, " = . i > 3
O s : 3T >0

1. The inductor current g, and the capacitor voltage g2 as the state variables.

2. q =i G =20,—i)—q2
1. s o
- =s=—1 .
o= h=-g-qp+ix
k. 2
3 A -2=x G2 =201~ 3¢

?.“‘2 —“J +(.“ +l[: =0

—q:+3f3=0 (j] _ -1 -1
(& 2 -3

See also: Fig. 13.2, Lathi p. 789

Another Example

Bismuth-211*
p a | 2.1 minutes
36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes

Thallium-207

o L0_ ) NI@®

dt

dN2(5)
dt

=— A ,N2(8) + A N1(D)

. Q'-_-\'_j-‘llf - 343\."3([) + A 24?\"—2({)

At

L0 =) N3

dt

21



Another Example

Bismuth-211*

B @ | 2.1 minutes

36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes
Thallium-207

Ny A O 0
No| | A1 =X O
N3 | | 0 X =Xz
Na 0 0 A3

X =FX —

oNoNoNe
&

Another Example

Bismuth-211*

p a | 2.1 minutes

36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes
Thallium-207

* N;y(t)=N;(0)exp(-A;t)

o N2(t)= N2(0)exp(- A ,£) = N1(0) ";L__(exp(— hot) —exp(= A 1)

P

exp(—h 1) ) exp(=h +7)
I TN N S N N T

* N3()=1 A oN10) [ =]

|
T 0 )

° 17\""4(0 =1 l}h 2)“ 3;\’.1(0) [u — exp(—h 17) exp(—h 5f) _ exp(-D 37) 1 ]

0 sk =R ) ’ O =k )0 5= =70 Y I )R ) + S

22



Discretisation (FPW!)

» We can use the time-domain representation to produce
difference equations!
kKT+T

x(kT +T) = eFT x(kT) + f eFUT+T-D Gy (1) dt
kT

Notice u(t) is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

u(t) =u(kT), KkT<tT<kT+T

State-space z-transform

We can apply the z-transform to our system:
(z —®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(2) _
X =G(z) =H(zI - ®)7 1T

23



State-space control design
Que pasa????

 Design for discrete state-space systems is just like the

continuous case.
— Apply linear state-variable feedback:

u=—-Kx

such that det(zl — @ +T'K) = a,.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T ®r & ®"-1r] to be full-rank.

Final.Exam.Tip: Longhand Notes > Typed
[EDUCATION.
Attention, Students: Put Your Laptops Away OpS
The Pen Is Mightier Than the Keyboard:
Advantages of Longhand Over Laptop
Note Taking =
(]

Pam A. Mueller' and Danicl M. Oppenheimer:

one thing, research shows that laptops and tablets have a tendency to be

For

B e ea——

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away
10.1177/0956797614524581

e doi:
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Friendly computing tale...

+ Please save (as) often ©

Next Time...

« Digital Control via Emulation!

* Review:
— PID notes online
— Chapter 5 of FPW

» Deep Pondering??

o
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