

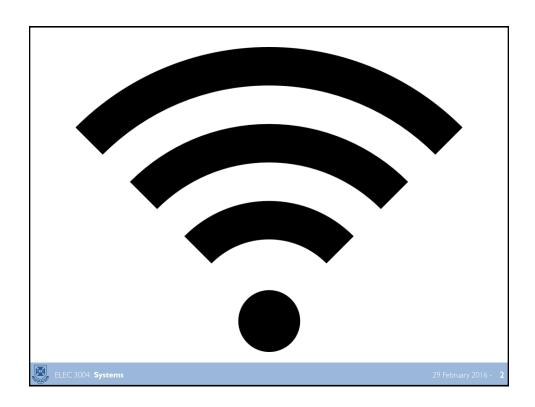
An Introduction to **Systems: Signals & Controls**

Welcome!

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 1


elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

February 29, 2016

(cc)) BY-NO-SA

2014 School of Information Technology and Electrical Engineering at The University of Queensland

What's a Signal? Can be a function of in space and/or time Various types: electrical, economics, dating, etc. Data → "information" is a process of understanding its structure/ forms: Sin(ωt)

What is a System?

- **■** A **process** (function) by which information (signals) are modified so as to extract additional information from them
- Systems modify the signal(s) to yield a new result (also a signal)
- Can be of various forms: electrical, mechanical, etc.

ELEC 3004: Systems

29 February 2016 -

Systems Can Be Simpler Than You Think

- B747
 - level flight,
 - 40000 ft, 774 ft/sec ...

$$\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{q} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} -.003 & .039 & 0 & -.322 \\ -.065 & -.319 & 7.74 & 0 \\ .020 & -.101 & -.429 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u - u_w \\ v - v_w \\ q \\ \theta \end{bmatrix}$$
$$+ \begin{bmatrix} .01 & 1 \\ -.18 & -.04 \\ -1.16 & .598 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_e \\ \delta_t \end{bmatrix}$$

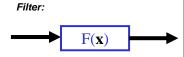
- u, w: horizontal/vertical velocity
- -q, θ : orientation & pitch rate
- $-\delta e$, δt : elevator and thrust commands

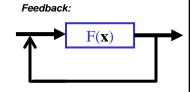
Source: Boyu, Stamord EE203 Lecture 14 (Side 14-4

00 F-b----- 2017

Signals and Systems Together

• A **signal** can be seen as that which goes in and out of a **system**




20 5-1------ 2017

Signals and Systems Together

- A signal can be seen as that which goes in and out of a system
- Signal Processing / "Filters": can be seen as a open-loop system

• Feedback Control: can be viewed as the case where the output signal shapes the input signal

Schedules and Locations:

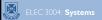
- Lectures:
 - Mondays from 2:05 -- 3:30 pm

&

- Thursdays from 2:05 -- 3:30 pm
- Here! ☺
- It starts at 2:05 Relax!

ELEC 3004: Systems

29 February 2016 - 13


Schedules and Locations: Tutorials

- Tutorials: EVEN Weeks (Starting on Week 2) [~60 min]
 - Five parallel sessions -- Please come to your assigned one.
 - Alternate attendance is at tutor discretion and must be arranged in advance
- Sessions are:
 - Monday 10:00a--11:00 in Priestley (67) 342
 - Monday 4:00p--5:00 in Priestley (67) 342
 - Tuesday 8:00a--9:00 in Gordon Greenwood (32) 211
 - Tuesday 4:00p--5:00 in Gordon Greenwood (32) 211
 - Thursday 8:00a--9:00 in Michie Building (9) 211
- ~ 1 hour (unless extra time is needed)

ELEC 3004: Systems

Schedules and Locations: Labs

- Prac / Lab Sessions: ODD Weeks (Starting Week 3)
 - Five parallel sessions -- **Please come to your assigned one**.
 - Alternate attendance is at tutor discretion and must be arranged in advance
- Sessions are:
 - Monday 10:00a--12:00 in <u>Hawken</u> <u>Room S202</u>
 - Monday 4:00p--6:00 in Hawken Room S202
 - Tuesday 8:00a--10:00 in <u>Hawken</u> <u>Room S202</u>
 - Tuesday 4:00p--6:00 in <u>Hawken</u> <u>Room S202</u>
 - Thursday 8:00a--10:00 in <u>Hawken</u> <u>Room S202</u>
- ~ 2 hours (unless less time is needed)

29 February 2016 - 15

Lecture Schedule:

Week	Date	Lecture Title
1	29-Feb	Introduction
-	3-Mar	Systems Overview
2	9-Mar	Systems as Maps & Signals as Vectors
	10-Mar	Data Acquisition & Sampling
3	16-Mar	Sampling Theory
	17-Mar	Antialiasing Filters
4	23-Mar	Discrete System Analysis
	24-Mar	Convolution Review
0	30-Mar	Holiday & Holiday
	31-Mar	Holiday
6	13-Apr	Digital Filters
	14-Apr	Digital Filters
7	20-Apr	Digital Windows
	21-Apr	FFT
8	27-Apr	Discrete Systems Analysis
	28-Apr	Feedback
9	4-May	Introduction to Feedback Control
	5-May	Servoregulation/PID
10	11-May	Introduction to (Digital) Control
	12-May	Digitial Control
11	18-May	Digital Control Design
11	19-May	Stability
12	25-May	Digital Control Systems: Shaping the Dynamic Response & Estimation
12		Applications in Industry
13		System Identification & Information Theory
13	2-Jun	Summary and Course Review

ELEC 3004: Systems

Reference Texts:

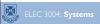
B. P. Lathi

Signal processing and linear systems You may use the Internet!! 1998

TK5102.9.L38 1998

Yes!

- Khan Academy
- Wikipedia
- YouTube
- & Google Scholar Too!


G. Franklin, J. Powell, M. Workman, Digital Control of Dynamic Systems 1990

TJ216.F72 1990 and [UQ Ebook]

João Hespanha Linear Systems Theory 2009 [UQ Ebooks]

• This field is vast & there are countless references present

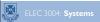
The Point of the Course

- Introduction to terminology/semantics
- An appreciation of how to frame problems in a linear systems engineering context
- Modeling and learning assumptions/when to trust the model
- Ability to identify critical details from the problem

→ It's a shortcut ...

Once you see that a system is "linear" you can then apply the raft of

"linear systems" tools


(time & frequency analysis) to them without having to do all the analysis from scratch

Not the Point of the Course

- · Get good grades
- Just do homework
- Memorize pointless facts
- Rote "learning" of material with no comprehension
- Ask yourself, is the wonder still there?

Lots of Stuff To Cover...

- Signal Abstractions
- Signals as Vectors / Systems as Maps
- Linear Systems and Their Properties
- LTI Systems
- Autonomous Linear Dynamical Systems •
- Convolution
- FIR & IIR Systems
- Frequency domain Fourier Transform (CT)
- Fourier Transform (DT)
- Even and Odd Signals
- Likelihood
- Causality
- Impulse Response
- Root Locus
- **Bode Functions**
- Left-hand Plane
- Frequency Response

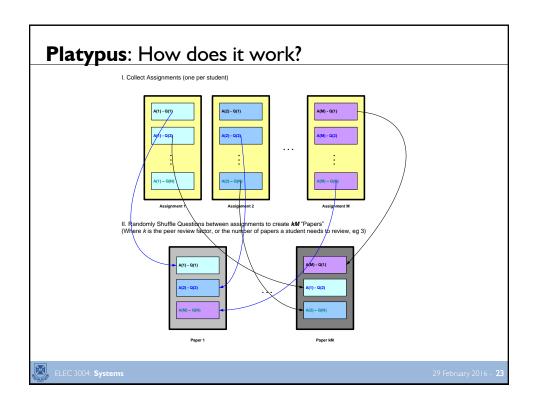
- Discrete Time
- Continuous Time
- Laplace Transformation Feedback and Control
- Additional Applications
- Linear Functions
- · Linear Algebra Review
- Least Squares
- Least Squares Problems
- · Least Squares Applications
- Matrix Decomposition and Linear
- Regularized Least Squares
- Least-squares applications
- Orthonormal sets of vectors
- Eigenvectors and diagonalization Linear dynamical systems with inputs
- and outputs
- Symmetric matrices, quadratic forms, matrix norm, and SVD

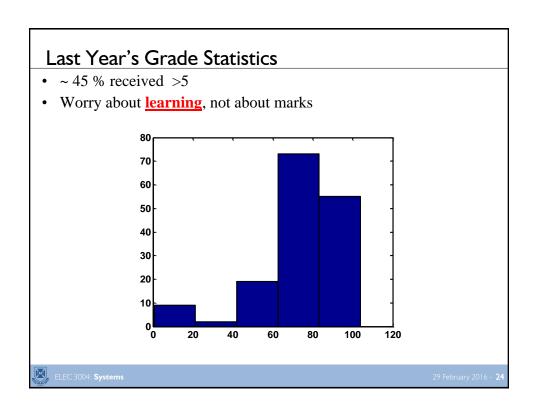
- Controllability and state transfer
- Observability and state estimation
- And that, of course, Linear Systems are Cool!

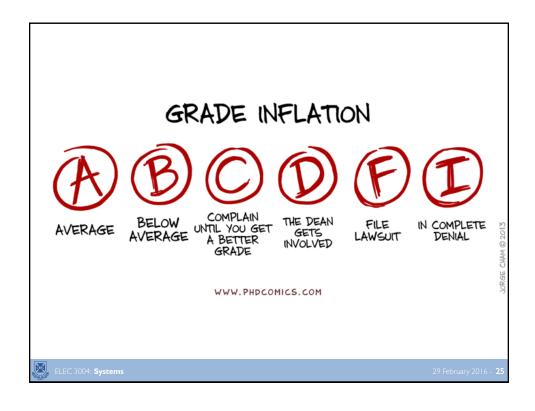
Assessment

Assessment Task	Due Date	Weighting
Problem Set 1	24/03/2016 23:59	20%
Online Quiz	22/04/2016 23:59	EXTRA CREDIT
Problem Set 2	29/04/2016 23:59	20%
Problem Set 3	27/05/2016 23:59	20%
Final Examination	Examination Period	40%

ELEC 3004: Systems


29 February 2016 - **2**


Platypus: Peer-review for Deliberate Practice/Learning


- Peer-Review
 - A key part of Engineering is being able to critically evaluate peer work
 (and give good feedback on it)
 - We <u>will</u> help teach you good habits of peer feedback
- **Question** (not Assignment) based random shuffling

ELEC 3004: Systems

A short novel	1 megabyte	1,000,000	
All undergraduate textbooks	100 MB	100,000,000	
An iPod	100 GB	80,000,000,000	
A library floor of academic journals	100 GB	100,000,000,000	
Print collections of Library of Congre	10 TB	10,000,000,000,00	
Copying notes by hand	32 bi	its/second	32 bp
Speaking	230 bits/sec.		230 bp
Reading text	360	0 bits/sec	360 bp
Home internet connection	1-10 Mb/sec.		5,000,000 bp
Single optical fiber	40 Gb/sec.		40,000,000,000 bp
A short novel $\cong 1$ Mbyte -	6 hou Less		onds to download

Changes from 2015

- 1. Three Assignments Instead of Five
- 2. Online Quiz ("Mid-Semester" Review/Recap)
- 3. Labs remain optional
 - 1. Concepts still overlap with class
 - 2. May be assessed on Assignments/Final Exam
- 4. No State-Space Control "crammed" in the end
- 5. I am still inspired by, but little less of, Boyd's EE263: *Introduction to Linear Dynamical Systems*

00 F-1------ 2017 - **20**

E-mail

- elec3004@itee.uq.edu.au
- Casper!
 - https://casper.ceit.uq.edu.au/courses/elec3004/
- [That's it!]
- {Not the instructors/tutors personally}

29 February 2016 - **29**

Communications: Help Us Help You!

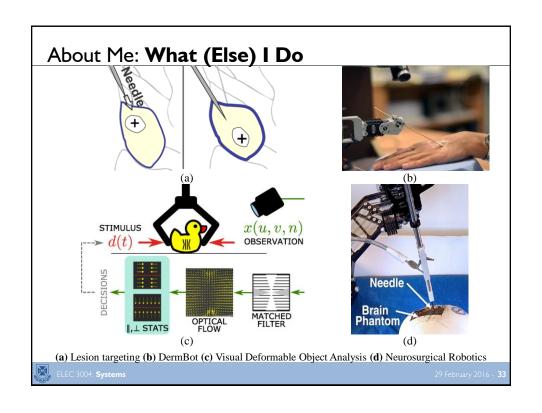
- Think carefully before using email
- Please keep communication concise and polite
- Let me know if there are problems
 - During tutorials, before and after lectures
 - Tutors/student reps
 - Office Hours: 4-6pm Thursday

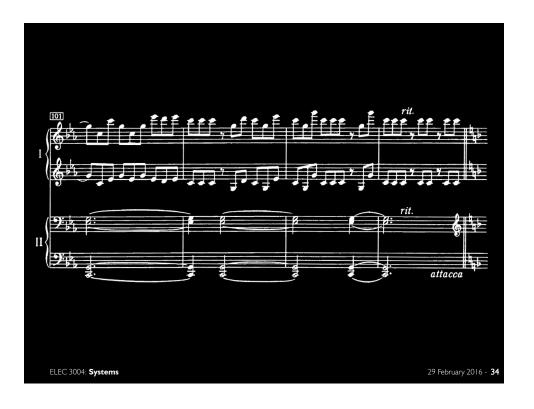
Source: O'Brien, Ruthless Compassion

What I expect from you

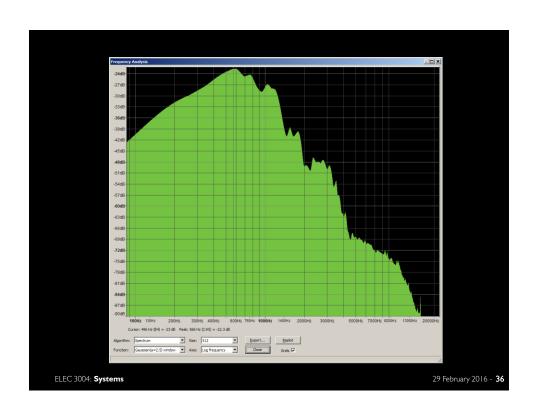
- Lectures:
 - Participate ask questions
 - Turn up (we're adults no attendance marks)
 - Take an interest in the material being presented
 - Assignments to be submitted on time please
- Tutorials:
 - Work on questions before tutorials
 - Use tutorials to clarify and enhance
- Labs:
 - Work on pre-lab before laboratory
 - Focus on understanding (as well as data capture)

Source: O'Brien, Ruthless Compassion


29 February 2016 - 31


Some Philosophy

- Let's start with Why ...
- To learn something is to teach it
 - The function of a teaching is not so much to cover the topics, but more to discover them
- It is actually **more** work for us!
 - We have to teach you how to reflect
 & then assess this as well as how to do the assignment
- It helps you understand it by giving you a different perspective
- We're a community
 - You (alone) can't do everything ... that's why we work together
 - − The notion of "free speech" → Trust emerges → efficiency (η)



20 F-1-----2017

