

Fourier Analysis of DT Signals and FFT

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

 $\begin{array}{c} Lecture \ 14 \\ \text{(with material from Lathi)} \end{array}$

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

April 18, 2016

(CC)) BY-NC-SA

Lecture Schedule:

Week	Date	Lecture Title		
1	29-Feb	Introduction		
1	3-Mar	Systems Overview		
2	7-Mar	Systems as Maps & Signals as Vectors		
	10-Mar	Data Acquisition & Sampling		
3	14-Mar	Sampling Theory		
3	17-Mar	Antialiasing Filters		
4		Discrete System Analysis		
4		Convolution Review		
	28-Mar	Holiday		
	31 11101			
5		Frequency Response & Filter Analysis		
		Filters		
6	11-Apr	Digital Filters		
Ů	14-Apr	Digital Filters		
_	18-Apr	Digital Windows		
7	21-Apr	FFT		
8	25-Apr	Holiday		
0	28-Apr	Feedback		
9	3-May	Introduction to Feedback Control		
,	5-May	Servoregulation/PID		
10	9-May	Introduction to (Digital) Control		
10	12-May	Digitial Control		
11	16-May	Digital Control Design		
	19-May	Stability		
12		Digital Control Systems: Shaping the Dynamic Response & Estimation		
		Applications in Industry		
13		System Identification & Information Theory		
	2-Jun	Summary and Course Review		

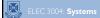
ELEC 3004: Systems

Follow Along Reading:

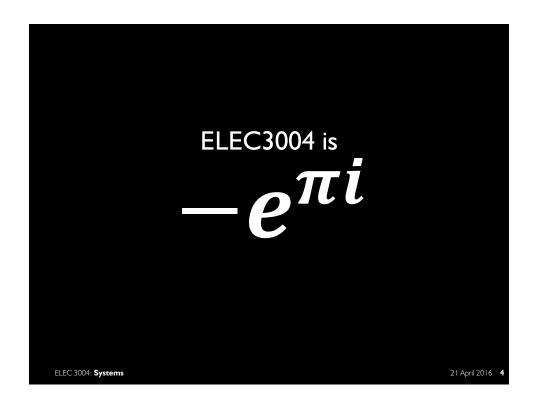
B. P. Lathi Signal processing and linear systems 1998 TK5102.9.L38 1998 Today

- Chapter 10
 - (Discrete-Time System Analysis Using the z-Transform)
 - § 10.3 Properties of DTFT
 - § 10.5 Discrete-Time Linear System analysis by DTFT
 - § 10.7 Generalization of DTFT
 - to the Z-Transform
- Chapter 12
 - (Frequency Response and Digital Filters)
- § 12.1 Frequency Response of Discrete-Time Systems
- § 12.3 Digital Filters
- § 12.4 Filter Design Criteria
- § 12.7 Nonrecursive Filters

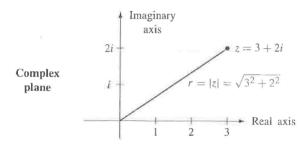
Next Time



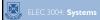
21 April 2016



The Complex Plane Properties

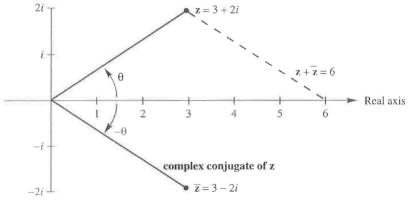


- z=(a + bi)
- $z + \bar{z} = 2a$
- $z\bar{z} = (a + bi)(a bi) = a^2 + b^2$



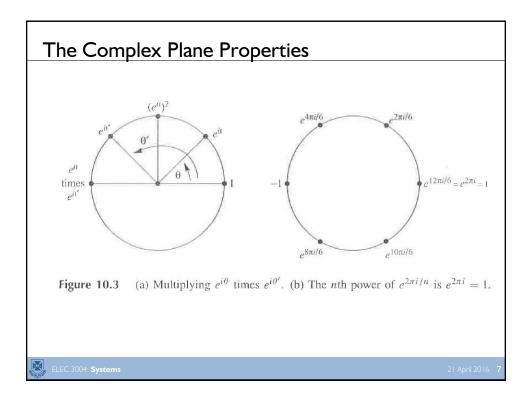
21 April 2016 5

The Complex Plane Properties



- z=(a + bi) is also
- $z = r\cos\theta + ir\sin\theta$

The nth power of $z = r(\cos \theta + i \sin \theta)$ is $z^n = r^n(\cos n\theta + i \sin n\theta)$.





The Fourier Transform

• The continuous-time Fourier Transform

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

- What happens if we sample $x(t)|_{t=n\Delta t} = x_c(t)$?
- Represent $x_c(t)$ as sum of weighted impulses

$$x_c(t) = \sum_{n=-\infty}^{\infty} x(n\Delta t)\delta(t - n\Delta t)$$

$$X_{c}(\omega) = \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} x(n\Delta t) \delta(t - n\Delta t) \right] \exp(-j\omega t) dt$$

21 April 2016

Discrete-time Fourier Transform

- Changing order of integration & summation
 - and the simplifying (multiplication by impulse) gives

$$X_{c}(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \left[\int_{-\infty}^{\infty} \delta(t - n\Delta t) \exp(-j\omega t) dt \right]$$
$$= \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

- This is known as the DTFT
 - Requires an infinite number of samples $x(n\Delta t)$
 - discrete in time
 - continuous and periodic in frequency

ELEC 3004: Systems

DTFT of Finite Data Samples

- Assume only N samples of $x(n\Delta t)$
 - from $n = \{0, N 1\}$
- Therefore, can only approximate $X_c(w)$

$$\hat{X}_{c}(\omega) = \sum_{n=0}^{N-1} x(n\Delta t) \exp(-j\omega n\Delta t)$$

- How good an estimate is this?
 - Finite samples are same as infinite sequence multiplied by a rectangular time domain 'window'

$$\hat{x}(n\Delta t) = x(n\Delta t) \cdot \Pi\left(\frac{t}{T}\right), \quad \text{where } T = N\Delta t$$

$$\text{Where rect(t)} = \Pi\left(t\right) = u\left(t + \frac{T}{2}\right) - u\left(t - \frac{T}{2}\right)$$

21 April 2016 11

Window Effects

- Multiplication in time with rectangular window
- Equivalent to convolution in frequency
 - with 'sinc' function

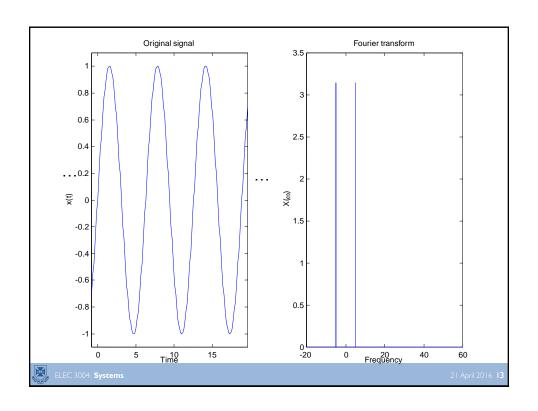
$$\hat{X}_{c}(\omega) = \frac{1}{2\pi} X_{c}(\omega) *T \operatorname{sinc}\left(\frac{T\omega}{2\pi}\right)$$

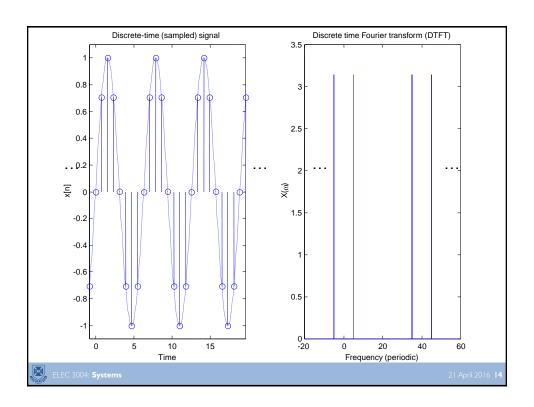
• In general, with arbitrary window function

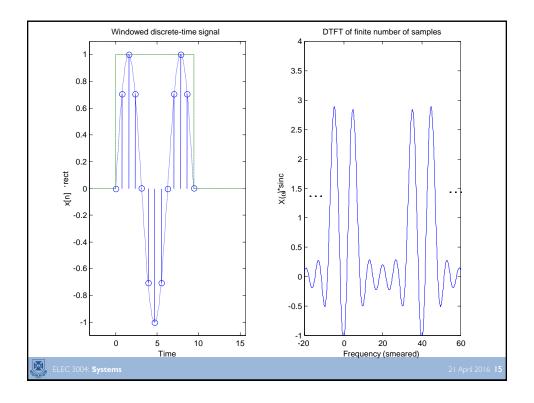
$$\hat{X}_c(t) = X_c(t) \cdot W_T(t)$$

$$\hat{X}_c(\omega) = \frac{1}{2\pi} X_c(\omega) * W_T(\omega)$$

This is exactly same effect we saw in FIR filter design

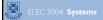


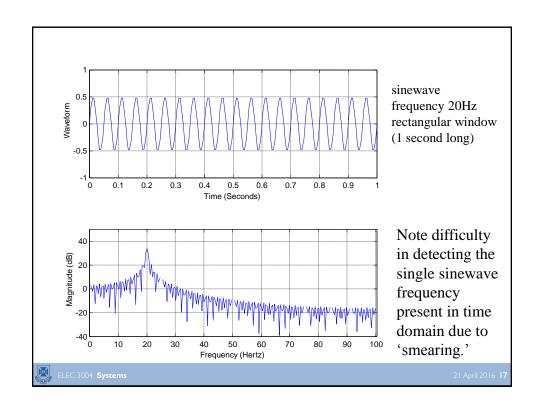


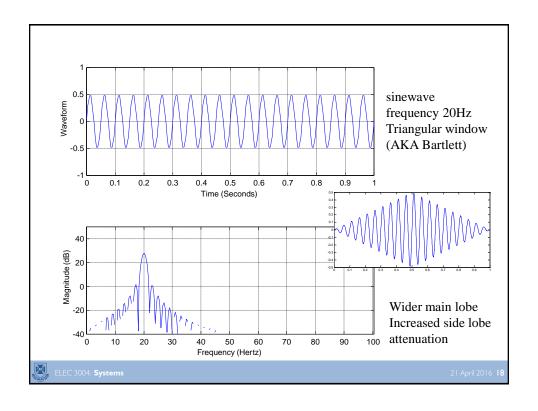


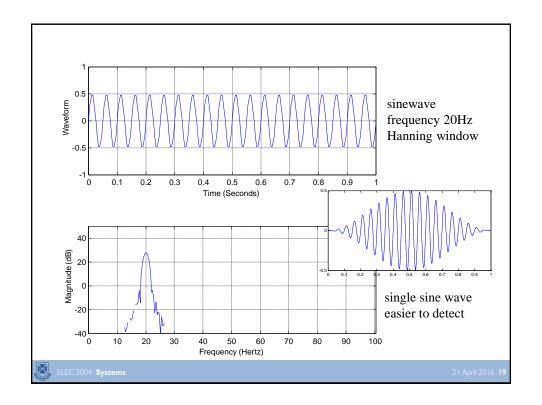
Reducing Window Effects

- We cannot avoid using a window function
 - as we must use a finite length of data
- Aim: to reduce window effect
 - 1. By choosing suitable window function
 - Hanning, Hamming, Blackman, Kaiser etc
 - 2. Increase number of samples (N)
 - reduces window effect (larger window)
 - increases resolution (No. samples)
 - · Assumes signal is 'stationary' within sample window
 - Not true for most non-deterministic signals
 - e.g., speech, images etc









DTFT and the DFT

- Fourier transform, $\hat{X}_c(w)$, of sampled data is
 - continuous in frequency, range $\{0, w_s\}$
 - and periodic (w_s)
 - known as DTFT
- If calculating on digital computer
 - then only calculate $\hat{X}_c(w)$ at discrete frequencies
 - normally equally spaced over $\{0, w_s\}$
 - normally *N* samples, i.e., same as in time domain
 - i.e, samples Δw apart

Can reduce Δw by increasing N

$$\Delta\omega = \frac{2\pi}{N\Delta t}$$

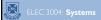
The DFT

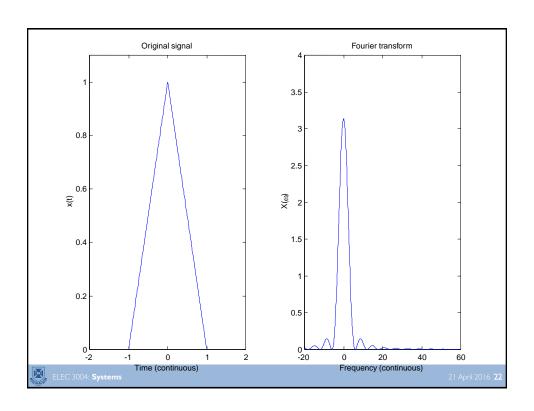
- Discrete Fourier Transform (DFT)
 - samples of DTFT, $X_c(w)|_{w = k \Delta w}$

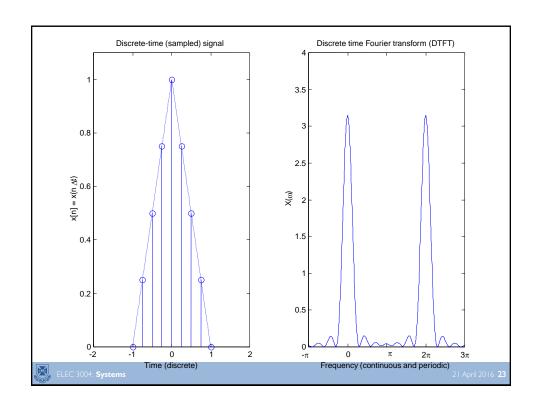
$$\hat{X}(k\Delta\omega) = X[k] = \sum_{n=0}^{N-1} x[n] \exp\left(\frac{-jnk2\pi}{N}\right)$$

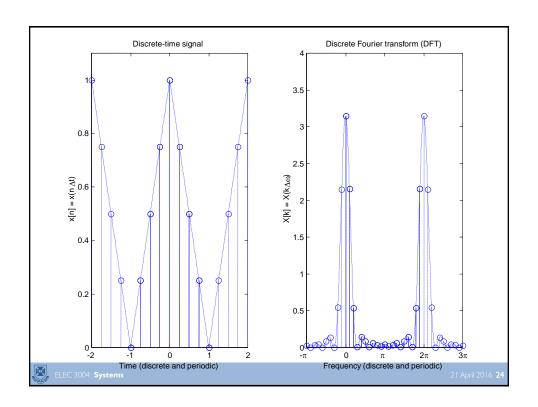
where $0 \le n, k \le N-1$

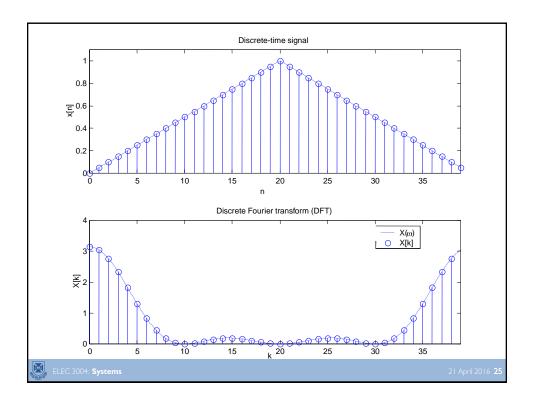
- Interpretation:
 - N equally spaced samples of $x(t)|_{t=n \Delta t}$
 - Calculates N equally spaced samples of $X(w)|_{w = k\Delta w}$
 - k often referred to a frequency 'bin': $X[k] = X(w_k)$











Inverse DFT

- Relates frequency domain samples to
 - time domain samples

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \exp\left(\frac{jnk 2\pi}{N}\right)$$

- · Note, differences to forward DFT
 - 1/N scaling and sign change on exponential
 - DFT & IDFT implemented with same algorithm
 - i.e., Fast Fourier Transform (FFT)
- Require both DFT and IDFT to implement (fast)
 - convolution as multiplication in frequency domain

Note, 1/N scaling can be on DFT only OR as 1/sqrt(N) on both DFT and IDFT

ELEC 3004: Systems

Fourier Transforms

Transform	Time Domain	Frequency Domain
Fourier Series (FS)	Continuous & Periodic	Discrete
Fourier Transform (FT)	Continuous	Continuous
Discrete-time Fourier Transform (DTFT)	Discrete	Continuous & Periodic
Discrete Fourier Transform (DFT)	Discrete & Periodic	Discrete & Periodic

ELEC 3004: Systems

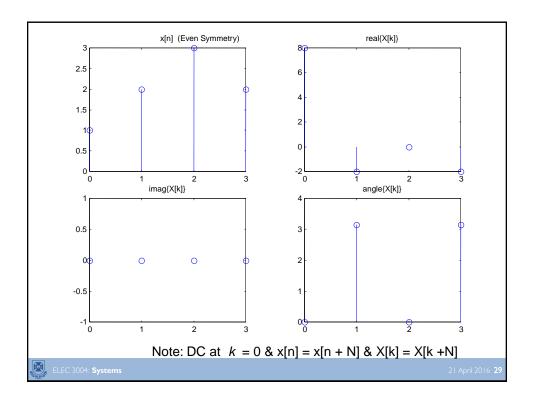
Properties of the DFT

if...

• *x* [*n*] is real

Then...

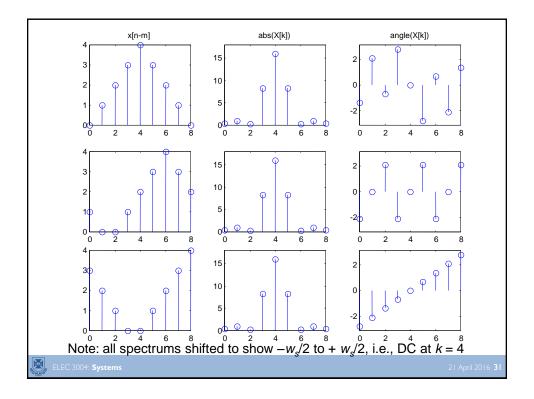
- X[-k] = X[k]*
 - $\Re\{X[k]\}$ is even
 - $-\Im \{X[k]\}$ is odd
 - -|X[k]| is even
 - ∠X[k] is odd
- x[n] is real and even
- X[k] is real and even
 - i.e., zero phase
- x[n] is real and odd
- X[k] is imaginary and odd



Properties of the DFT

- Periodic in frequency
 - period w_s i.e., the sampling frequency, or
 - period 2π (in normalised frequency)
- Repeats after *N* samples
 - -x[N+k] = X[k]
- Mirror image (even) symmetry at $w_s/2$, i.e., π
 - -x[N-r] = X*[r], where r < N/2
- Shift property
 - $-x[n-m] = \exp(-jkm2\pi/N) X[k]$
 - i.e., |X[k]| stays the same as input is shifted
 - only (phase) $\angle X[k]$ changes

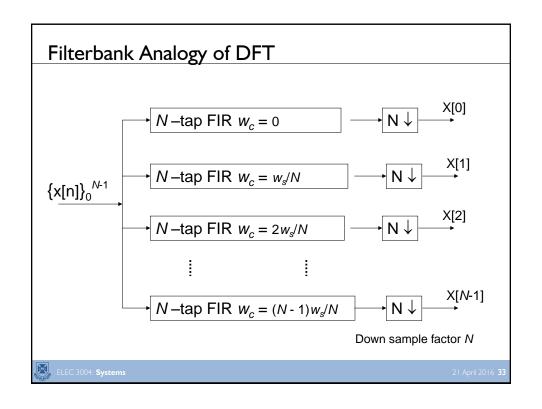
ELEC 3004: Systems

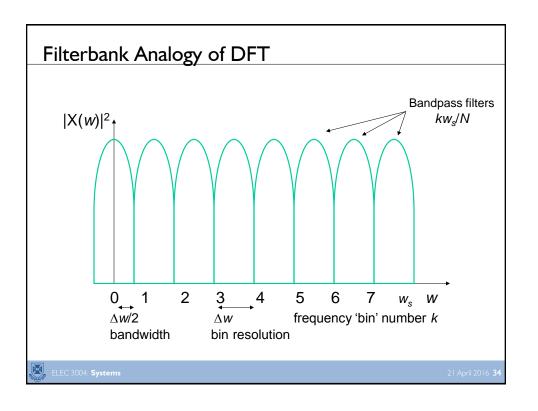


Analogies for the DFT

- Analogy for DFT is a **Filterbank**
 - Set of N FIR bandpass filters
 - with centre frequencies kw_s/N
 - $k \text{ in range } \{0, N-1\}$
 - often called 'frequency bins'
- e.g., 8 point DFT
 - 8 bandpass filters (bins), spaced $\Delta w = w_s/8$ apart
 - Bandwidth of each filter $\Delta w/2$ therefore
 - output can be down-sampled by factor of 8
 - i.e., one sample, x[k], per filter output (frequency bin)

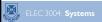
ELEC 3004: Systems



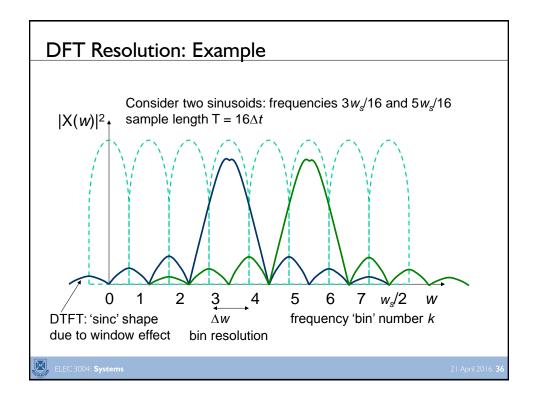


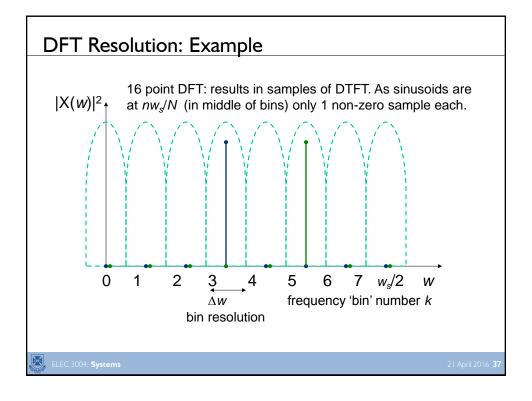
DFT Resolution

- Resolution is ability to distinguish
 - 2 (or more) closely spaced sinusoids
- Minimum resolution of DFT given by
 - $-\Delta w = w_s/N = 2\pi/N\Delta t$
 - defined by sampling frequency, w_s
 - and number of samples, N
- Minimum resolution occurs when
 - integer number of complete cycles of input signal
 - in the *N* samples analysed
 - This is a 'best case' scenario
 - 'sinc' smearing always zero in adjacent frequency bins



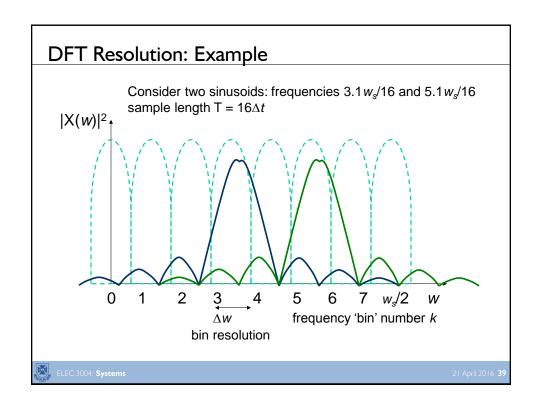
21 April 2016 3!

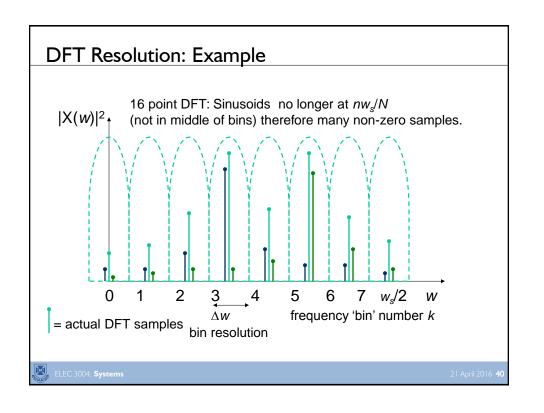


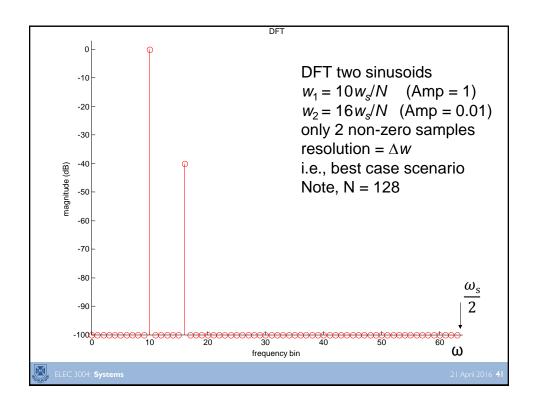


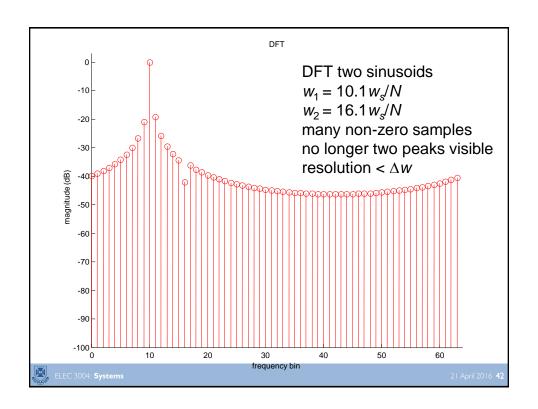
Leakage Effects

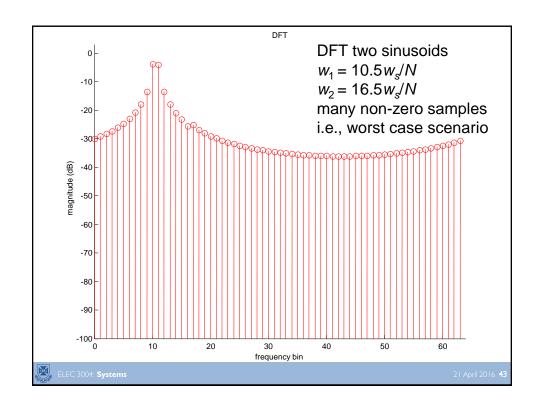
- In general, we can not capture
 - integer number of cycles of input
 - i.e., input will not be at bin frequencies nw_s/N
 - therefore, actual DFT resolution $< \Delta w$
- This is due to energy 'leakage'
 - between adjacent frequency bins
- Leakage due to finite data length
 - i.e., the 'window' effect
 - which 'smears' $X(w) \rightarrow X[k]$
 - aim: to minimise window effect
 - using other than rectangular window

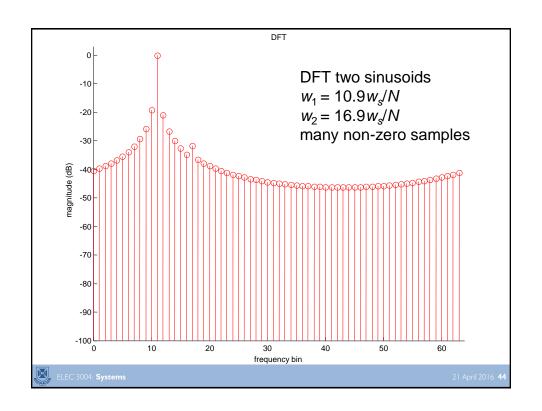


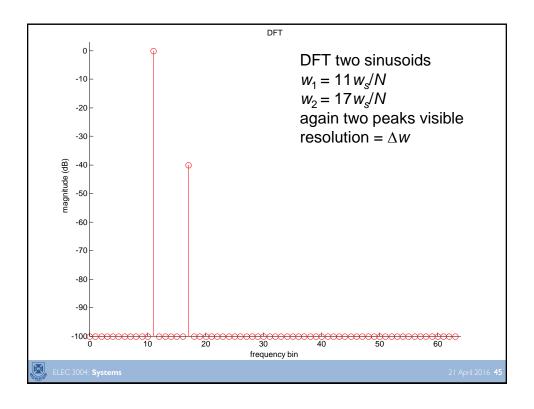






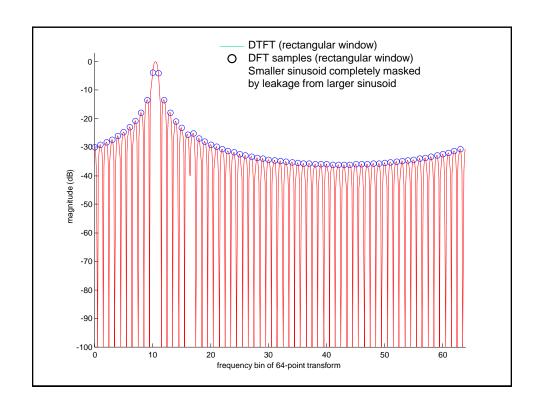


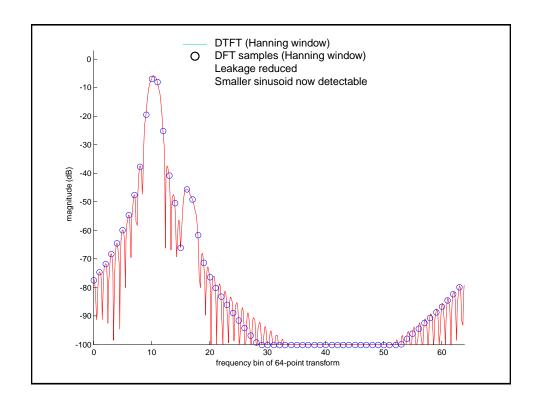


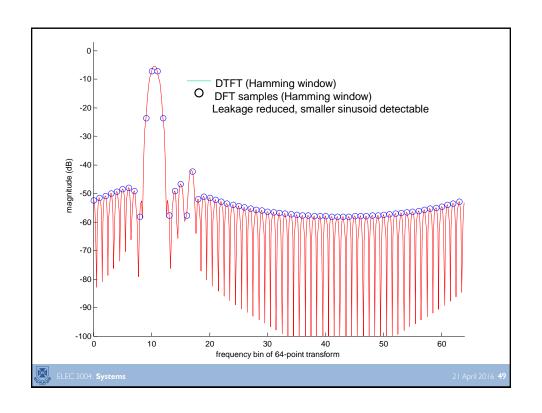


Reducing Leakage with Window Functions: Example

- Consider, two sinusoids,
 - 1. $\sin(10.5w_s/N)$: amplitude 1
 - 2. $0.01 \sin(16.5w_s/N)$: amplitude 0.01
 - i.e., significantly smaller (-40dB)
- This produces worst case leakage as
 - both sinusoids fall at edge of frequency bins
 - leakage due to large sinusoid > amplitude of smaller sinusoid (will be 'masked')
- Leakage can be reduced by using
 - non-rectangular window (Hanning/Hamming)
 - as used in FIR filter design





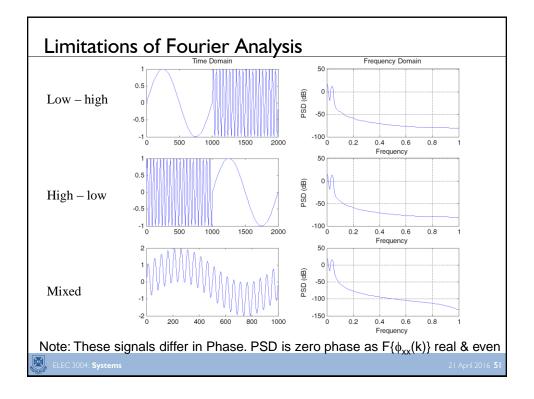


Window	Functions

Window	-3dB bandwidth	Loss (dB)	Peak sidelobe (dB)	Sidelobe roll off (dB/octave)
Rectangular	0.89/ <i>N</i> ∆ <i>t</i>	0	-13	-6
Hanning	1.4/ <i>N</i> ∆ <i>t</i>	4	-32	-18
Hamming	1.3/ <i>N</i> ∆ <i>t</i>	2.7	-43	-6
Dolph- Chebyshev	1.44/ <i>N</i> ∆ <i>t</i>	3.2	-60	0

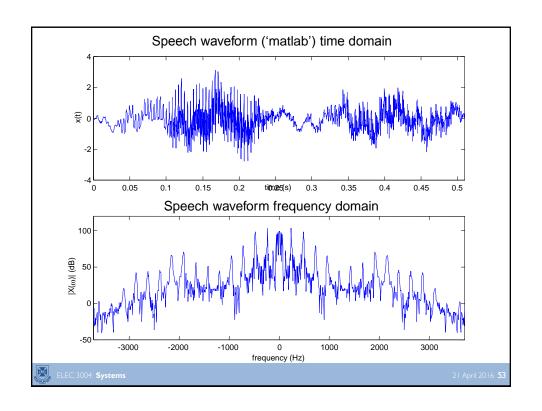
Note, trade-off between increased sidelobe attenuation And increased 3dB (peak) bandwidth

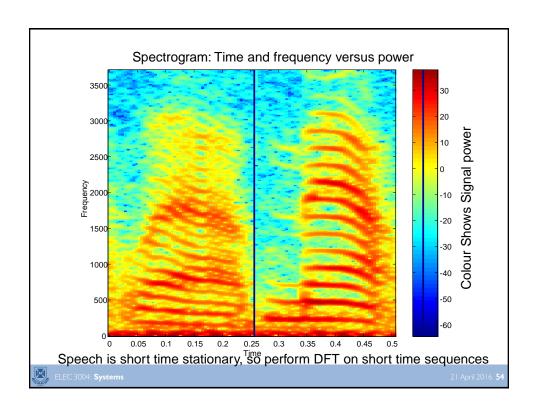
ELEC 3004: Systems



Spectrum Analysis of Non-Stationary Signals

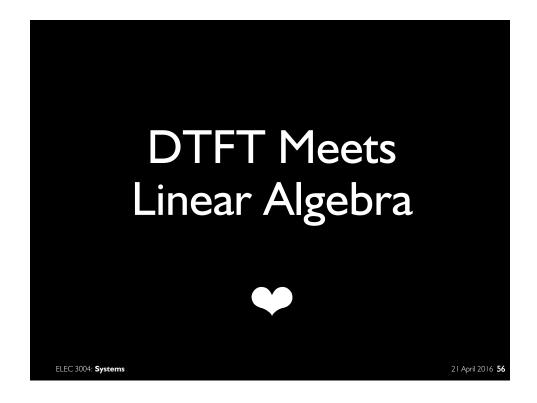
- Spectrum of non-deterministic Signal X(w)
 - is only valid if x(t) is stationary
 - i.e., statistics of x(t) do not change over time
- Real-world signals often only stationary over a short time period of time
 - − e.g., speech: assumed stationary over t < 60ms
- Therefore, take 'short-time' DFT of signal
 - i.e., take multiple DFT's over stationary periods
 - plot how frequency components change over time
 - for speech the plot of time V frequency V power
 - is called a Spectrogram





Summary

- FT of sampled data is known as
 - discrete-time Fourier transform (DTFT)
 - discrete in time
 - continuous & periodic in frequency
- DFT is sampled version of DTFT
 - discrete in both time and frequency
 - periodic in both time and frequency
 - due to sampling in both time and frequency
- DFT is implemented using the FFT
- Leakage reduced (dynamic range increased)
 - with non-rectangular window functions



2D DFT

$$\mathcal{F}(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux+vy)/N}$$

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \mathcal{F}(u,v) e^{j2\pi(ux+vy)/N}$$

ELEC 3004: Systems

21 April 2016 **57**

2D DFT

- Each DFT coefficient is a complex value
 - There is a single DFT coefficient for each spatial sample
 - A complex value is expressed by two real values in either Cartesian or polar coordinate space.
 - Cartesian: R(u,v) is the real and I(u, v) the imaginary component
 - Polar: |F(u,v)| is the magnitude and phi(u,v) the phase

$$\mathcal{F}(u,v) = R(u,v) + jI(u,v)$$

$$\mathcal{F}(u,v) = |F(u,v)|e^{j\phi(u,v)}$$

ELEC 3004: Systems

2D DFT

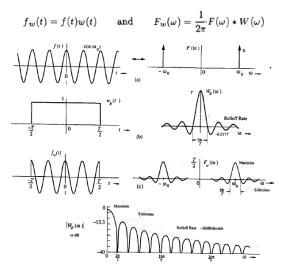
- Representing the DFT coefficients as magnitude and phase is a more useful for processing and reasoning.
 - The magnitude is a measure of strength or length
 - The phase is a direction and lies in [-pi, +pi]
- The magnitude and phase are easily obtained from the real and imaginary values

$$|\mathcal{F}(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

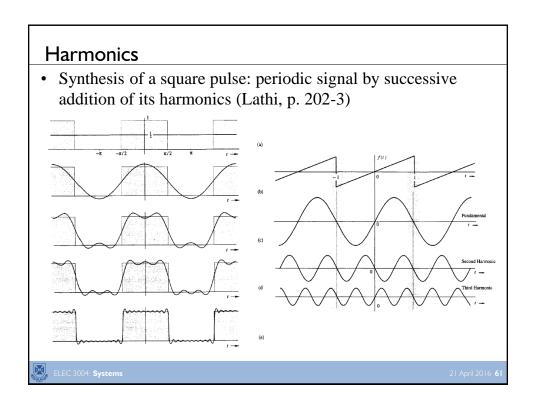
$$\phi(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right].$$

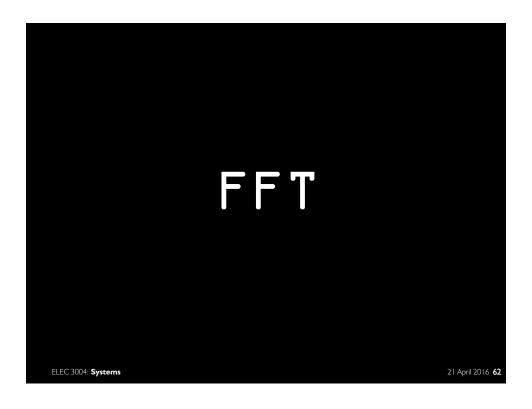
21 April 2016 **59**

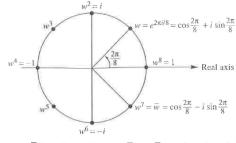
Windowing for the DFT



Source: Lathi, p.303







$$F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & w^4 & w^6 \\ 1 & w^3 & w^6 & w^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix}.$$

$$Fc = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & w^4 & w^6 \\ 1 & w^3 & w^6 & w^9 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} c_0 + c_1 + c_2 + c_3 \\ c_0 + c_1 w + c_2 w^2 + c_3 w^3 \\ c_0 + c_1 w^2 + c_2 w^4 + c_3 w^6 \\ c_0 + c_1 w^3 + c_2 w^6 + c_3 w^9 \end{bmatrix}$$

ELEC 3004: Systems

21 April 2016 63

The DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] \exp\left(\frac{-j2\pi nk}{N}\right)$$

- Sample number *n* where $0 \le n < N-1$
 - time 0 to $N\Delta t$
- Frequency sample (bin) number k where $0 \le k < N-1$
 - frequency 0 to ω_s ($\omega_s = 2\pi/\Delta t$)
- Discrete in both time x[n] and frequency X[k]
- Periodic in both time and frequency (due to sampling)
- Remember: $H(w) = H(z)|_{z = \exp(jw\Delta t)}$
 - i.e., DFT samples around unit circle in the z-plane

ELEC 3004: Systems

DFT in Matlab

```
function X = MyDFT(x)
         % function X = MyDFT(x)
         % Niave/direct implementation of the Discrete Fourier Transform (DFT)
         \% Calculate N samples of the DTFT, i.e., same a No. samples
         N = length(x);
         % Initialize (complex) X to zero
         X = complex(zeros(size(x)),zeros(size(x)));
         for n = 0:N-1
             for k = 0:N-1
                 % Calculate each sample of DFT using each sample of input.
                 % Note: Matlab indexes vectors from 1 to N,
                 % whilst DFT is defined from from 0 to (N-1)
                 X(k+1) = X(k+1) + x(n+1)*exp(-j*n*k*2*pi/N);
             end
         end
ELEC 3004: Systems
```

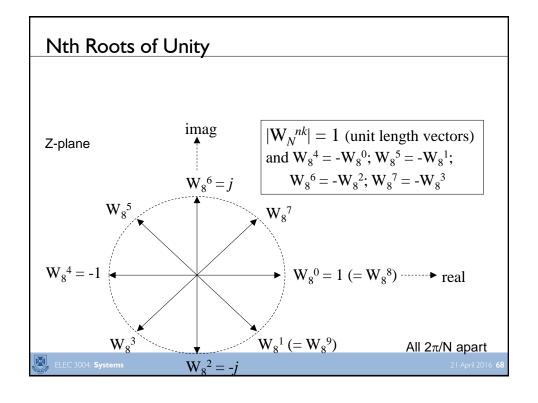
Computational Complexity

- Each frequency sample X[k]
 - Requires N complex multiply accumulate (MAC) operations
- : for N frequency samples
 - There are N 2 complex MAC
- e.g.,
 - 8-point DFT requires 64 MAC
 - 64-point DFT requires 4,096 MAC
 - 256-point DFT requires 65,536 MAC
 - 1024-point DFT requires 1,048,576 MAC
 - i.e., number of MACs gets very large, very quickly!

DFT Notation

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk}$$
where $W_N^{nk} = \exp\left(\frac{-j2\pi nk}{N}\right)$

$$W_N^{nk} \text{ are called "}N^{\text{th}} \text{ roots of unity"}$$
e.g., $N = 8$:
$$W_8^0 = \exp(0) = 1$$
;
$$W_8^1 = \exp(-j\pi/4) = \cos(\pi/4) - j\sin(\pi/4) = 0.7 - j0.7$$
;
$$W_8^2 = -j$$
; $W_8^3 = -0.7 - j0.7$; $W_8^4 = -1$; etc



DFT Expansion

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk}$$

$$X(k=0) = x(0) + x(1) + \dots + x(N-1)$$

$$X(k=1) = x(0) + x(1)W_N^1 + \dots + x(N-1)W_N^{N-1}$$

$$X(k=2) = x(0) + x(1)W_N^2 + \dots + x(N-1)W_N^{N-2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$X(k=N-1) = x(0) + x(1)W_N^{N-1} + \dots + x(N-1)W_N^1$$

Remember $W_N^0 = 1$

ELEC 3004: Systems

21 April 2016 69

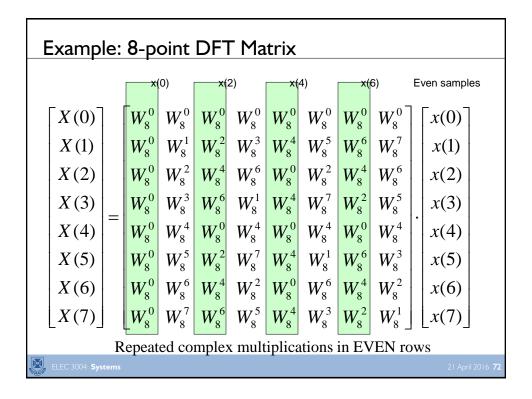
DFT Matrix Formulation

DFT expansion can also be written as a matrix operation:

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & . & 1 \\ 1 & W_N^1 & W_N^2 & . & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & . & W_N^{N-2} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 1 & W_N^{N-1} & W_N^{N-2} & . & W_N^1 \end{bmatrix} \cdot \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{bmatrix}$$

$$X[k] \qquad \text{DFT Matrix} \qquad X[n]$$

ELEC 3004: Systems



Re-ordered DFT Matrix

Separate even and odd row operations (and re-order input vector)

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^4 & W_8^2 & W_8^6 & W_8^1 & W_8^5 & W_8^3 & W_8^7 \\ W_8^0 & W_8^0 & W_8^4 & W_8^4 & W_8^2 & W_8^2 & W_8^2 & W_8^6 & W_8^6 \\ W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^4 & W_8^4 & W_8^4 & W_8^4 & W_8^4 \\ W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^4 & W_8^4 & W_8^4 & W_8^4 \\ W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^5 & W_8^1 & W_8^7 & W_8^3 \\ W_8^0 & W_8^0 & W_8^4 & W_8^4 & W_8^6 & W_8^6 & W_8^2 & W_8^2 \\ W_8^0 & W_8^0 & W_8^4 & W_8^4 & W_8^6 & W_8^6 & W_8^6 & W_8^2 & W_8^2 \\ W_8^0 & W_8^0 & W_8^4 & W_8^4 & W_8^6 & W_8^6 & W_8^6 & W_8^2 & W_8^2 \\ W_8^0 & W_8^4 & W_8^6 & W_8^2 & W_8^7 & W_8^3 & W_8^5 & W_8^1 \end{bmatrix} \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \\ x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$

$$Even samples \qquad Odd samples$$

ELEC 3004: Systems

21 April 2016 **73**

Phasor Rotational Symmetry

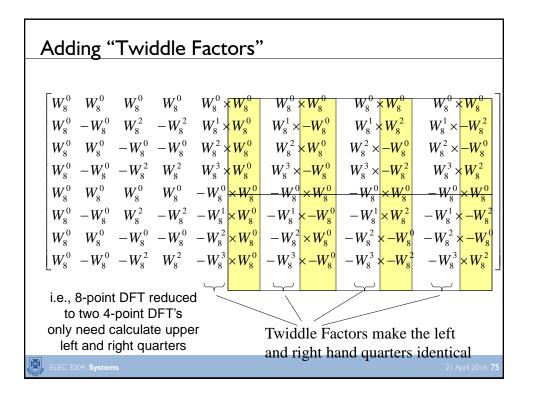
To highlight repeated computations on odd samples as $W_8^4 = -W_8^0$, $W_8^5 = -W_8^1$, $W_8^6 = -W_8^2$, $W_8^7 = -W_8^3$

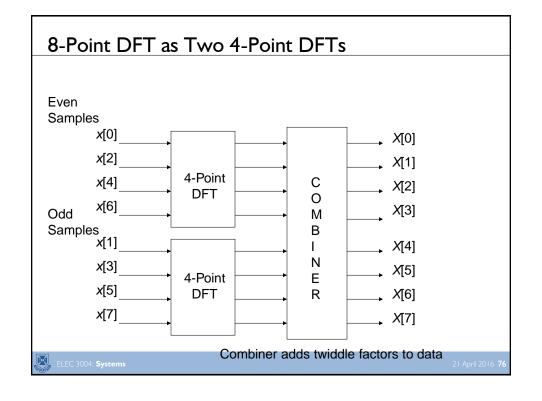
$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^0 & W_8^2 & -W_8^2 & W_8^1 & -W_8^1 & W_8^3 & -W_8^3 \\ W_8^0 & W_8^0 & -W_8^0 & -W_8^0 & W_8^2 & W_8^2 & -W_8^2 & -W_8^2 \\ W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 \\ W_8^0 & W_8^0 & W_8^0 & W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 \\ X(7) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ W_8^0 & W_8^0 & -W_8^0 & -W_8^0 & W_8^2 & -W_8^2 & -W_8^2 & -W_8^2 \\ W_8^0 & W_8^0 & W_8^0 & W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 \\ W_8^0 & W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & W_8^2 \\ W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 & -W_8^0 \\ X(7) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(2) \\ x(3) \\ x(4) \\ x(2) \\ x(4) \\ x(2) \\ x(3) \\ x(4) \\ x(4) \\ x(2) \\ x(4) \\ x(2) \\ x(3) \\ x(4) \\ x(4) \\ x(2) \\ x(3) \\ x(4) \\ x(4) \\ x(2) \\ x(4) \\ x(2) \\ x(3) \\ x(4) \\ x(4) \\ x(4) \\ x(2) \\ x(6) \\ x(1) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix}$$

Upper & lower left-hand quarters are identical Right hand quarters identical except sign difference!

ELEC 3004: Systems

1.4---12014 74





Radix-2 FFT

Each 4-point DFT can be reduced to two 2-point DFT's

$$\begin{bmatrix} W^{0} & W^{0} & W^{0} & W^{0} \\ W^{0} & -W^{0} & W^{2} & -W^{2} \\ W^{0} & W^{0} & -W^{0} & -W^{0} \\ W^{0} & -W^{0} & -W^{2} & W^{2} \end{bmatrix} = \begin{bmatrix} W^{0} & W^{0} & W^{0} \times W^{0} & W^{0} \times W^{0} \\ W^{0} & -W^{0} & W^{2} \times W^{0} & W^{2} \times -W^{0} \\ W^{0} & W^{0} & -W^{0} \times W^{0} & -W^{0} \times W^{0} \\ W^{0} & -W^{0} & -W^{2} \times W^{0} & -W^{2} \times -W^{0} \end{bmatrix}$$

2x2 Quadrants are identical (with twiddle factors)

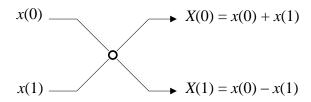
Two-point "Butterfly" operation

$$\begin{bmatrix} X(0) \\ X(1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 \\ W^0 & -W^0 \end{bmatrix} \cdot \begin{bmatrix} x(0) \\ x(1) \end{bmatrix}$$
$$\begin{bmatrix} X(0) \\ X(1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} x(0) \\ x(1) \end{bmatrix}$$

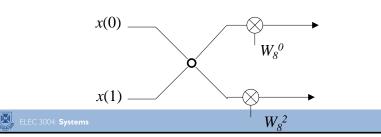
ELEC 3004: Systems

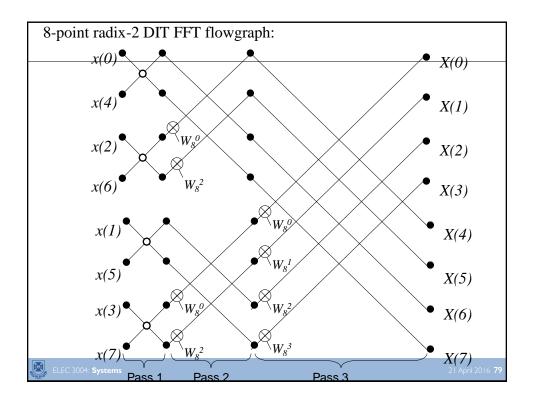
21 April 2016 **77**

Two Point Butterfly



With twiddle factors:



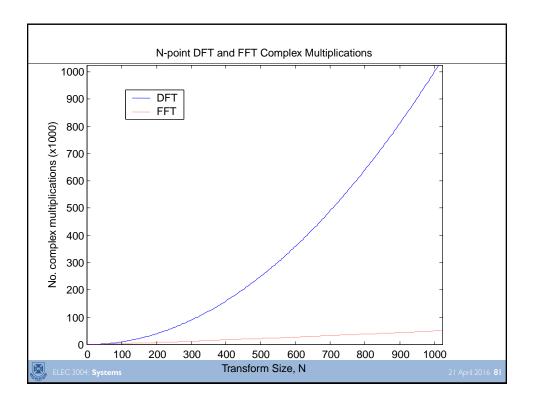


Features of the FFT

- Reduce complex multiplications from N2 to:
 - -(N/2)log2(N)
 - As there are log 2(N) passes
 - $\ Each \ pass \ requires \ N/2 \ complex \ multiplications$
- Disadvantages
 - More complex memory addressing
 - To get appropriate samples pairs for each butterfly
 - FFT can be slower (than DFT) for small N (< 16)

Remember: $log_2(N) = x$, where $N = 2^x$ & integer x

ELEC 3004: Systems



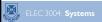
Alternative FFT Algorithms

- Only case covered so far is
 - (one case of) radix-2 decimation in time (DIT) FFT
 - requires sequence length, N, to be a power of 2
 - achieved by 'zero padding' sequence to desired, N
- Decimation in Frequency
 - similar to DIT, twiddle factors on outputs
- Alternatives to radix-2 decomposition
 - Radix 3: for sequence length, N = power of 3
 - Radix 4: twice as fast as radix 2 FFT
 - half number of passes, log4(N)
 - Split radix: mixtures of the above

ELEC 3004: Systems

Inverse FFT

- · IDFT obtained by
 - changing sign of WNnk
 - scaling by 1/N
- Therefore, we can use same FFT algorithm
 - change sign of twiddle factors
 - and scale output to get x[n]

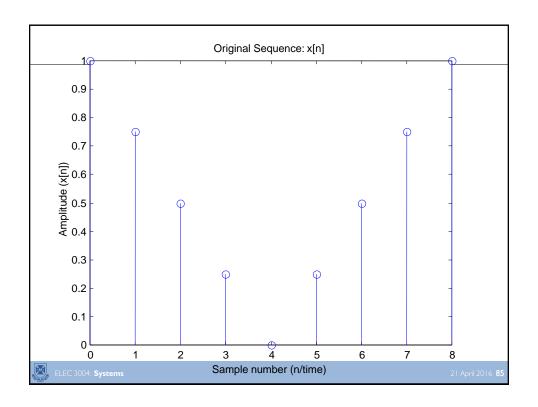


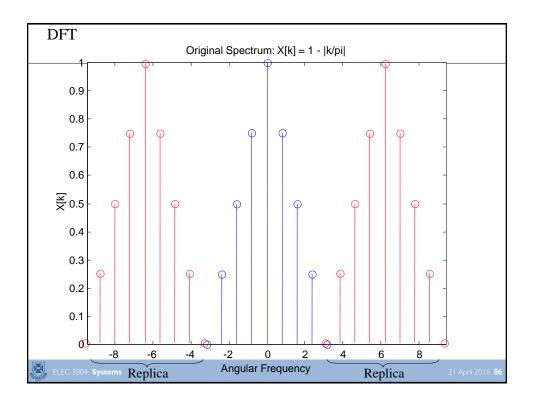
21 April 2016 8

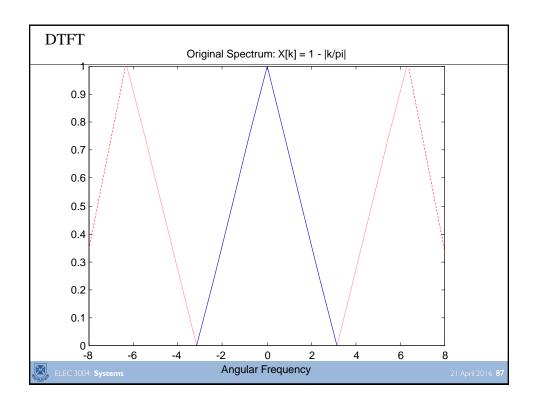
Interpolation using the DFT

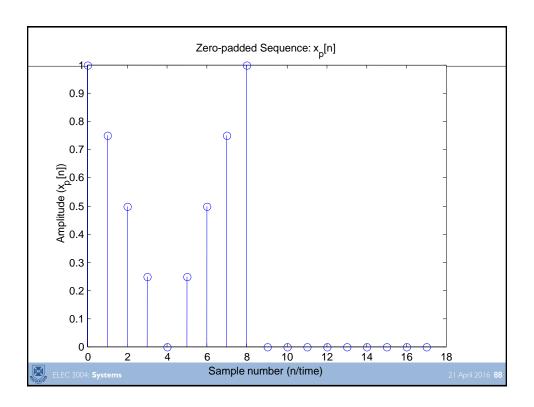
- DFT samples the DTFT
 - Normally N samples in both time & Frequency
 - But we can increase the (DFT) sample density!
 - By zero padding
- Zero Pad in time domain
 - Calculates additional samples of DTFT
- Zero Pad in frequency domain
 - Adds additional high frequency components (zero)
 - DFT zero padding \equiv sinc interpolation
 - Windowed by length, N, of DFT (not ideal sinc)

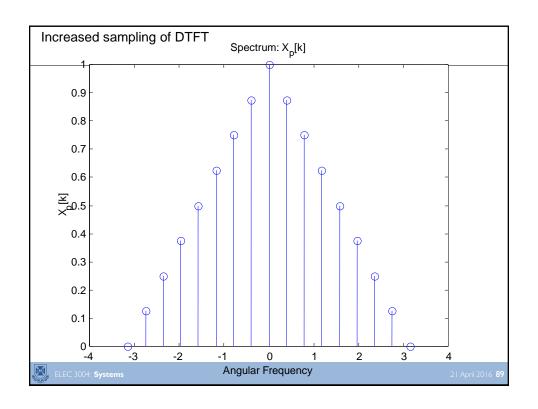
ELEC 3004: Systems

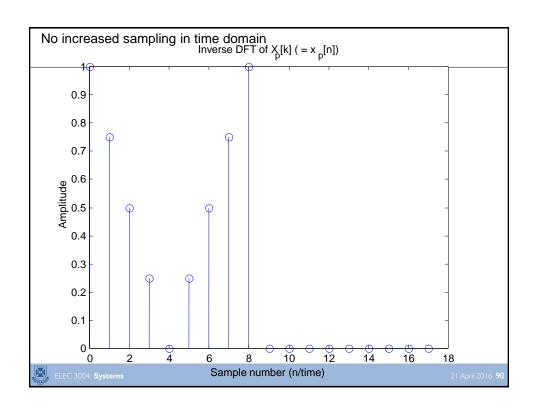


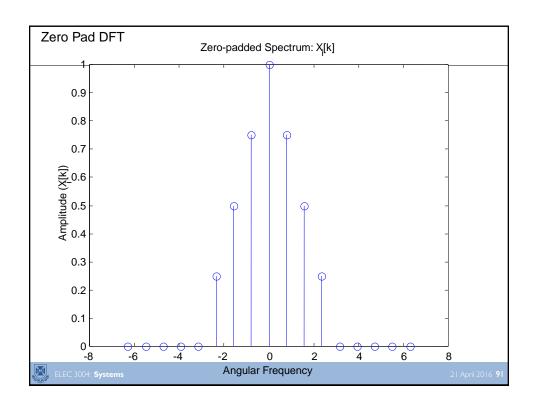


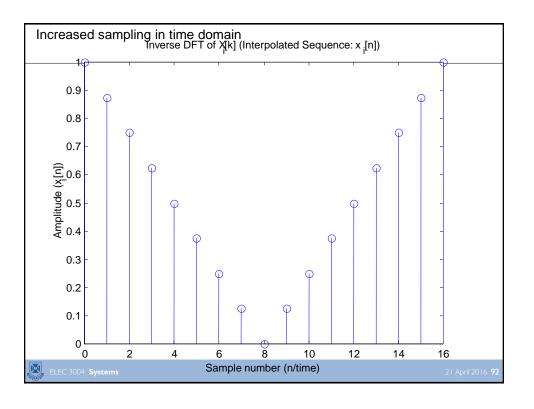












Interpolation via DFT (FFT)

- Interpolation of X[k]
 - zero pad sequence x[n]
 - either start or end of x[n] (or both)
 - increased sampling of DTFT spectrum, X(w)
- Interpolation of x[n]
 - zero pad discrete spectrum X[k]
 - evenly, both at start or end of the sequence
 - to ensure xu[n] remains real
 - i.e., pad to preserve symmetry of X[k]

21 April 2016 **93**

Applications of the FFT

- Spectral Analysis
 - Estimate (power) spectrum with less computations
 - i.e., what frequencies in our signal are carrying power (i.e., carrying information) ?
- Fast (circular) Convolution
 - Convolution requires N 2 MAC operations ⊗
 - more efficient alternative using the FFT $\ensuremath{\odot}$
 - Take FFT of both sequences
 - Multiply them together (point-wise)
 - Take IFFT to get the result
- Fast Cross-correlation
 - E.g., correlation detector in digital comm's

Spectral Analysis

- Power Spectral Density (PSD) defined as
 - Fourier Transform of Autocorrelation function

$$S_{xx}(w) = \sum_{m=-\infty}^{\infty} \phi_{xx}(m) \exp(-jwm\Delta t)$$

- In practice, we estimate $S_{xx}(w)$ from $\{x[n]\}_0^{N-1}$
 - i.e., a finite length of sampled data
- This can be done using N point DFT
 - and implemented using the FFT algorithm

21 April 2016 **95**

Spectral Analysis

• Estimate of PSD is given by

$$\hat{S}_{xx}[k] = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] \exp\left(\frac{-jnk2\pi}{N}\right) \right|^2$$

- This is known as a **periodogram**
 - DFT effectively implements narrow-band filter bank
 - calculate power (i.e., square) at each frequency k
- Again, window functions often required
 - to improve PSD estimate
 - e.g., Hanning, Hamming, Bartlet etc

ELEC 3004: Systems

Spectral Analysis

- Alternatively, we can estimate PSD as
 - DFT (FFT) of the estimate of the autocorrelation

$$\hat{S}_{xx}[k] = \sum_{m=-M}^{M} \hat{\phi}_{xx}[m] \exp\left(\frac{-jmk2\pi}{2M+1}\right)$$

where
$$\hat{\phi}_{xx}[m] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+m]$$

- Assuming x[n] is ergodic (at least stationary)
- Normally restricted range of PSD

$$- e.g., 0 < M < N/10$$

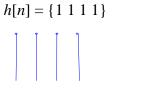
21 April 2016 **97**

Spectral Analysis

- Note,
 - when finding PSD as DFT of ϕ^x
 - $-\phi^{x}$ x[m] has an odd length! (2M + 1)
- Therefore, to use the radix-2 FFT we need to
 - zero pad ϕ^x x[m] to length = power of 2
- e.g., for M = 2, ϕ^x [m] is of length 5
 - we need to zero pad to length 8, i.e.,
 - $\{\phi^{x}[-2] \phi^{x}[-1] \phi^{x}[0] \phi^{x}[1] \phi^{x}[2] 0 0 0\}$
 - Note, sequence made causal (no change to PSD)
- This estimate of PSD is known as correlogram
 - Note, periodogram is most common estimate of PSD

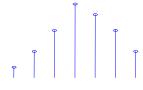
ELEC 3004: Systems

(Linear) Convolution



$$x[n] = \{0.5 \ 0.75 \ 1.0 \ 1.25\}$$

 $y[n] = x[n]*h[n] = \{0.5 \ 1.25 \ 2.25 \ 3.5 \ 3.0 \ 2.25 \ 1.25\}$



In general: length(y[n]) = length(x[n]) + length(h[n]) - 1

21 April 2016 99

Circular Convolution

Given
$$X[k] = DFT\{x[n]\}$$
 and $H[k] = DFT\{h[n]\}$

from convolution theorem we know IDFT $\{X[k] \cdot H[k]\} \equiv x[n] *h[n]$

IDFT
$$\{X[k] \cdot H[k]\} = \{3.5 \ 3.5 \ 3.5 \ 3.5 \} \leftarrow \text{Wrong Length!}$$

Solution: zero pad both sequences to required length

$$h_p[n] = \{1\ 1\ 1\ 1\ 0\ 0\ 0\ \}$$
 $x_p[n] = \{0.5\ 0.75\ 1.0\ 1.25\ 0\ 0\ 0\}$

$${\rm IDFT}\{X_p[k] \cdot H_p[k]\} = [0.5\ 1.25\ 2.25\ 3.5\ 3.0\ 2.25\ 1.25]$$

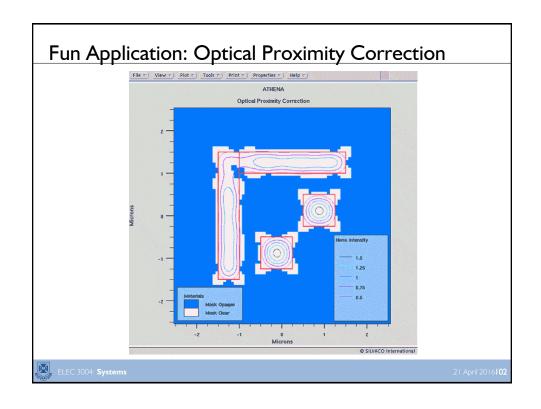
i.e., x[n] and h[n] are periodic in time

21.4----1201/100

Summary

- FFT exploits symmetries in the DFT
 - Successively splits DFT in half
 - odd and even samples
 - Reduction to elementary butterfly operation
 - with 'twiddle factors'
 - Reduce computations from N 2 to (N/2)log2(N) ☺
- FFT can be used to implement DFT for
 - PSD estimates (periodogram and correlogram)
 - Circular (fast) convolution (and correlation)
 - Requires zero padding to obtain "correct" answer

21 April 2016**10**



Next Time...

- Digital Filters
- Review:
 - Chapter 12 of Lathi
- Ponder?

$$y[k]=f[k]*h[k]$$
 $Y(\Omega)=F(\Omega)H(\Omega)$ where $F(\Omega),Y(\Omega)$, and $H(\Omega)$ are DTFTs of $f[k],y[k]$, and $h[k]$, respectively; that is,

 $f[k] \Longleftrightarrow F(\Omega), \quad y[k] \Longleftrightarrow Y(\Omega), \quad \text{and} \quad h[k] \Longleftrightarrow H(\Omega)$

