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THE FAST FOURIER TRANSFORM III 10.3 

Many applications of linear algebra take time to develop. It is not easy to explain them 
in an hour. The teacher and the author must choose between completing the theory and 
adding new applications. Generally the theory wins, because this course is the best 
chance to make it clear-and the importance of anyone application seems limited. 
This section is almost an exception, because the importance of Fourier transforms is 
almost unlimited. 

More than that, the algebra is basic. We want to multiply quickly by F and F-1, 

the Fourier matrix and its inverse. This is achieved by the Fast Fourier Transform­
the most valuable numerical algorithm in our lifetime. 

The FFT has revolutionized signal processing. Whole industries are speeded up by 
this one idea. Electrical engineers are the first to know the difference-they take your 
Fourier transform as they meet you (if you are a function). Fourier's idea is to represent 
f as a sum of harmonics ckeikx . The function is seen in frequency space through the 
coefficients Ck, instead of physical space through its values f (x). The passage backward 
and forward between c's and f's is by the Fourier transform. Fast passage is by the FFT. 

An ordinary product Fc uses n2 multiplications (the matrix has n 2 nonzero entries). 
The Fast Fourier Transform needs only n times 110g2 n. We will see how. 

Roots of Unity and the Fourier Matrix 

Quadratic equations have two roots (or one repeated root). Equations of degree n have 
n roots (counting repetitions). This is the Fundamental Theorem of Algebra, and to 
make it true we must allow complex roots. This section is about the very special equa­
tion zn = l. The solutions z are the "nth roots of unity." They are n evenly spaced 
points around the unit circle in the complex plane. 

Figure 10.5 shows the eight solutions to z8 = l. Their spacing is ~ (360°) = 
45°. The first root is at 45° or e = 2n /8 radians. It is the complex number w = 
eiB = ei2n/ 8 . We call this number W8 to emphasize that it is an 8th root. You could 
write it in terms of cos 2: and sin 2:, but don't do it. The seven other 8th roots are 

w 2 , w 3 , ... , w8 , going around the circle. Powers of ware best in polar form, because 
we work only with the angle. 

The fourth roots of 1 are also in tbe figure. They are i, -1, -i, l. The angle is 
now 2n /4 or 90°. The first root W4 = e2Tr i /4 is nothing but i. Even the square roots 
of l are seen, with W2 = ei2rr / 2 = -1. Do not despise those square roots 1 and -1. 
The idea behind the FFT is to go from an 8 by 8 Fourier matrix (containing powers 
of ws) to the 4 by 4 matrix below (with powers of W4 = i). The same idea goes from 
4 to 2. By exploiting the connections of Fs down to F4 and up to Fl6 (and beyond), 
the FFT makes mUltiplication by FI024 very quick. 

We describe the Fourier matrix, first for 11 = 4. Its rows contain powers of 1 
and wand w 2 and w 3 . These are the fourth roots of I, and their powers come in a 
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w = e2TCi/ 8 = cos 2; + i sin 28
11 

w4 = - I w8 = 1 - + - - _ _ -k:--L::--~~'------'--l~ Real axis 

Figure 10.5 The eight solutions to Z8 = 1 are 1. w. w 2
, ... , w7 with UJ = (l+i)/.J2. 

special order: 
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The matrix is symmetric (F = F T ). It is 110t Hermitian. Its main diagonal is not real. 
But ~F is a unitary matrix, which means that (~FH)(~F) = f: 

The columns of F give FH F = 41. The inverse of F is l FH which is ! F. 

The inverse changes from w = i to tv = -i. That takes us from F to F. When the 
Fast Fourier Transform gives a quick way to multiply by F4, it does the same for the 

inverse. 
The unitary matrix is U = F /.,fii.. ' We prefer to avoid that .,fii. and just put ~ 

outside F- 1. The main point is to multiply the matrix F times the coefficients in the 
Fourier series co + c [ e ix + C2e2ix + C3 e3 ix : 

(1) 

The input is four complex coefficients Co, C). C2, C3. The output is four function values 
yo. Y I. Y2. Y3· The first output YO = Co + CI + C2 + C3 is the value of the Fourier series 
at x = O. The secon.d output is the value of that series L qeikx at x = 2n /4: 
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The third and fourth outputs Y2 and Y3 are the values of L Ckeikx at x = 4n /4 and 
x = 6n /4. These are finite Fourier series! They contain n = 4 terms and they are 
evaluated at n = 4 points. Those points x = 0, 2n/4, 4n/4, 6n/4 are equally spaced. 

The next point would be x = 8n /4 which is 2n. Then the series is back to Yo, 
because e2ni is the same as eO = 1. Everything cycles around with period 4. In this 
world 2 + 2 is 0 because (w 2)(w2) = wO = 1. In matrix shorthand, F times C gives 
a column vector y. The four y's come from evaluating the series at the four x's with 
spacing 2n /4: 

3 

Y = Fc produces Yj = L qe ik (2n:
j
/4) = the value of the series at x = 2;j. 

k=O 

We will follow the convention that j and k go from 0 to n - I (instead of 1 to n) . 
The "zeroth row" and "zeroth column" of F contain all ones. 

The n by n Fourier matrix contains powers of w = e2n:i/n: 

F", ~ [i W w 2 

w2 w 4 

w n - I W 2(Il-L) 

~~i'--[l) ] [ ~~ 1 = [ ~; ] . (2) 

w(n-I)2 CIl-I y,,_1 

FIl is symmetric but not Hermitian. Its columns are orthogonal, and FIlF" = n[. Then 
F,;I is FIl/n. The inverse contains powers ofw" = e-2ni / ll

• Look at the pattern in F: 

The entry in row j, column k is w jk
. Row zero and column zero contain wo = 1. 

The zeroth output is Yo = Co + CI + ... + C,,_I. This is the series L Ckeikx at x = o. 
When we multiply c by Fn , we sum the series at n points. When we multiply y by 
Fn-

I , we find the coefficients c from the function values y. The matrix F passes from 
"frequency space" to "physical space." F- I returns from the function values y to the 
Fourier coefficients c. 

One Step of the Fast Fourier Transform 

We want to multiply F times c as quickly as possible. Normally a matrix times a 
vector takes n2 separate multiplications-the matrix has 11 2 entries. You might think it 
is impossible to do better. (If the matrix has zero entries then multiplications can be 
skipped. But the Fourier matrix has no zeros!) By using the special pattern w jk for 
its entries, F can be factored in a way that produces many zeros. This is the FFT. 

The key idea is to connect F" with the half-size Fourier matrix F,,/2. Assume 
that n is a power of 2 (say n = 2 10 = 1024). We will connect FI024 to F512-0r rather 
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to two copies of FS12. When n = 4, the key is in the relation between the matrices 

·7 i; J t t-

·2 i4 i6 
I. 

i 3 ·6 i 9 I 

and 

On the left is "4, with no zeros. On the right is a matrix that is half zero. The work 
is cut in half. But wait, those matrices are not the same. The block matrix with two 
copies of the half-size F is one piece of the picture but not the only piece. Here is 
the factorization of F4 with many zeros: 

- l 
(3) 

The matrix on the right is a permutation. It puts the even c's (co and C2) ahead of 
the odd c's (el and q). The middle matrix performs separate half-size transforms on 
the evens and odds. The matrix at the left combines the two half-size outputs- in a 
way that produces the correct full-size output y = F4C. You could mulliply those three 
matrices to see that their product is F4. 

The same idea applies when 11 = 1024 and I1l = 1n = 512. The number HI is 

e2lr; /1024 It is at the angle e = 2rr /1024 on the unit circle. The Fourier matrix Ft024 
is rull of powers of lV. The first stage of the FFT is the great factorization discovered 
by Cooley and Tukey (and foreshadowed in 1805 by Gauss): 

" 
[1512 DSI2] [FSI2 ;1024 = 

IS12 -DSI2 ] [
even-odd ] 

FSI2 permutation' 
(4) 

1512 is the identity matrix. DS12 is the diagonal matrix with entries (1 , tv, ... , w Sll
). 

The two copies of FSl2 are what we expected. Don't forget that they use the 512th root 
of unity (which is nothing but w 2 !!) The pennutation matrix separates the incoming 
vector c into its even and odd parts c' = (co, C2, .· ·, CI022) and c" = (C[, C), ... , CI(23)· 

Herc are the algebra formulas which say the same thing as the factorization of FI024: 

101 (FFT) Set til = 117. The first til and last m components of y = F"c are com­
binations of the half-size transforms y' = FmC' and y" = FmC". Equation (4) shows 
[y' + D y't and 1 y' - D y": 

, j II 

Yj = Yj + W Il Yj , j = 0, ... , m - 1 
(5) 

, ) II . 0 1 
Yj+m = Yj - wllYj' } = , ... , m - . 

Thus the three steps are: split c into c' and c", transform them by Fm into y' and 
y", and reconstruct y from equation (5). 
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You might like the flow graph in Figure 10.6 better than these formulas. The 
b'Tapb for 1/ = 4 shows c' and e" going through the half-size F2. Those steps are 
ca lled ' huf/erjlies:' from their shape. Then the outputs from the F2 '05 are combined 
using the I and D matrices to produce y = F4C: 

00 Co Yo 00 

e' 

10 c2 Yl 01 

01 c 1 Y2 10 

e" 

11 c3 Y3 I I 
-I -1 

Figure 10.6 Flow graph for the Fast Fourier Transform with n = 4. 

This reduction from FIl to two Fm's almost cuts the work in half-you see the zeros 
in the matrix factorization. That reduction is good but not great. The full idea of the 
FFT is much more powerful. It saves much more than half the time. 

The Full FFT by Recursion 

If you have read this far, you have probably guessed what comes next. We reduced FIl 

to F n/2. Keep going to Fn /4. The matrices F512 lead to F256 (in four copies). Then 
256 leads to 128. That is recursion. It is a basic principle of many fast algorithms, 
and here is the second stage with four copies of F = F256 and D = D256 : 

[

F512 ] = [~ -~ 
FS12 ] [

F F ] l~;~ :~ ~:::~o: ~:. ] 
I f) I-" pit;k I, 5, 9, . . . . 
I - D F pick 3,7,11. ··· 

We will count the individual multiplications, to see how much is saved. Before 
the FFT was invented, the count was the usual n2 = (1024)2. This is about a million 
multiplications. I am not saying that they take a long time. The cost becomes large 
when we have many, many transforms to do-which is typical. Then the saving by the 
FFT is also large: 

The final count for size n = 21 is reduced from 11 2 to !1l1. 

The number 1024 is 210 , so I = 10. The original count of (1024) 2 is reduced to 
(5)(1024). The saving is a factor of 200. A million is reduced to five thousand. That 
is why the FFT has revolutionized signal processing. 
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Here is the reasoning behind 1nl. There are l levels, going from n = i down 

to n = I. Each level has 111 multiplications from the diagonal D's, to reassemble 

the half-size outputs from the lower level. This yields the final count 111[, which is 

!n log2 n. 
One last note about this remarkable algorithm. There is an amazing rule for the 

order that the c's enter the FFT, after all the even-odd permutations. Write the num­
bers ° to 11 - 1 in binary (base 2). Reverse the order of their digits. The complete 
picture shows the bit-reversed order at the start, the [ = log2 n steps of the recursion, 
and the final output Yo, ... , Yn-l which is F" times e. The book ends with that very 
fundamental idea, a matrix mUltiplying a vector. 

Thank you for studying linear algebra. I hope you enjoyed it, and I very much hope 
you will use it. That is why the book was written. It was a pleasure. 

Problem Set 10.3 

Multiply the three matrices in equation (3) and compare with F. In which six 
entries do you need to know that i 2 = -I? 

2 Invelt the three factors in equation (3) to find a fast factorization of F- 1• 

3 F is symmetric. So transpose equation (3) to find a new Fast Fourier Transform! 

4 All entries in the factorization of F6 involve powers of w = sixth root of 1: 

5 

Write down these three factors with 1, w, w 2 in D and powers of w 2 in F3. Mul­
tiply' 

[f v = (1,0,0,0) and w = (1,1,1,1), show that Fv 
Therefore F - 1 w = v and F- 1 v = 

w and Fw 4v . 

6 What is F2 and what is F4 for the 4 by 4 Fourier matrix? 

7 Put the vector e = (1 , 0, 1, 0) through the three steps of the FFT to find y = Fe. 
Do the same [or c = (0, 1,0,1). 

8 Compute y = Fsc by the three FFT steps for e = (1,0,1,0, 1,0,1,0) . Repeat 
the computation for c = (0, 1,0,1,0,1,0,1). 

9 [f w = ehi /64 then w 2 and JW are among the and roots of I. 

10 (a) Draw all the sixth roots of 1 on the unit circle. Prove they add to zero. 

(b) What are the three cube roots of I? Do they also add to zero? 
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11 The columns of the Fourier matrix F are the eigenvectors of the cyclic permu­
tation P. MUltiply P F to find the eigenvalues Al to .1..4: 

f~ 
1 0 

°l fl ;i]{ ii HA' J 0 I or i i 2 i ; 2 A2 
0 0 1 I ;2 ;4 ;6 I i 2 i4 A3 
0 0 o 1 ;3 ;6 ;9 I ·3 ;6 /, 

This is PF = FA or P = FAF- 1• The eigenvector matrix (usually S) is F. 

12 The equation detC P - A l) = 0 is A 4 = 1. This shows again that the eigenvalue 
matrix A is ____ . Which permutation P has eigenvalues = cube roots of I? 

13 (a) Two eigenvectors of Care (1 , 1, 1, 1) and (1,;, i 2, ;3) . What are the eigen­
values? 

[

( '0 

CJ 

" 2 

<"t 

( ' I 

cn 

('3 

( '1 

and 

(b) P = FAF- 1 immediately gives p2 = FA 2F - I and p 3 = FA3 F - I. Then 
C = CO/+CIP+C2p2+CJP3 = F(col+CIA+C2A 2+C3A3)F - l = FEF - 1 
That matrix E in parentheses is diagonal. It contains the of C. 

14 Find the eigenvalues of the "periodic" -1, 2, -1 matrix from E = 21 - A _ 
A 3, with the eigenvalues of P in A. The -1 's in the comers make this llIalrix 
periodic: 

- [-~ - () 

- I 

-1 0 -1] 
2 -1 ° 

-1 2 - 1 

° - 1 2 

has Co = 2, CI = - 1, C2 = 0, C3 = - 1. 

15 To multiply C times a vector x, we can mUltiply F(E(F - Ix)) instead. The direct 
way lIses n

2 
separate mUltiplications. Knowing E and F, the second way uses 

only n log? n + n multiplications. How many of those come from E, how many 
from F, a~d how many from F- I ? 

16 How could you quickly compute these fOllr components of Fe starting from 
Co + C2, Co - C2, CJ + C3, Cl - C3? You are finding the Fast Fourier Transform I 




