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— §10.3 Properties of DTFT
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analysis by DTFT

— 810.7 Generalization of DTFT
to the Z—Transform

Chapter 12
(Frequency Response and Digital Filters)

§ 12.1 Frequency Response of Discrete-Time Systems
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The Complex Plane Properties

Imaginary

axis
pz=3+2
Complex ——
plane v &
f—= Real axis
3
e z=(a + bi)

e z+27Z=2a
e zZ = (a + bi)(a — bi) = a? + b?

The Complex Plane Properties
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e z=(a + bi) isalso
e z=1rcos 0@ +irsinf

The nth power of z =r(cosf 4isinf) is 7" =r"(cosnd + i sinnd).




The Complex Plane Properties
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The Fourier Transform

« The continuous-time Fourier Transform

X (@) = T x(t) exp(~ jot)dt

» What happens if we sample X(t)]zac = X:(1)?
» Represent x.(t) as sum of weighted impulses

[ee]

X (t) = D x(NAt)S(t —nAt)

N=—00

X (@) = Oj[i x(nAt)d(t—nAt)}exp(— jot)dt

o LN=0

Discrete-time Fourier Transform

» Changing order of integration & summation
— and the simplifying (multiplication by impulse) gives

X (@)= x(nat) Té(t—nAt)exp(— jot)dt

n=—ow

= i X(nAt) exp(— janAt)

 This is known as the DTFT
— Requires an infinite number of samples x(nAt)
— discrete in time
— continuous and periodic in frequency




DTFT of Finite Data Samples

« Assume only N samples of x(nAt)
— fromn={0,N-1}
 Therefore, can only approximate X (w)

N-1
X (@) = x(nAt)exp(- jonAt)

n=0
» How good an estimate is this?

— Finite samples are same as infinite sequence
multiplied by a rectangular time domain
‘window’

%(NAL) = x(nAt) HGJ where T = NAt

Where rect(t) = H(t) =u (t +%j_u(t _TEJ

Window Effects

« Multiplication in time with rectangular window

« Equivalent to convolution in frequency
— with ‘sinc’ function

1
2w
* In general, with arbitrary window function

X, (t) = % (t) - wy (1) This is exactly same

N 1 effect we saw in FIR
XC (w) = E XC (o) >l‘WT (o) filter design

X (@) =—X_(w)*T sinc(-;—a)J

T




Original signal

Fourier transform
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Windowed discrete-time signal DTFT of finite number of samples
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Reducing Window Effects

» We cannot avoid using a window function
— as we must use a finite length of data

« Aim: to reduce window effect

1. By choosing suitable window function
« Hanning, Hamming, Blackman, Kaiser etc

2. Increase number of samples (N)
+ reduces window effect (larger window)
« increases resolution (No. samples)
» Assumes signal is ‘stationary’ within sample window
— Not true for most non-deterministic signals
— e.g., speech, images etc
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DTFT and the DFT

« Fourier transform, X_(w), of sampled data is

— continuous in frequency, range {0, w }

— and periodic (wy)

— known as DTFT

If calculating on digital computer

— then only calculate X, (w) at discrete frequencies
— normally equally spaced over {0, w.}

— normally N samples, i.e., same as in time domain
— i.e, samples Aw apart

2z
N At

\ Can reduce Aw by increasing N ‘ Aw
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The DFT

* Discrete Fourier Transform (DFT)
— samples of DTFT, X" (W)l =k aw

X (ko) = X[K]= Y x[n]exp (%]

n=0
where 0<n,k<N-1

* Interpretation:
— N equally spaced samples of X(t)|; -, ac

— Calculates N equally spaced samples of X(W)|,, = kaw
— k often referred to a frequency ‘bin’: X[k] = X(w,)

Original signal Fourier transform
4 T
1 |-
35F
3 |-
0.8+
25
0.6
> 2
4 X 2
04r 15r
1 |-
0.2
05
0 L 0 L A —
-2 -1 0 1 2 -20 0 20 40 60
Time (continuous) Frequency (continuous)
S

11



Discrete-time (sampled) signal

Discrete time Fourier transform (DTFT)
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Discrete-time signal

© @
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n

Discrete Fourier transform (DFT)
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Inverse DFT

* Relates frequency domain samples to
— time domain samples

fn]= - Zx[k] (menj

» Note, differences to forward DFT
— 1/N scaling and sign change on exponential
— DFT & IDFT implemented with same algorithm
* i.e., Fast Fourier Transform (FFT)
* Require both DFT and IDFT to implement (fast)

— convolution as multiplication in frequency domain

Note, 1/N scaling can be on DFT only OR
as 1/sqgrt(N) on both DFT and IDFT

13



Fourier Transforms

. . Frequenc
Transform Time Domain g ) y
Domain
Fourier Series (FS) Cor)tlngous & Discrete
Periodic
Fourier Transform (FT) Continuous Continuous
Discrete-time Fourier Transform (DTFT) Discrete Continuous &

Periodic

Discrete Fourier Transform (DFT)

Discrete & Periodic

Discrete & Periodic

T

Properties of the DF
if...
X [n] is real

X [n] is real and even

X [n] is real and odd

Then...

© XK1= X [KI*

— R{X[K] } is even
— 3 {X[K] }is odd
— [X[K]| is even

/X [K] is odd

« X[K] is real and even
— l.e., zero phase
» X [K] is imaginary and odd

14



x[n] (Even Symmetry)

real{X[k]}

o

1

2

angle{X[Kl}

0 1 2 3 0
imag{X[Kk]}

1 T T 4
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00 @) @) 2
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K V6,
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Note: DC at k =0 & x[n] = x[n + N] & X[K] = X[k +N]

1

2

3

Properties of the DFT

* Periodic in frequency

— period wy i.e., the sampling frequency, or

— period 27 (in normalised frequency)

Repeats after N samples
~ X[N+K] =
Mirror image (even) symmetry at w/2, i.e.,

X [k]

— X[N-r]=X*[r], wherer <N/2

—X[n-m]=

Shift property

exp(-jkm27/N) X [K]

— i.e., [X [K]| stays the same as input is shifted
— only (phase) £X [k] changes

15



X[n-m] abs(X[K])

angle(X[K])
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IRIERINE S

4

6
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Analogies for the DFT

« Analogy for DFT is a Filterbank
— Set of N FIR bandpass filters

— with centre frequencies kwg /N
* kinrange {0, N-1}
— often called ‘frequency bins’

* e.g., 8 point DFT
— 8 bandpass filters (bins), spaced Aw = w,/8 apart

— Bandwidth of each filter Aw/2 therefore
* output can be down-sampled by factor of 8
* i.e., one sample, x[k], per filter output (frequency bin)

16



Filterbank Analogy of DFT

X[0]
N —tap FIR w, =0 N{
X[1]
1 N —tap FIR W, = wy/N N
{xinl}o
X[2]
N —tap FIR w, = 2wy/N N
X[N-1]
N —tap FIR W, = (N - 1)wg/N N

Down sample factor N

Filterbank Analogy of DFT

Bandpass filters

IX(W)|2 ‘% kwg/N
OH 1 2 3 4 5 6 7 w, W
Aw/2 Aw frequency ‘bin’ number k

bandwidth bin resolution

17



DFT Resolution

* Resolution is ability to distinguish
— 2 (or more) closely spaced sinusoids
* Minimum resolution of DFT given by
— AW = W/N = 2n/NAt
+ defined by sampling frequency, w
+ and number of samples, N
* Minimum resolution occurs when
— integer number of complete cycles of input signal
— in the N samples analysed

— This is a ‘best case’ scenario
* ‘sinc’ smearing always zero in adjacent frequency bins

DFT Resolution: Example

Consider two sinusoids: frequencies 3w,/16 and 5w,/16
|X(W)|2 sample length T = 16At

AN
0 1 2 3 4 5 6 7 w2 w

DTFT: ‘sinc’ shape Aw frequency ‘bin’ number k

due to window effect  bin resolution

18



DFT Resolution: Example

16 point DFT: results in samples of DTFT. As sinusoids are
[X(W)|2+  at nwyN (in middle of bins) only 1 non-zero sample each.

s 7N 7N 7N 7N 7N 7N 7N

1 ‘i ‘i ‘i ‘i ‘i ‘i ‘i \
1 1 1
J J J

\

|
|
|
|
1
|
I
|
I
|
1
1

0O 1 2 3 4 5 6 7 w/l2 w

—>

Aw frequency ‘bin’ number k
bin resolution

Leakage Effects

« In general, we can not capture

— integer number of cycles of input
+ i.e., input will not be at bin frequencies nwy/N

— therefore, actual DFT resolution < Aw

 This is due to energy ‘leakage’
— between adjacent frequency bins

» Leakage due to finite data length
— 1.e., the ‘window’ effect
— which ‘smears’ X(w) -> X[K]
— aim: to minimise window effect
« using other than rectangular window
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DFT Resolution: Example

Consider two sinusoids: frequencies 3.1w/16 and 5.1w,/16

sample length T = 16At
IX(w)[?

5 6 7 w2 w

Aw frequency ‘bin’ number k
bin resolution

0 1 2

DFT Resolution: Example

16 point DFT: Sinusoids no longer at nw¢/N
|>((W)|2 (not in middle of bins) therefore many non-zero samples.

s 7N 7N 7N 7N 7N 7N 7N

/ \ / \ / \ / \ / \ / \ / \ / \
1 Vo Vo Vo Vo Vo Vo Vo \
1 Vi Vi Vi Vi Vi Vi Vi \
I \ \
\ \

I
1
4

T 1 ll

0 1 2 3 4 5 6 7 w2 w

Aw frequency ‘bin’ number k
bin resolution

I: actual DFT samples
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DFT

O,
101 DFT two sinusoids
w,; = 10w/N (Amp =1)
2or w, = 16w/N (Amp =0.01)
20| only 2 non-zero samples
resolution = Aw
g " i.e., best case scenario
2 ol Note, N = 128
-60
-70+-
80+
wS
-90 l?
_100:}\/ Vi vavavay VoY NaVaay vy VavaVanta Vs Navay
0 10 20 30 40 50 60
frequency bin w
DFT
o . .
DFT two sinusoids
101 w; = 10.1w /N
w, = 16.1w /N
201 o
R many non-zero samples
30f o, no longer two peaks visible
g aobp?] resolution < Aw
£ so-
g
-60
,70,
-80—
90+~
-100
0 10 20 30 40 50 60
frequency bin
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DFT

DFT two sinusoids

O,
i w; = 10.5w /N
-10+
w, = 16.5w /N
20 many non-zero samples
P i.e., worst case scenario
-3({50 200! O(fjo
g -40+- \
2 5o
g
_Gov
_70,
_80,
,90,
-100
0 10 20 30 40 50 60
frequency bin
DFT
0,
10l DFT two sinusoids
w, = 10.9w /N
20r i W, = 16.9w /N
a0l many non-zero samples
- ®,
o
% 40(j3 )O( OOOO
i o0
£
_60v
_70,
_80,
-90
-100
0 10 20 30 40 50 60

o

frequency bin
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DFT

0 . .
DFT two sinusoids
101 w; = 11w /N
w, = 17w /N
-207 - - -
again two peaks visible
30 resolution = Aw
g -40}
% 50+
©
£
_60,
_70,
-80
_90;
1005sec0000e cblocooecadaroncoceabococconec boooocoscatocccoassatose
0 10 20 30 40 50 60

frequency bin

Reducing Leakage with Window Functions: Example

e Consider, two sinusoids,
1. sin(10.5w¢/N): amplitude 1

2. 0.01sin(16.5w/N): amplitude 0.01
* i.e., significantly smaller (-40dB)

»  This produces worst case leakage as
—  both sinusoids fall at edge of frequency bins
— leakage due to large sinusoid > amplitude of smaller sinusoid
(will be ‘masked”)

» Leakage can be reduced by using
— non-rectangular window (Hanning/Hamming)
— asused in FIR filter design

23



—— DTFT (rectangular window)
O DFT samples (rectangular window)

O |-
Smaller sinusoid completely masked
1ok by leakage from larger sinusoid
-20 ﬁ(ﬁ ﬁﬁﬁ
@ -0 W W
2
2
g 50
g
€
-60
.70 ul
_80 H
-90H
-100 L L L L L L
0 10 20 30 40 50 60
frequency bin of 64-point transform
——— DTFT (Hanning window)
ok O DFT samples (Hanning window)
Leakage reduced
1ol o Smaller sinusoid now detectable
20 )
0}
30+
[
g
=1
E 50 ©
g
£
60 ® b
®
®
or ® ‘l
ff o
-80 Q
a
o
)
0)
-100 | 1 ’ "P ) ‘ ‘ ‘ 4 YavatsV W&A@ﬂﬁﬂ |
0 10 20 30 40 50 60

frequency bin of 64-point transform
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ool
or [\~ DTFT (Hamming window)
[ DFT samples (Hamming window)
208 d‘; 5\3 Leakage reduced, smaller sinusoid detectable
30+ { “
-
g -40|- ‘ o
2 ol
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90+
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-100 ! '
30 40

frequency bin of 64-point transform

50

Window Functions

. Sidelobe roll
Window barﬁﬁvl? dth Loss (dB) Peak((sjlg)e lobe off
(dB/octave)
Rectangular 0.89/NAt 0 -13 -6
Hanning 1.4/NAt 4 -32 -18
Hamming 1.3/NAt 2.7 -43 -6
Dolph-
Chebyshev 1.44/NAt 3.2 -60 0

Note, trade-off between increased sidelobe attenuation

And increased 3dB (peak) bandwidth
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Limitations of Fourier Analysis

Time Demain Frequency Domain
1 50
J u T
- [os) 1
Low — high of z |
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05 i
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. o i)
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=
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Note: These signals differ in Phase. PSD is zero phase as F{¢,,(k)} real & even

Spectrum Analysis

of Non-Stationary Signals

« Spectrum of non-deterministic Signal X(w)
— is only valid if x(t) is stationary
— i.e., statistics of x(t) do not change over time
 Real-world signals often only stationary over a short time

period of time
— e.¢., speech: assumed stationary over t < 60ms

» Therefore, take ‘short-time’ DFT of signal
— 1.e., take multiple DFT’s over stationary periods
— plot how frequency components change over time

— for speech the plot of time V frequency V power
« is called a Spectrogram
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Speech waveform (‘matlab’) time domain
4 T T T T T T T
2 |- -
o
2+ -
-4 1 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 tines(s) 0.3 0.35 0.4 0.45 0.5
Speech waveform frequency domain
T T T T T T
100 B
% 50 - B
3
X
0 | —
-50 1 1 1 1 1 1 1
-3000 -2000 -1000 0 1000 2000 3000
frequency (Hz)

ELEC 3004: Systems 21 April 2016 53

Spectrogram: Time and frequency versus power

Frequency

Colour Shows Signal power

0.05 0.15 0.25 0.35 0.45
Time

Seech is short t|me statlonar SO erform DFT on short t|me seqguences
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Summary

FT of sampled data is known as

— discrete-time Fourier transform (DTFT)
— discrete in time

— continuous & periodic in frequency

DFT is sampled version of DTFT
— discrete in both time and frequency

— periodic in both time and frequency
* due to sampling in both time and frequency

DFT is implemented using the FFT

Leakage reduced (dynamic range increased)
— with non-rectangular window functions

DTFT Meets

Linear Algebra

¥
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2D DFT

N-1N-1
1 12 - ,
= — N p—J2m(ux+vy) /N
Fa) = =3 ) feye
x=0 }’:0
1 N-1N-1
f(x }’) = — T‘(u V)eleJT({.fx+1)‘\;)/N
v ? N ,

I
<
1l
S

2D DFT

» Each DFT coefficient is a complex value
— There is a single DFT coefficient for each spatial sample
— A complex value is expressed by two real values in either

Cartesian or polar coordinate space.
+ Cartesian: R(u,v) is the real and I(u, v) the imaginary component
* Polar: |F(u,v)| is the magnitude and phi(u,v) the phase

Flu,v) = R(u,v) + jl(u,v)

630(1‘“?‘:)

F(u,v) =|F(u,v)




2D DFT

» Representing the DFT coefficients as magnitude and phase is a
more useful for processing and reasoning.
— The magnitude is a measure of strength or length
— The phase is a direction and lies in [-pi, +pi]

» The magnitude and phase are easily obtained from the real and
imaginary values

F(u,v)] = VR2(u,v) + 12(u,v)

I u,v
o(u,v) = tan"? {%]

Windowing for the DFT

fuld) = SOUE)  and Fu(w) = oF(0) s W)

fir) o5t

Flo) .
-—
[ 0y o Oy 0
| 0]
I LA
! Wl )
: Rolloff Rae
T o - %‘Bv—
z ! P Mar 0 o=
(b —ip
g
1
L
h /\ /\ n 7 | F©) [\mmw
T T T f
IAVAIRV N e U et
i

md L s
T

Source: Lathi, p.303
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Harmonics

 Synthesis of a square pulse: periodic signal by successive
addition of its harmonics (Lathi, p. 202-3)

— 'S S

= f
fie)
——— P~ /I
) -1 0 / i —
. |

, _ A~ S

AT ARV )

= [%‘% o I/ L
E

= ANIVAN AN JANIVA Gy
VARV . (VAR
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Fourier Matrix

wi=i
N
\\/;-" o W= e 8=cos '\ +isin’g
'/
A | o
If — M) Real axis
\
\
\ ]
3L 8 W= U\% —ising
wh=—j
1 1 1 1 M1 1 1 i
F L w w? w | [ A R
= 2 £ 5 | = .2 4 .6
1 w? wt wb | i i i’
K C . { .l]
I ow* wh w? (IR I
1 | 1 1 o co+cy e+ ca
2 3 2 }
E I w w w cl oo+ w + w4 3w’
€ = - A = 4 4 ¢
1w w' wh 2 cp + cpw” + caw® + cyw®
) p . y %
I ow? wb W’ 3 co + cqw” + caw® + cw

N

» Sample number n where 0 <n <N-1
* time 0 to NAt
* Frequency sample (bin) number k where 0 <k < N-1
» frequency 0 to o, (®, = 27/ At)
* Discrete in both time x[n] and frequency X[k]
« Periodic in both time and frequency (due to sampling)
* Remember: H(w) = H(2)|, - expuay
*i.e., DFT samples around unit circle in the z-plane

X[k]zNZ;x[n]exp — J2mk

32



DFT in Matlab

function X = MyDFT(x)
% function X = MyDFT(x)
% Niave/direct implementation of the Discrete Fourier Transform (DFT)

% Calculate N samples of the DTFT, i.e., same a lo. samples
N = length(x);
% Initialize (complex) X to zero
X = complex(zeros(size(x)),zeros(size(x)));
for m = 0:N-1
for k = 0:N-1
% Calculate each sample of DFT using each sample of input.
% Note: Matlab indexes vectors from 1 to N,
% whilst DFT is defined from from 0 to (N-1)
X(k+1) = X(k+1) + x(n+1)*exp(-j*n*k*2+pi/N);
end
end

Computational Complexity

+ Each frequency sample X[K]
— Requires N complex multiply accumulate (MAC) operations

« .. for N frequency samples
— There are N 2 complex MAC
* eJg.,
— 8-point DFT requires 64 MAC
— 64-point DFT requires 4,096 MAC
— 256-point DFT requires 65,536 MAC
— 1024-point DFT requires 1,048,576 MAC
— i.e., number of MACs gets very large, very quickly!
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DFT Notation

N

X[k]=

]
x[n]- W,

=0

where W, = exp(—_ 12N7znkj

W, are called “N'" roots of unity”
e.g.,N=8:
W0 = exp(0) = 1;
Wgt = exp(-jn/4) = cos(n/4) — jsin(n/4) = 0.7 — jO.7;
W2 = -j; W =-0.7 — j0.7: Wgt = -1: efc

>

Nth Roots of Unity

Z-plane in;ag |W, ™| = 1 (unit length vectors)
WSET,,"’// \\\\\W87
Wt =-1 < > Wy = 1 (= Wgt) > real
Wg? T v /Wsl (= Wg°) All 27/N apart
We? = -
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DFT Expansion

X (k =0)
X (k =1)
X (k =2)

X (k :.N—l)

N-1

X[k]=> x[n]-w"

n=

x0) + x@» + ...
x(0) + x(@MWy + .-
x(0) + x@QW?Z + -

x(.O) + x(l)\/.VNN Ty

+  xX(N-1)
+ X(N -Dw "
+ X(N -Dw,'

o+ X(N =Wy

Remember W, ? =1

DFT Matrix Formulation

DFT expansion can also be written as a matrix operation:

X(0) |
X (1)
X (2)

_X(I\II -1) |

%/_J

X[K]

1 1 1 1 ][ x@©) ]
1 Wy w2 oowt x(1)
=[1 W2 Wy W] x(2)
TW T WL Wy | [ X(N-1)
e - %f—}
DFT Matrix x[n]
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Example: 8-point DFT Matrix

[ X(0)]

X(1)
X(2)
X(3)
X(4)
X(5)
X (6)
X (7).

no rotation 1 rotation 2 rotations  etc

DC row

WBO WSO WBO/ WBO W80 /\N 80 WSO WBO

SEEX
&
22
= =

2

2

=

=

| x(4)

()]
x(1)
x(2)
X(3)

X(5)
X(6)
L x(7).

Increasing rotational frequency down the rows of the DFT matrix

Example: 8-point DFT Matrix

X (O)]

XD
X(2)
X(3)
X(4)
X(5)
X (6)
X(7)]

Repeated complex multiplications in EVEN rows

Even samples

X(0)]
x(1)
X(2)
X(3)
| x(8)
X(5)
X(6)
X(7)
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Re-ordered DFT Matrix

Separate even and odd row operations (and re-order input vector)
RO TR AR AR TARTARARARTARANRPI())
X@) [ W Wy W W Wy Wy W W | x(4)
X2 | wy Wy Wt Wt W2 W W W || x(2)
XE@) | (WS WS WS W2 W W, W W || x(6)
X(4) | W2 W2 W W2 WS WS WS W || x()
XG) | (WS W wwe W W W W || x(5)
X(6) | WS W) W' WS WS WS W Wz | x(3)
X@) ] W W WS WA W W W W || x(7)

- AN /
YT hd

Even samples Odd samples

Phasor Rotational Symmetry

To highlight repeated computations on odd samples
as W84 = 'WSO, W85 = 'W81, W86 = 'W82, W87 = 'W83

X (0)] Wy W2 W W | [x(0)]
X (1) Wy —Wy W, —W; | | x(4)
X(2) W W —WE W | | x(2)
X(3) W' —We Wy =W | | x(6)
X(4) W2 W W WY || x(@D)

X(5)
X (6)
X (7).

Wy Wy -W. W || x(5)
~WS W W2 W2 || x(3)
“We W =W Wy | [ x(7)

Upper & lower left-hand quarters are identical
Right hand quarters identical except sign difference!
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Adding “Twiddle Factors”

WY W) WY WY WUSEWE T WRW,TTT W WL WXW,
W —We W72 =W W xW, [ Wy =W, | Wy W [ Wy x W
W WY WY =W W W [ WKW, | W X-W | W < W
W —WP —W W72 W W | WS -W | W x-W2 L W W
WY WY W WY W W —Wew Wl W, W W2
WP —W2 W2 =W =W W | =Wk -W —W W =W —W]
WP WY WY WY —WAXWY | —WAXW | =W x-W — W2 x -W,
_W8° ~W,) W2 W2 WKW | =W k=W =W x-Wf W W2
i.e., 8-point DFT reduced s = - =
to two 4-point DFT’s \

only need calculate upper
left and right quarters

Twiddle Factors make the left
and.right hand quarters.identical

8-Point DFT as Two 4-Point DFTs

Even
Samples
X[O] X[O]
x[2] L X[
— 7 DFT o —
odd X M| X3l
Samples B
x[1] | X[4]
x[3 N
3] 4-Point E —— X
51 | DFT R . X[6]
Combiner adds twiddle factors to data
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Radix-2 FFT

Each 4-point DFT can be reduced to two 2-point DFT’s
we w® w® w° wWo wW? woxw?®  wxw?
wWe —w° w? —w? 3 WO —W? W2xwW°® WwW?2x-w°
WO WS WO WO | [W® W% —WOxW® —W°xW°
wWe —w° —w? w? WO —W? —WZxW°? —W2x-W?°
2x2 Quadrants are identical (with twiddle factors)
Two-point “Butterfly” operation

{X(O)}_ we we° _[x(oq
X@) | |w° —we| | x@

X(0)] 1 17[x(©)
[X(l)}{l —1Hx(1)

Two Point Butterfly

x(0)

X(0) = x(0) + x(1)
\O /_.
x(1) J \_. X(1) = x(0) — x(1)

With twiddle factors:

x(0)
N
O
x(1) J \@—»
W
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8-point radix-2 DIT FFT flowgraph:
x(0) & ___ & 2 )

X0 X(©)
X(4) ’ X(1)
X2 Ny ’ X(2)
0%
o e
2 XX
x(1) s )’ "’ X(4)
&
X(5) ’ X(5)
20 20
X(3) » ; X(6)
N =
xS owr MW X(7
Pass 1 Pass 2 Pass 3 ( )

Features of the FFT

* Reduce complex multiplications from N2 to:
— (N/2)log2(N)
— As there are log2(N) passes
— Each pass requires N/2 complex multiplications

+ Disadvantages

— More complex memory addressing
» To get appropriate samples pairs for each butterfly

— FFT can be slower (than DFT) for small N (< 16)

Remember: log,(N) = x, where N = 2* & integer x
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N-point DFT and FFT Complex Multiplications

1000F T T T T T T T

900 -

800 -

700

600 -

500

400 -

300+

No. complex multiplications (x1000)

200

100+

0 t I 1 ! I I ! I

Transform Size, N

0 100 200 300 400 500 600 700 800 900 1000

Alternative FFT Algorithms

» Only case covered so far is
— (one case of) radix-2 decimation in time (DIT) FFT
— requires sequence length, N, to be a power of 2
— achieved by ‘zero padding’ sequence to desired, N
» Decimation in Frequency
— similar to DIT, twiddle factors on outputs

« Alternatives to radix-2 decomposition
— Radix 3: for sequence length, N = power of 3

— Radix 4: twice as fast as radix 2 FFT
* half number of passes, log4(N)

— Split radix: mixtures of the above

41



Inverse FFT

» IDFT obtained by
— changing sign of WNnk
— scaling by 1/N
» Therefore, we can use same FFT algorithm
— change sign of twiddle factors
— and scale output to get x[n]

Interpolation using the DFT

* DFT samples the DTFT
— Normally N samples in both time & Frequency
— But we can increase the (DFT) sample density!
— By zero padding
+ Zero Pad in time domain
— Calculates additional samples of DTFT
 Zero Pad in frequency domain
— Adds additional high frequency components (zero)

— DFT zero padding = sinc interpolation
» Windowed by length, N, of DFT (not ideal sinc)
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Original Sequence: x[n]

Amplitude (x[n])

T T T T

Pany

1 2 3 4 5 6 7
Sample number (n/time)

DFT

Original Spectrum: X[k] =1 - |k/pi|

H

0.9

0.2

0.1

T T

1 L (7 L 1 @y

-8

-6 -4 -2 0 2 4

N N
Replica Angular Frequency Replica
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DTFT

Original Spectrum: X[k] = 1 - |k/pi|

0.9r

0.8+

0.2r

0.1}

-6

Angular Frequency

Zero-padded Sequence: xp[n]

1Y

0.9

Amplitude (x_[n])
o
($]

0.2

0.1

T T

Pany Fan

Fan

PanN

6 8 10 12
Sample number (n/time)

14

16

18
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Increased sampling of DTFT

Spectrum: Xp[k]

_05¢

1
ES

0.9

0.8

0.7+

0.6

0.4+

0.3r

0.2r

0.1r

-1 0 1 2 3

Angular Frequency

No increased sampling in time domain

Inverse DFT of )%[k] (=x p[n])

Amplitude

1
E

0.9r

0.8

0.7r

o
(o]
T

o
6]
T

0.4

0.3r

T T T

Pany Fan Fan

FanY

6 8 10 12 14
Sample number (n/time)

16

18
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Zero Pad DFT
Zero-padded Spectrum: Xi[k]

1 T T

0.9

0.8

Amplitude (X[K])
o o o o
B (6)] o ~
O
O

o
w
T

o
N
T

0.1r

0 ! N I I

IN@¢

-8 -6 -4 -2 0 2
Angular Frequency

Increased sampling in time domain
nverse DFT of )f[k] (Interpolated Sequence: x i[n])

4 T T T T

0.9

Amplitude (x[n])
o o © o o
H (6] (o] ~ [oe]
o
o

©
w
T

o
N
T

[, ]

0 2 4 6 8 10 12
<) Sample number (n/time
p ( )




Interpolation via DFT (FFT)

* Interpolation of X[K]

— zero pad sequence x[n]
- either start or end of x[n] (or both)

— increased sampling of DTFT spectrum, X(w)

* Interpolation of x[n]

— zero pad discrete spectrum X[k]
+ evenly, both at start or end of the sequence
* to ensure xu[n] remains real
* i.e., pad to preserve symmetry of X[K]

Applications of the FFT

+ Spectral Analysis
— Estimate (power) spectrum with less computations
— i.e., what frequencies in our signal are carrying power (i.e.,
carrying information) ?
« Fast (circular) Convolution
— Convolution requires N 2 MAC operations ®

— more efficient alternative using the FFT ©
» Take FFT of both sequences
» Multiply them together (point-wise)
» Take IFFT to get the result

« Fast Cross-correlation
— E.g., correlation detector in digital comm’s




Spectral Analysis

» Power Spectral Density (PSD) defined as
— Fourier Transform of Autocorrelation function

. (W) = Y4, (m)exp(~ juma)

In practice, we estimate S, (w) from {x[n]},""*
i.e., a finite length of sampled data

This can be done using N - point DFT
and implemented using the FFT algorithm

Spectral Analysis

+ Estimate of PSD is given by

2

A 1
Solkl=

%X[n]exp(—_ jT\TZEJ

n=0

 This is known as a periodogram

— DFT effectively implements narrow-band filter
bank

— calculate power (i.e., square) at each frequency k
« Again, window functions often required

— to improve PSD estimate

— e.0., Hanning, Hamming, Bartlet etc




Spectral Analysis

« Alternatively, we can estimate PSD as
— DFT (FFT) of the estimate of the autocorrelation

§,[K] = 2 3. ] xp[ ‘me”J

2M +1

n N—

where ¢ [m]= W X[n]x[n-+m]
n=0

|_.

« Assuming x[n] is ergodic (at least stationary)
* Normally restricted range of PSD
—e.g.,0<M<N/10

Spectral Analysis

* Note,

— when finding PSD as DFT of ¢"*xx[m]

— ¢™xx[m] has an odd length! (2M + 1)

Therefore, to use the radix-2 FFT we need to

— zero pad ¢"xx[m] to length = power of 2

e.g., for M =2, ¢"xx[m] is of length 5

— we need to zero pad to length 8, i.e.,

— {d¢"™X[-2] "xx[-1] ¢"™xx[0] ¢"xx[1] &"xx[2] O O O}
— Note, sequence made causal (no change to PSD)
This estimate of PSD is known as correlogram

— Note, periodogram is most common estimate of PSD
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(Linear) Convolution

h[n]={1111} x[n] = {0.50.75 1.0 1.25}

i il

y[n] = x[n]*h[n] = {0.5 1.25 2.25 3.5 3.0 2.25 1.25}

S

In general: length(y[n]) = length(x[n]) + length(h[n]) - 1

Circular Convolution

Given X[k] = DFT{x[n]} and H[K] = DFT{h[n]}

from convolution theorem we know
IDFT{X[K]- H[K]} = x[n]*h[n]

IDFT{X[K]- H[K]} = {3.5 3.5 3.5 3.5} « Wrong Length!

Solution: zero pad both sequences to required length
hn]={1111000} x,[n]={0.50.751.01.2500 0}

IDFT{X,[K]- H,[K]} = [0.5 1.25 2.25 3.5 3.0 2.25 1.25]
i.e., x[n] and h[n] \t@
are periodic in time
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Summary

» FFT exploits symmetries in the DFT

— Successively splits DFT in half
« odd and even samples

— Reduction to elementary butterfly operation
+ with ‘twiddle factors’

— Reduce computations from N 2 to (N/2)log2(N) ©
* FFT can be used to implement DFT for
— PSD estimates (periodogram and correlogram)

— Circular (fast) convolution (and correlation)
* Requires zero padding to obtain “correct” answer

LGl

Fun Application: Optical Proximity Correction

Flle v ] View ) Plot} Tools ) Printv) Properties r| Halp v |

ATHENA,

Optical Proximity Correction

Microns.

D SIVACO International
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Next Time...

» Digital Filters

* Review:
— Chapter 12 of Lathi

» Ponder?

ylk] = flk] « hlk] Yi§l) = F(a(f)

where F(12), ¥ (£2), and H({2) are DTFTs of f[k], y[k], and h|k], respectively; that
Is,

flk] == Fi(R), ylk] = Y(R), and &lk]<= H(Q)
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