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Lecture Schedule: 
Week Date Lecture Title

29-Feb Introduction

3-Mar Systems Overview

7-Mar Systems as Maps & Signals as Vectors

10-Mar Data Acquisition & Sampling

14-Mar Sampling Theory

17-Mar Antialiasing Filters

21-Mar Discrete System Analysis

24-Mar Convolution Review

28-Mar

31-Mar

4-Apr Frequency Response & Filter Analysis

7-Apr Filters

11-Apr Digital Filters

14-Apr Digital Filters

18-Apr Digital Windows

21-Apr FFT
25-Apr Holiday

28-Apr Feedback

3-May Introduction to Feedback Control

5-May Servoregulation/PID

9-May Introduction to (Digital) Control

12-May Digitial Control

16-May Digital Control Design

19-May Stability

23-May Digital Control Systems: Shaping the Dynamic Response & Estimation

26-May Applications in Industry

30-May System Identification & Information Theory

2-Jun Summary and Course Review

Holiday
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 10  

(Discrete-Time System Analysis 

Using the z-Transform) 

– § 10.3 Properties of DTFT 

– § 10.5 Discrete-Time Linear System 

analysis by DTFT 

– § 10.7 Generalization of DTFT  

to the 𝒵 –Transform 

 

 

• Chapter 12 
(Frequency Response and Digital Filters) 

• § 12.1 Frequency Response of Discrete-Time Systems 

• § 12.3 Digital Filters 

• § 12.4 Filter Design Criteria 

• § 12.7 Nonrecursive Filters 

Today 
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• z=(a +  bi)  

• 𝑧 + 𝑧 = 2𝑎 
• 𝑧𝑧  =  𝑎 +  𝑏𝑖 𝑎 −  𝑏𝑖 =  𝑎2  +  𝑏2 

 

The Complex Plane Properties 
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• z=(a +  bi)  is also 

• 𝑧 = 𝑟𝑐𝑜𝑠 𝜃 + 𝑖𝑟 sin 𝜃 

The Complex Plane Properties 
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The Complex Plane Properties 
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• The continuous-time Fourier Transform 

 

 

 

• What happens if we sample x(t)|t=nt = xc(t)? 

• Represent xc(t) as sum of weighted impulses 

 

The Fourier Transform 
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• Changing order of integration & summation 
– and the simplifying (multiplication by impulse) gives 

Discrete-time Fourier Transform 

• This is known as the DTFT 

– Requires an infinite number of samples x(nt) 

– discrete in time  

– continuous and periodic in frequency 
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• Assume only N samples of x(nt) 
– from n = {0, N – 1} 

• Therefore, can only approximate Xc(w) 

DTFT of Finite Data Samples 

• How good an estimate is this? 

– Finite samples are same as infinite sequence 

multiplied by a rectangular time domain 

‘window’ 
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• Multiplication in time with rectangular window 

• Equivalent to convolution in frequency 
– with ‘sinc’ function 

Window Effects 

• In general, with arbitrary window function  
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filter design 
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• We cannot avoid using a window function 
– as we must use a finite length of data 

 

• Aim: to reduce window effect 
1. By choosing suitable window function 

• Hanning, Hamming, Blackman, Kaiser etc 

 

2. Increase number of samples (N) 
• reduces window effect (larger window) 

• increases resolution (No. samples) 

• Assumes signal is ‘stationary’ within sample window 
– Not true for most non-deterministic signals 

– e.g., speech, images etc  

Reducing Window Effects 
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• Fourier transform, 𝑋 𝑐(𝑤), of sampled data is 
– continuous in frequency, range {0, ws} 

– and periodic (ws) 

– known as DTFT 

• If calculating on digital computer 
– then only calculate 𝑋 𝑐(𝑤) at discrete frequencies 

– normally equally spaced over {0, ws} 

– normally N samples, i.e., same as in time domain 

– i.e, samples w apart 

DTFT and the DFT 

2

N t


 


Can reduce w by increasing N  
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• Discrete Fourier Transform (DFT) 
– samples of DTFT, X^

c(w)|w = k w 

 

 

 

 

 

 

 

• Interpretation: 
– N equally spaced samples of x(t)|t = n t 

– Calculates N equally spaced samples of X(w)|w = kw 

– k often referred to a frequency ‘bin’: X[k] = X(wk) 

 

The DFT 
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• Relates frequency domain samples to 
– time domain samples  

Inverse DFT 

• Note, differences to forward DFT 
– 1/N scaling and sign change on exponential 

– DFT & IDFT implemented with same algorithm  

• i.e., Fast Fourier Transform (FFT) 

• Require both DFT and IDFT to implement (fast) 
– convolution as multiplication in frequency domain 


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Note, 1/N scaling can be on DFT only OR 

as 1/sqrt(N) on both DFT and IDFT 
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Properties of the DFT 
if… 

• x [n] is real 
 

 

 

 

• x [n] is real and even 

 

• x [n] is real and odd 

Then… 

• X [-k] = X [k]* 

– {X [k] } is even 

–  {X [k] } is odd 

– |X [k]| is even  

– X [k] is odd  

• X [k] is real and even 

– i.e., zero phase 

• X [k] is imaginary and odd 
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• Periodic in frequency 
– period ws  i.e., the sampling frequency, or 
– period 2 (in normalised frequency) 

• Repeats after N  samples 
– x [N + k] = X [k] 

• Mirror image (even) symmetry at ws/2, i.e.,  
– x [N - r] = X *[r],  where r < N/2 

• Shift property 
– x [n - m] = exp(-jkm2/N) X [k] 
– i.e., |X [k]| stays the same as input is shifted 
– only (phase) X [k] changes 

Properties of the DFT 
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• Analogy for DFT is a Filterbank 
– Set of N  FIR bandpass filters 

– with centre frequencies kws/N  
• k in range {0, N – 1} 

– often called ‘frequency bins’ 

 

• e.g., 8 point DFT 
– 8 bandpass filters (bins), spaced w = ws/8 apart 

– Bandwidth of each filter w/2 therefore 
• output can be down-sampled by factor of  8  

• i.e., one sample, x[k], per filter output (frequency bin) 

Analogies for the DFT 
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N –tap FIR wc = 0                

N –tap FIR wc = ws/N            

N –tap FIR wc = 2ws/N        

N –tap FIR wc = (N - 1)ws/N  
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Filterbank Analogy of DFT 

0     1       2      3       4       5      6      7     ws   w  

w/2                 w              frequency ‘bin’ number k  

bandwidth           bin resolution 

|X(w)|2 
Bandpass filters 

kws/N 
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• Resolution is ability to distinguish 
– 2 (or more) closely spaced sinusoids 

• Minimum resolution of DFT given by 
– w = ws/N = 2/Nt 

• defined by sampling frequency, ws 

• and number of samples, N 

• Minimum resolution occurs when 
– integer number of complete cycles of input signal  

– in the N samples analysed 

– This is a ‘best case’ scenario 
• ‘sinc’ smearing always zero in adjacent frequency bins 

DFT Resolution 
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DFT Resolution: Example 

Consider two sinusoids: frequencies 3ws/16 and 5ws/16 

sample length T = 16t  

0     1       2      3       4       5      6     7   ws/2    w  

                        w              frequency ‘bin’ number k  

                       bin resolution 

|X(w)|2 

DTFT: ‘sinc’ shape 

due to window effect 
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DFT Resolution: Example 

16 point DFT: results in samples of DTFT. As sinusoids are 

at nws/N  (in middle of bins) only 1 non-zero sample each. 

0     1       2      3       4       5      6     7   ws/2    w  

                        w              frequency ‘bin’ number k  

                       bin resolution 

|X(w)|2 
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• In general, we can not capture 
– integer number of cycles of input 

• i.e., input will not be at bin frequencies nws/N  

– therefore, actual DFT resolution < w 

 

• This is due to energy ‘leakage’  
– between adjacent frequency bins 

 

• Leakage due to finite data length 
– i.e., the ‘window’ effect 
– which ‘smears’ X(w) -> X[k] 
– aim: to minimise window effect 

• using other than rectangular window 

Leakage Effects 
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DFT Resolution: Example 

Consider two sinusoids: frequencies 3.1ws/16 and 5.1ws/16 

sample length T = 16t  

0     1       2      3       4       5      6     7   ws/2    w  

                        w              frequency ‘bin’ number k  

                       bin resolution 

|X(w)|2 
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DFT Resolution: Example 

0     1       2      3       4       5      6     7   ws/2    w  

                        w              frequency ‘bin’ number k  

                       bin resolution 

|X(w)|2 
16 point DFT: Sinusoids  no longer at nws/N   

(not in middle of bins) therefore many non-zero samples. 

= actual DFT samples 
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• Consider, two sinusoids, 
1. sin(10.5ws/N): amplitude 1 
2. 0.01 sin(16.5ws/N): amplitude 0.01 

• i.e., significantly smaller (-40dB) 
 

• This produces worst case leakage as 
– both sinusoids fall at edge of frequency bins 
– leakage due to large sinusoid > amplitude of smaller sinusoid 

(will be ‘masked’) 
 

• Leakage can be reduced by using 
– non-rectangular window (Hanning/Hamming) 
– as used in FIR filter design 

Reducing Leakage with Window Functions: Example 
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Window 
-3dB 

bandwidth 
Loss (dB) 

Peak sidelobe 

(dB) 

Sidelobe roll 

off 

(dB/octave) 

Rectangular 0.89/Nt 0 -13 -6 

Hanning 1.4/Nt 4 -32 -18 

Hamming 1.3/Nt 2.7 -43 -6 

Dolph-

Chebyshev 
1.44/Nt 3.2 -60 0 

Window Functions 

Note, trade-off between increased sidelobe attenuation  

And increased 3dB (peak) bandwidth 
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Limitations of Fourier Analysis 

Note: These signals differ in Phase. PSD is zero phase as F{xx(k)} real & even 

Low – high 

 

 

 

 

 

High – low 

 

 

 

 

 

Mixed 
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• Spectrum of non-deterministic Signal X(w)  
– is only valid if x(t) is stationary 
– i.e., statistics of x(t) do not change over time 

• Real-world signals often only stationary over a short time 
period of time 
– e.g., speech: assumed stationary over t < 60ms 

• Therefore, take ‘short-time’ DFT of signal 
– i.e., take multiple DFT’s over stationary periods 
– plot how frequency components change over time 
– for speech the plot of time V frequency V power 

• is called a Spectrogram 

Spectrum Analysis  
of Non-Stationary Signals 
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• FT of sampled data is known as 
– discrete-time Fourier transform (DTFT) 
– discrete in time 
– continuous & periodic in frequency 

 

• DFT is sampled version of DTFT 
– discrete in both time and frequency 
– periodic in both time and frequency 

• due to sampling in both time and frequency 

 

• DFT is implemented using the FFT 

 

• Leakage reduced (dynamic range increased) 
– with non-rectangular window functions 

Summary 
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DTFT Meets  
Linear Algebra 

 
❤ 
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2D DFT 
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2D DFT 
• Each DFT coefficient is a complex value 

– There is a single DFT coefficient for each spatial sample 

– A complex value is expressed by two real values in either 

Cartesian or polar coordinate space. 
• Cartesian: R(u,v) is the real and I(u, v) the imaginary component 

• Polar: |F(u,v)| is the magnitude and phi(u,v) the phase 
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2D DFT 
• Representing the DFT coefficients as magnitude and phase is a 

more useful for processing and reasoning. 
– The magnitude is a measure of strength or length 

– The phase is a direction and lies in [-pi, +pi] 

• The magnitude and phase are easily obtained from the real and 

imaginary values 
 

21 April 2016 ELEC 3004: Systems 59 

Windowing for the DFT 

Source: Lathi, p.303 
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• Synthesis of a square pulse: periodic signal by successive 

addition of its harmonics (Lathi, p. 202-3) 

 

Harmonics 
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Fourier Matrix 
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The DFT 

    






 




 N

nkj
nxkX

N

n

2
exp

1

0

• Sample number n where 0  n < N-1  

• time 0 to Nt 

• Frequency sample (bin) number k  where 0  k < N-1 

• frequency 0 to s  (s = 2/ t) 

• Discrete in both time x[n] and frequency X[k] 

• Periodic in both time and frequency (due to sampling) 

• Remember: H(w) = H(z)|z = exp(jwt) 

• i.e., DFT samples around unit circle in the z-plane 
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DFT in Matlab 
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• Each frequency sample X[k] 
– Requires N complex multiply accumulate (MAC) operations 

•  for N frequency samples 
– There are N 2 complex MAC 

• e.g., 
– 8-point DFT requires 64 MAC 

– 64-point DFT requires 4,096 MAC 

– 256-point DFT requires 65,536 MAC 

– 1024-point DFT requires 1,048,576 MAC 

– i.e., number of MACs gets very large, very quickly! 

Computational Complexity 
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DFT Notation 

   








 







N

nkj
W

WnxkX

nk

N

nk

N

N

n

2
exp  where

1

0

WN
nk are called “Nth roots of unity”  

e.g., N = 8: 

W8
0 = exp(0) = 1;  

W8
1 = exp(-j/4) = cos(/4) – jsin(/4) = 0.7 – j0.7;  

W8
2 = -j;  W8

3 = -0.7 – j0.7;  W8
4 = -1; etc 
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Nth Roots of Unity 

W8
0 = 1 (= W8

8) 

W8
7 

W8
6 = j 

W8
5 

W8
4 = -1 

W8
3 

W8
2 = -j 

W8
1 (= W8

9) 

real 

imag |WN
nk| = 1 (unit length vectors) 

and W8
4 = -W8

0; W8
5 = -W8

1; 

      W8
6 = -W8

2; W8
7 = -W8

3 

All 2/N apart 

Z-plane 
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DFT Expansion 

    nk

N

N

n

WnxkX 




1

0

11

22

11

)1()1()0()1(

)1()1()0()2(

)1()1()0()1(

)1()1()0()0(

N

N

N

N

NN

N

NN

WNxWxxNkX

WNxWxxkX

WNxWxxkX

NxxxkX

























Remember WN
0 = 1 
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DFT Matrix Formulation 









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
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
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


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




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





















)1(

.

)2(

)1(

)0(

.1

.....

.1

.1

1.111

)1(

.

)2(

)1(

)0(

121

242

121

Nx

x

x

x

WWW

WWW

WWW

NX

X

X

X

N

N

N

N

N

N

NNN

N

NNN

DFT expansion can also be written as a matrix operation: 

DFT Matrix x[n] X[k] 
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Example: 8-point DFT Matrix 

no rotation 
DC row 

1 rotation 2 rotations     etc 

Increasing rotational frequency down the rows of the DFT matrix 
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Repeated complex multiplications in EVEN rows 

 Example: 8-point DFT Matrix 




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x(0) x(2) x(4) x(6) Even samples 
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Re-ordered DFT Matrix 
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Separate even and odd row operations (and re-order input vector) 

Even samples Odd samples 
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Upper & lower left-hand quarters are identical 

Right hand quarters identical except sign difference!  

Phasor Rotational Symmetry 
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To highlight repeated computations on odd samples 

as W8
4 = -W8

0, W8
5 = -W8

1, W8
6 = -W8

2, W8
7 = -W8

3 
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Adding “Twiddle Factors” 
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Twiddle Factors make the left  

and right hand quarters identical 

i.e., 8-point DFT reduced 

to two 4-point DFT’s 

only need calculate upper 

left and right quarters 
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8-Point DFT as Two 4-Point DFTs 
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Radix-2 FFT 
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Two-point “Butterfly” operation 

2x2 Quadrants are identical (with twiddle factors)  

Each 4-point DFT can be reduced to two 2-point DFT’s 
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Two Point Butterfly 

x(0) 

x(1) 

X(0) = x(0) + x(1) 

X(1) = x(0) – x(1) 

x(0) 

x(1) 

With twiddle factors: 

W8
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• Reduce complex multiplications from N2 to: 
– (N/2)log2(N) 

– As there are log2(N) passes 

– Each pass requires N/2 complex multiplications 

• Disadvantages 
– More complex memory addressing 

• To get appropriate samples pairs for each butterfly 

– FFT can be slower (than DFT) for small N (< 16) 

Features of the FFT 

Remember: log2(N) = x, where N = 2x & integer x  
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• Only case covered so far is 
– (one case of) radix-2 decimation in time (DIT) FFT 

– requires sequence length, N, to be a power of 2 

– achieved by ‘zero padding’ sequence to desired, N 

• Decimation in Frequency 
– similar to DIT, twiddle factors on outputs 

• Alternatives to radix-2 decomposition 
– Radix 3: for sequence length, N  = power of 3 

– Radix 4: twice as fast as radix 2 FFT 
• half number of passes, log4(N) 

– Split radix: mixtures of the above 

Alternative FFT Algorithms 
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• IDFT obtained by 
– changing sign of WNnk 

– scaling by 1/N 

• Therefore, we can use same FFT algorithm 
– change sign of twiddle factors 

– and scale output to get x[n] 

Inverse FFT 
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• DFT samples the DTFT 
– Normally N samples in both time & Frequency 

– But we can increase the (DFT) sample density! 

– By zero padding 

• Zero Pad in time domain 
– Calculates additional samples of DTFT 

• Zero Pad in frequency domain 
– Adds additional high frequency components (zero) 

– DFT zero padding  sinc interpolation 
• Windowed by length, N, of DFT (not ideal sinc) 

Interpolation using the DFT 
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• Interpolation of X[k] 
– zero pad sequence x[n] 

• either start or end of x[n] (or both) 

– increased sampling of DTFT spectrum, X(w) 

• Interpolation of x[n] 
– zero pad discrete spectrum X[k]  

• evenly, both at start or end of the sequence 

• to ensure xu[n]  remains real 

• i.e., pad to preserve symmetry of X[k]  

Interpolation via DFT (FFT) 
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• Spectral Analysis 
– Estimate (power) spectrum with less computations 

– i.e., what frequencies in our signal are carrying power (i.e., 

carrying information) ? 

• Fast (circular) Convolution 
– Convolution requires N 2  MAC operations  

– more efficient alternative using the FFT  
• Take FFT of both sequences 

• Multiply them together (point-wise) 

• Take IFFT to get the result 

• Fast Cross-correlation 
– E.g., correlation detector in digital comm’s 

Applications of the FFT 
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• Power Spectral Density (PSD) defined as 
– Fourier Transform of Autocorrelation function 

Spectral Analysis 


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 In practice, we estimate Sxx(w) from {x[n]}0
N-1 

 i.e., a finite length of sampled data 

 This can be done using N - point DFT 

 and implemented using the FFT algorithm 
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• Estimate of PSD is given by 

Spectral Analysis 

• This is known as a periodogram 

– DFT effectively implements narrow-band filter 
bank 

– calculate power (i.e., square) at each frequency k 

• Again, window functions often required 

– to improve PSD estimate 

– e.g., Hanning, Hamming, Bartlet etc 
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• Alternatively, we can estimate PSD as 
– DFT (FFT) of the estimate of the autocorrelation 

Spectral Analysis 

• Assuming x[n] is ergodic (at least stationary) 

• Normally restricted range of PSD 

– e.g., 0 < M < N/10 
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• Note,  
– when finding PSD as DFT of ^xx[m] 

– ^xx[m] has an odd length! (2M + 1) 

• Therefore, to use the radix-2 FFT we need to 
– zero pad ^xx[m] to length = power of 2 

• e.g., for M = 2, ^xx[m] is of length 5 
– we need to zero pad to length 8, i.e., 

– {^xx[-2]  ^xx[-1]  ^xx[0]  ^xx[1]  ^xx[2]  0  0  0} 

– Note, sequence made causal  (no change to PSD) 

• This estimate of PSD is known as correlogram 
– Note, periodogram is most common estimate of PSD 

Spectral Analysis 
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(Linear) Convolution 

h[n] = {1 1 1 1} x[n] = {0.5 0.75 1.0 1.25} 

y[n] = x[n]h[n] = {0.5 1.25  2.25  3.5  3.0  2.25  1.25} 

In general: length(y[n]) = length(x[n]) + length(h[n]) - 1 
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Circular Convolution 

Given X[k] = DFT{x[n]} and H[k] = DFT{h[n]} 

from convolution theorem we know 

IDFT{X[k] H[k]}  x[n]h[n] 

IDFT{X[k] H[k]} = {3.5 3.5 3.5 3.5}   Wrong Length! 

i.e., x[n] and h[n] 

are periodic in time 

hp[n] = {1 1 1 1 0 0 0 } xp[n] = {0.5 0.75 1.0 1.25 0 0 0} 

IDFT{Xp[k] Hp[k]} = [0.5 1.25  2.25  3.5  3.0  2.25  1.25] 

Solution: zero pad both sequences to required length 
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• FFT exploits symmetries in the DFT 
– Successively splits DFT in half  

• odd and even samples 

– Reduction to elementary butterfly operation 
• with ‘twiddle factors’ 

– Reduce computations from N 2 to (N/2)log2(N)   

• FFT can be used to implement DFT for 
– PSD estimates (periodogram and correlogram) 

– Circular (fast) convolution (and correlation) 
• Requires zero padding to obtain “correct” answer 

Summary 
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Fun Application: Optical Proximity Correction 
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•  Digital Filters 

 

 

• Review:  
– Chapter 12 of Lathi  

 

 

• Ponder? 

 

 

 

Next Time… 
 
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