
CHAPTER 

6 

The z Transform 

INTRODUCTION 

In this chapter and the next, we will examine discrete-time signals and 
systems using transforms. Thus the subjects covered will largely parallel the 
analogous material presented in Chapters 4 and 5 for continuous-time 
signals and systems. Specifically, the discrete-time Fourier transform 
(DTFT) is analogous to the continuous-time Fourier transform covered in 
Chapter 4, while the z transform is the discrete-time counterpart of the 
Laplace transform presented in Chapter 5. However, as we saw in the 
continuous-time case, the notions of regions of convergence alld of poles 
and zeros provide valuable insight into the properties of the Fourier 
transform, and as might be expected, this is equally true in the discrete-time 
case. Hence, instead of presenting the discrete-time transforms in an 
analogous order to Chapters 4 and 5, we will first investigate the z transform 
and its properties in this chapter , and then study the discrete-time Fourier 
transform in depth in Chapter 7. 

Many of the properties and uses of the z transform can be anticipated 
from the corresponding Laplace transform results. For instance, convolution 
of signals in the time domain corresponds to multiplication of the associated 
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z transforms . Also, the system function H(z) is readily defined for a 
discrete-time LTI system and plays the same role as H(s) for continuous­
time systems. In particular, the frequency response of the system (OTFT of 
its impulse response) is a special case of the system function and can be 
determined to within a scaling constant from the pole/zero plot for H(z). 

6.1 

The Eigenfunctions of Discrete-Time 
lTI Systems 

In Section 3.6 we showed that if the input to an LTI system is written as a 
linear combination of basis functions CPd n], that is, 

x[nJ = 2: akCPd n J, 
k 

then the output of the system can be similarly expressed as 

where the 'IJld n] are output basis functions given by 

'IJlk[nJ = CPdn] *h[n]. 

(6.1.1) 

(6.1.2) 

(6.1.3) 

This is, in fact, simply a general statement of the property of linearity. In 
the special case where the input and output basis functions CPdn] and 'IJlk[n] 
have the same form, that is, 

(6.1.4) 

for constants bkJ the functions CPdn] are called eigenfunctions of the 
discrete-time L TI system with corresponding eigenvalues bk . The eigenfunc­
tions are then basis functions for both the input x[n] and the output y[nJ 
because 

(6.1.5) 

for constants c" = akbk. 
In analogy with the continuous-time case, the eigenfunctions of 

discrete-time L TI systems are the complex exponentials 

CPdnJ = z% (6.1.6) 
for arbitrary complex constants Zk. Alternatively, to avoid the implication 
that the eigenfunctions form a finite or countably infinite set, we will write 
them as simply 

cp[n] = z", (6.1. 7) 



6.1 THE EIGENFUNCTIONS OF DISCRETE-TIME LTI SYSTEMS 287 

where z is a complex variable. To see that complex exponentials are indeed 
eigenfunctions of any LTI system, we utilize the convolution sum in Eq. 
(3.6.10), with x[n] ¢[n] = Zll, to write the corresponding output y[n] 
'!jJ[n] as 

l/J[n] 2: h[m]¢[n - m] 
In=- x 

"/= -= (6.1 .8) 

= Z" 2: h[m]z-m 
If, = -rp 

= H(z)zl1. 

Hence the complex exponential z" is an eigenfunction of the system for any 
value of z, and H(z) is the corresponding eigenvalue given by 

(6.1. 9) 
11/ =- = 

The above results motivate the definitions of the z transform, the 
discrete-time Fourier transform (OTFT) , and the discrete Fourier series 
(OFS) to be presented in this chapter and the next. Tn particular, if the basis 
functions for the input can be enumerated as 

¢dn] = z~, 

that is, if x(t) can be expressed in the form of Eq. (6 .1.1) as 

x ln J = 2: akz'k, 
k 

(6. 1.10) 

then the corresponding output is simply, from Eqs. (6.1.2) and (6.1.8), 

y[nJ = 2: akH(zk)z'k. (6.1.11) 
k 

The discrete Fourier series for periodic signals is of this form, with 
Zk = ej27tkIN. If, on the other hand, the required basis functions cannot be 
enumerated, we must utilize the continuum of functions ¢[n] = Z" to 
represent x[n] and y[ n] in the form of integrals. When z is restricted to have 
unit magnitude (that is, z = ejQ

), the resulting representation is called the 
discrete-time Fourier transform, while if z is an arbitrary complex variable, 
the full z-transform representation results. 

EXAMPLE 6.1 Consider the output of an L TI system having hi n 1 
a"u[n] with lal < 1 to the sinusoidal input 

x[n] = 2eos Qon = ejQoll + e-jQn
". 
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6.2 

This input signal is of the form of Eq. (6.1.10) , with Z1 = e iQo and 
Z2 = e - iQ

". Therefore the output is given by Eq. (6.1.11) as simply 

(6.l.12) 

Computing H(e iQo
), we utilize Eq. (6.1.9) with h[n] = a"u[n] and 

z = eiQo to produce 

n = - ·;r- II =0 

That is , we define A and cp to be the magnitude and angle, respectively, 
of the complex number H(e/~2,,). Similarly, H(e - iQ,,) is readily deter­
mined to be 

Hence, from Eq. (6.1.12), the output y[n] is obtained as 

= 2A cos (Qol7 + CP)· 
(6.l.13) 

Thus, as expected, a sinusoidal input to this (or any other) stable LTI 
system produces a sinusoidal output with the same frequency Q() but, in 
general, a different amplitude A and phase cp that depend upon the 
frequency response H(e iQo

). 

The Region of Convergence 

The function H(z) in Eq. (6. 1.9) is the z transform of the impulse response 
h[n]. Similarly, for a general signal xln], the corresponding z transform is 
defined by 

(6.2.1) 
IJ ----<n 

As in the case of the Laplace transform, the z transform usually converges 
for only a certain range of values of the complex variable z known as the 
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region of convergence (ROC), and this region must be specified along with 
the algebraic form of X(z) in order for the z transform to be complete. This 
important point is best illustrated by several examples. 

EXAMPLE 6.2 Letting x[n] be the causal real exponential 

x t n J = a" u [n ], 

we have from Eq. (6.2.1) that 

""' 
X(z) = L a"u[n ]Z - II 

11 = ~c.o 

= L (az - I
)". 

n=O 

'~LS shown in Problem 2.4(b), this summation converges iC and only it, 
laz - 11 < 1, or equivalently Izl > lal, in which case 

1 
X(z)=. -1' 

I - az Izl > lal· (6.2.2) 

Alternatively, by multiplying the numerator and denominator of Eg. 
(6.2.2) by z, we may write X(z) as 

z 
X(z) = --, 

z - a 
Izl > lal· (6.2.3) 

Both forms of X(z) in Eqs. (6.2.2) and (6.2.3) are useful, 
depending upon the application. Specifically, when performing the 
inverse z transform or designing system implementations, we will find 
the form in Eq. (6.2.2) to be preferrable. However, to determine the 
poles and zeros of X(z), Eq. (6.2.3) is the more useful form. In 
particular, Eg. (6.2.3) clearly indicates that we have a pole at z = a 
and a zero at z = O. These pole/zero values can also be obtained from 
Eg. (6.2.2), but the zero at z = 0 (where Z-1 = 00) is not quite so 
obvious from this form for X(z). The pole and zero of X(z) are shown 
in Fig. 6.1 by an x and 0, respectively, as before, in four cases: namely, 
o < a < 1, -1 < a < 0, a > 1, and a < -l. The region of conver­
gence Izl > lal is also indicated by the shaded area. The locus of points 
for which Izl = 1 (that is, z = eiQ

) is called the unit circle and is usually 
displayed, as shown, on such pole/zero plots. As we will see, the unit 
circle plays the same role for the z transform as the jev axis plays for the 
Laplace transform. Note, in particular, that for a stable system 
(Ial < 1), the unit circle is contained within the ROC, but not 
otherwise. 

Note that the boundary cases for a = 1 and a = -1 correspond 
simply to the signals x[n] = urn] and x[n] = (-ltu[n], respectively. 
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Im(z) 

Im(z) Im(z) 

~~---I---<:)----l--~~Re (z) 

(-1 < a < O) (a < -1) 

FIGURE 6.1 Regions of convergence of the form Izl > lal. 

Therefore, from Eq. (6.2.2) we have the specific z-transform pairs 

1 
u[n] ~ _)' 

1 - z 
Izl > 1, (6.2.4) 

and 

1 
Izl > 1. (6.2.5) (-l)"u[n] ~ 1 + Z-I' 

Hence, in each of these cases the pole lies directly on the unit circle at 
z = 1 or z = - 1, respectively, with the ROC being everywhere outside 
thc unit circle. 

EXAMPLE 6.3 Consider next the anticausal real exponential 

x[n] = - a"u[ - n - 1], 
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which equals zero for n ~ O. The corresponding z transform is then 

-I 

X( z ) = - 2: a"z -" 
n=-oo 

-a- 1z 2: (a- I z)" . 
n = O 

As noted earlier from Problem 2.4(b), this summation converges if, and 
only if la - Izi < 1, or equivalently Izl < lal, in which case 

1 
Izl < lal· (6.2.6) 

1 -I' - az 

Alternatively , as before, by mUltiplying the numerator and de­
nominator of Eq. (6.2 .6) by z, we may also write X(z) as 

z 
X(z) = --, (6.2.7) 

z - a 

Comparing these results to those in Eqs. (6.2.2) and (6.2.3), we 
observe that the algebraic form of X(z) in these two examples is exactly 
the same and hence that the z transforms for these two different signals 
are distinguished only by their differing regions of convergence . 
Therefore, as in the case of the Laplace transform, if the ROC is not 
stated explicitly (or at least implied) along with the algebraic form of 
the z transform, the transform is, in general, not unique and is thus 
incomplete. Pole/zero plots for X(z) with their associated regions of 
convergence are shown in Fig. 6.2 for four ranges of the parameter a, 
as before . 

The boundary cases of a = 1 and a = -1 now imply the specific 
z-transform pairs 

and 

-u[-n - 1] ~ 1 - I' 
- Z 

1 
-(-I)"u[-n - 1] ~ 1 + Z-I ' 

Izl < 1, (6.2.8) 

Izl < 1, (6.2.9) 

and thus the pole lies directly on the unit circle at z = 1 or z = -1 , 
respectively, in eaeh of these cases, as before. However, in contrast to 
the corresponding causal transforms, the ROC now consists of all 
points inside the unit circle. 
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Im(z) Im(z) 

U it circ le 

---If-----ffiffi::~~_t--- Re (z) 

(0 < a < 1) (a > 1) 

Im(z) Im(z) 

---IH~~:l.ffi~_t--- Re(z) 
-1 

(-1 <a<O) (a < -1) 

FIGURE 6.2 Regions of convergence of the form /z/ < /a/ . 

EXAMPLE 6.4 Let x[n] be the sum of two causal exponentials, that is, 

x[n] = a"u[n] + b"uln], a =1= b. 

Clearly then, X(z) is the sum of the corresponding z transforms, and 
thus 

1 1 
X(z) = 1 - I + -l- -b ---I - az - z 

2-(a +b)z-1 

(1 - az-1)(1 - bz - I
) 

2z[z - (a + b)/2] 

(z - a)(z-b) . 

The associated region of convergence has the form 

Izl > max (Ial, Ibl) 
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Im(z) 

~~~----o-*-o-l~~:- Re(z) 

FIGURE 6.3 Pole/zero plot with ROC/or [a" + b"Ju[n], 0 < a < b < 1. 

because both component transforms must converge in order for the 
overall transform to converge. Hence X(z) has two poles at z = a and 
z = b and two zeros at z = 0 and z = (a + b )/2, as depicted in the 
pole/zero plot in Fig. 6.3 for the case of 0 < a < b < 1. 

EXAMPLE 6.5 Letting x[n] be the sum of causal and anticausal 
exponentials 

x[n] = a"u[n] + bnu[ -n - 1], 

we have, from Examples 6.2 and 6.3, that 

a =1= b, 

1 1 
X(z) = 1 _ az- 1 1 - bz- 1 

(a-b)z-l 

(1 - az- 1)(1 - bZ-I) 

(a - b)z 
= ----'------'--

(z - a)(z - b)' 

with an associated region of convergence (if it exists at all) of the form 

lal < Izl < Ibl· 

That is, since the ROC for anu[n] is given by Izl > lal and the ROC for 
bnu[ -n - 1] has the form Izl < Ibl, both conditions must be satisfied 
in order for X(z) to exist. Thus, in particular, the transform X(z) does 
not converge for any value of z unless Ibl > lal. Pole/zero plots for this 
transform are displayed in Fig. 6.4 for the following three cases: 
1 > b > a > 0, b > 1 > a > 0, and b > a > 1. 
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Im(z) Im(z) 

---f-.~~-U"-E~H--- Re(z) ---j;~~--o---)ffi-M<ll{-b- Re (z) 

(1 ) b > a > 0) (b > 1 > a > 0) 

Im(z) 

-~~I-+----o---t-Hffi-)l-b:-- Re(z) 

(b > a > 1) 

FIGURE 6.4 Pole/zero plots with ROC for a"u[n] + bnu[ -n - 1]. 

6.2.1 • ROC Properties 

The properties of the region of convergence for the z transform closely 
parallel those for the Laplace trasform, with vertical lines in the s plane 
being analogous to circles in the z plane and vertical strips in the s plane 
corresponding to annular rings in the z plane. There are, however, a few 
exceptions concerning convergence at z = 0 and/or z = 00. As before, the 
ROC properties are associated with right-sided, left-sided, two-sided, and 
finite-duration signals (defined in Section 2.6), as follows: 

Right-Sided Signals. If x[nJ is right-sided and X(z) converges for 
some value of z, then the ROC must be of the form 

or else 
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where rmax is the maximum radius of any of the poles. That is, X(z) 
converges everywhere outside the circle Izl = rmax with the possible 
exception of z = 00. In particular, if x[ n] is causal, the ROC has the simple 
form Iz I > rmax' However, if x[n] is right-sided but not causal (that is, if 
x[n] = 0 for n < no < 0 but x[no] "* 0), then z = 00 is not included in the 
ROC. This is readily seen from the corresponding z transform, 

X(z) = L x[n]z-n 
" = tin 

= x[no]z-l1(J + x[no + l]Z-(I1[)+I) + ... , 

because the term x[no]z-110 becomes infinite at z = 00 if no is negative. 
Therefore, unlike the Laplace transform case, we can tell that a discrete­
time signal is causal (not just right-sided) from the ROC for its z transform 
if z = 00 is included. Examples of regions of convergence for right-sided 
(causal) signals are shown in Figs. 6.1 and 6.3. 

Left-Sided Signals. If x[ n 1 is a left-sided signal and X(z) converges for 
some value of z, then the ROC must be of the form 

or else 

o < Izi < rmin , 

where rmin equals the minimum radius of any of the poles. That is, X(z) 
converges everywhere inside the circle Izl = rmin in the z plane with the 
possible exception of the point z = O. In particular, if x[n] is anticausal, the 
ROC has the simple form Izl < rmin- However, if x[n) is left-sided but not 
anticausal (that is, if x[n] = 0 for n > no > 0 but x[no] "* 0), then z = 0 is 
excluded from the ROC. This is readily seen from the corresponding z 
transform, 

X(z) = ~ x[n ]z-n 
rI = - ~..o 

since the term x[no)z-tl(J becomes infinite at z = 0 if no > O. Hence, unlike 
the Laplace transform case, we can tell that a discrete-time signal is 
anticausal (not just left-sided) from the ROC for its z transform if the point 
z = 0 is included. Examples of regions of convergence for left-sided 
(anticausal) signals are shown in Fig. 6.2. 

Finite-Duration Signals. If x[n] has finite duration and X(z) con­
verges for some value of z, then it converges over the entire z plane except 
possibly at z = 0 and/or z = 00. This follows from the fact that a 
finite-duration signal is both right-sided and left-sided, and thus X(z) must 
converge both inside and outside of circles of finite radius except possibly at 
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z = 0 and/or z = 00. Hence there can be no finite poles in X(z) except 
possibly at z = 0 because, by definition, X(z) does not converge at a pole. 
These finite-duration properties are illustrated by the following simple 
examples: 

b[n]~I, for all z; 

b[n - 1] ~ Z-I, Izl > 0; 

b[n + 1] ~ z, Izl < 00; 

b[n + 1] + b[n - 1] ~ z + z- ], 0< Izl < 00. 

Two-Sided Signals. If x[n] is two-sided and X(z) converges for some 
value of z, then the ROC must be of the form 

r] < Izl < r2, 

where r] and r2 are the radii of (at least) two of the poles. That is, the ROC 
is an annular ring in the z plane between the circles Iz 1 = r] and Iz 1 = r2' 

This follows from the fact that x[n] can be written as the sum of the causal 
signal x][n] = x[n]u[n] and the anticausal signal x2[n] = x[n]u[ - n - 1], 
and thus X(z) = X](z) + Xz(z). Therefore, since X](z) converges for 
Izl > r] and X 2(z) converges for Izl < r2 , it follows that X(z) can only 
converge if rl < r2 , and then only in the annular ring r] < Izi < rz. Sample 
regions of convergence for two-sided signals are shown in Fig. 6.4. 

6.3 

The Inverse z Transform 

There are several useful procedures for inverting a given z transform X(z) 
to determine the corresponding signal x[ n]. First, as in the case of the 
Laplace transform , a formal and elegant expression can be derived for the 
inverse z transform ; but although important theoretically, this formula is 
cumbersome to use in practice. Hence, in addition to the formal expression, 
we will present alternative and simpler methods to calculate the inverse z 
transform. 

The theoretical basis for the inverse z transform is the Cauchy integral 
theorem from the theory of complex variables , which states that 

~ 1 Zk-I dz = b[k], 
2:rr; l (6.3.1) 

where r is a counterclockwise contour of integration enclosing the origin. 
To employ this theorem, we multiply both sides of the z-transform 
definition in Eq. (6.2.1) by Zk-I/2:rrj and integrate along a convenient 
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contour r in the ROC (such as the unit circle), obtaining 

~ 1 X(Z)Zk-l dz = ~ 1 [ i x[n]z-n]zk- J dz 
2Jrj Jr 2Jrj fr n = -= 

= L x[n] ~ 1 z-n+k-J dz 
II = - X> 2Jrj Jr 

= L x[n] b[k - n] = x[k] . 
11 = -00 

Thus, replacing k by n, we see that the inverse z transform may be 
expressed as 

x[n] = _1_.1 X(Z)Z"-J dz. 
2JrJ Jr 

(6.3.2) 

Clearly, a suitable r can always be found for this contour integration since 
the ROC for X(z) is an annular ring centered on the origin in the z plane. 

Formal evaluation of Eq. (6 .3.2) is based on the Cauchy residue 
theorem, which, while straightforward conceptually, is cumbersome to use 
in practice. Fortunately, simpler methods are available to invert the z 
transform, especially in the common case when X(z) is a rational fraction in 
z, as we now demonstrate. 

6.3.1 • Power-Series Expansion 

The original definition of the z transform in Eq. (6.2.1) has the form of a 
power (Laurent) series in the complex variable z, and thus if we expand 
X(z) in a power series, x[n] must he given by the coefficients of the 
resulting series. This approach is especially straightforward if X(z) is a 
rational fraction, since long division can be used to generate the power 
series. To utilize this method, we will treat causal and anticausal transforms 
as special cases. First, if X(z) is a (causal) rational transform converging for 
Izl > rmax , that is, if 

8(z) 
X(z) = A(z)' Izi > rmax , 

where B(z) and A(z) are polynomials in Z-I of the form 

M 

B(z) = L bkz- k 

k = 0 

and 
N 

A(z) = L ak z - k
, 

k = O 

(6.3.3) 
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we divide B(z) by A(z), starting with the lowest powers of Z-I, as follows : 

x[O] + x[l]z - I + X[2] Z- 2 + . . . 
-I + + - N) b b -I b - M ao + alz . . . aNz u + l Z + .. . + MZ 

(6.3.4) 

Thus, as shown, each clement of the x[n] sequence is given by the 
corresponding coefficient of the resulting power series in z -I. 

Similarly , in the anticausal case, if X(z) is a rational transform 
converging for Izl < rmin, that is, if 

8(z) 
X(z) = A(z)' (6.3.5) 

where 8(z) and A(z) are now polynomials in z (not Z - I) of the form 

M 

B(z) = L. bkzk 
k = () 

and 
N 

A(z) = L. akz\ 
k = () 

we divide 8(z) by A(z) starting with the lowest powers of z, to wit , 

x[O] + x[ -1]z + x[ -2122 + 
ao + alz + ... + aNzNJbo + b iz + ... + bMz M (6.3.6) 

Thus, as indicated, each element of the anticausal sequence is given by the 
corresponding coefficient of the resulting power series in z. 

Finally, if the region of convergence for X(z) has the form r l < Izl < r 2 

(including possibly rl = 0 and/or r2 = (0), we can separate X(z) into its 
causal and anticausal parts and proceed as before. That is, given X(z) with 
rl < Izl < r2 , let 

(6.3.7) 

where X+(z) converges for Izl > r l and X _(z) converges for Izi < r 2' 

Therefore X +(z) has the poles of X(z) that lie inside the circle Izi = r l , 

while X_(z) has the poles lying outside the circle Izi = r2' Thus the 
sequences x+[n] and x _[n] are causal and anticausal, respectively , and can 
be obtained as described above . The overall inverse transform x[n] is then 
simply 

(6.3.H) 

EXAMPLE 6.6 Given the familiar transform 

1 
X(z ) = - I' 

1 - az 
Izl > lal, 

I 

J 
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we apply the causal version of long division in Eg. (6.3.4) to obtain 

1 + az - I + a 2 z - 2 + . .. 
1 - az - 1h 

1 - az - I 

az- I 

az - I - a2z- 2 

a2z- 2 

That is, X(z) is given by the power series 

X() 1 - I + 2 -2 + Z = + az a z .. . , 

from which we determine that x[O] = 1, x[l] = a, x[2] = a2 , and so 
forth, or 

as expected. 

If, on the other hand, the ROC implies that x[n] IS anticausal, 
that is, 

1 
X(z) = -I' 

1 - az Izl < lal, 

we first multiply the numerator and denominator by z to obtain 

z 
X(z) = --, 

z - a Izl < lal, 

and then employ the anticausal version of long division in Eg. (6.3.6), 
as follows: 

-a + z)z 

z - a- I z 2 

a I Z 2 

a- 1z 2 - a - 2z 3 

a - 2z 3 

That is, X(z) is given by the power series 

X( ) -I - 2 2 -] 3 
Z = -a z - a Z - a . z - ... , 

from which we determine 
x[-3] = -a-3

, etc., or 
that x[-l] = 

x[n] = -a"u[-n - 1]. 

- I -a , x[ -2] = 

Hence the expected result is produced in this case as well. 

-2 -a , 
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EXAMPLE 6.7 Given the second order z transform 

H(z ) - __ -,--1 _ _ -:::: 
- 1 - Z-l + 0.5 z - 2 ' 

Izl > 0.707, 

the causal ve rsion of long division in E q . (6.3.4) yields the powe r series 

1 + z '+ 0. 5z " - 0.25z " - a 25z " - 0. 1252 " ',. II 0625z~' + ~ 

1 - Z '+ n.5z ':)1 

1 - l I + (L5z" 

Z " - 0 5z ' 
Z I _ z - 2. + O~ 5l --, 

o 5z - ' - 0.5z ) 

o 5z " - 0.5," + 0,25z " 

- 0 25z ., 

- D.25z l + O~ 25z ' - 11. 125z I. 

- 0 25z ~ , + 0 125z " 
- 0.25, " + 11. 25 z ' l, -- 11. 1252 

- a 125z 0 + () 125z ' 
- () 125,- 1, + () 125z ' - 11 .()('25, ' 

O. 1J6252 ' 

Therefore , making a table of values for the sequence x[n], we have 

Il o 1 2 3 4 5 6 7 8 .. · 

xln] 1 1 1/2 0 -1/4 -1/4 -1/8 o 1/16· .. 

We can continue to generate as many sequence values as desired, but 
unless a discernible pattern develops as in Example 6.6, the long­
division approach becomes tedious if more than a few values of x[ n] are 
needed. There does, in fact, seem to be some pattern to the above 
sequence values, but it is difficult to deduce a compact description of 
(equation for) the sequence. Indeed , this is a major deficiency of the 
long-division approach that limits its usefulness primarily to simp le 
inverse z transforms. 

EXAMPLE 6.8 The z transform 

-1.25z - 1 

X(z) - -------:-- - -::; 
- 1 - 2.75z- 1 + 1.5z - 2 ' 

0.75 < Izl < 2, 

corresponds clearly to a two-sided signal because the ROC is an 
annular ring. Therefore, to invert this transform, we need to separate 
X(z) into its causal and anticausal parts. Employing partial-fraction 
expansion, we find that 

1 
X(z) = 1 _ 0.75z-1 

1 
0.75 < Izl < 2. 
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Hence X+(z) and X_(z) must be simply 

1 
X+(z) = 1 - 0.75z-1' Izi > 0.75, 

and 

1 
1 -- 2z- l ' 

Izl < 2, 

and thus 

x[n] = x+[n] + x_[n] = (0.75tu[n] + 2"u[-n - 1]. 

Occasionally, an irrational z transform is encountered, in which case 
power-series expansion is an especially appropriate method to obtain the 
inverse z transform. Specifically, X(z) is expanded in a Taylor (Maclaurin) 
series in z and/or Z-I, and x[n] is then given by the coefficients of the 
series. This technique is illustrated by the following important example from 
the theory of homomorphic systems. 

EXAMPLE 6.9 Consider the transform 

X(z) = log ( 1 -1) 
1 - az 

= -log (1 - az- 1
), Izi > lal· 

The Maclaurin series expansion for log (1 - y) with Iyl < 1 is given by 

00 1 
log (1 - y) = - 2, fiY", 

11=1 

and thus, since laz-ll < 1, X(z) has the series expansion 

Therefore x[n] is given by the series coefficients as 

1 
x[n] = -a"u[n - 1]. 

n 

This sequence is known as the complex cepstrum of the exponential 
sequence anu[n]. 

6.3.2 • Partial-Fraction Expansion 

We saw in Example 6.8 that partial-fraction expansion (PFE) is useful in 
separating a rational z transform into its causal and anticausal parts. In fact, 
however, PFE is applicable to all rational z transforms and provides the 
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most generally useful inverse-z-transform method for such transforms, as 
we found in Chapter S was also the case for the inverse Laplace transform. 
For simplicity, we will restrict our coverage here to the case of distinct 
(nonmultiple) poles and will defer consideration of multiple poles to 
Appendix 6B. Initially, we also consider only the case of N > M (that is, 
more poles than zeros, excluding those at z = 0). 

Given the rational fraction B(z)/A(z) with 

M 

B(z) = L bkz-k 
k~'O 

and N 

A(z) = L ak z -\ 
k~O 

and assuming N > M and no mUltiple poles, we can expand B(z)/A(z) in a 
PFE of the form 

B(z) 

A(z) 
(6.3.9) 

with poles /h and residues rk' Inferring the ROC for each of these N terms 
from the overall ROC for X(z), we can then invert each term based on the 
results of earlier examples to obtain the overall inverse z transform, as done 
previously to compute the inverse Laplace transform. The following 
example illustrates this procedure. 

EXAMPLE 6.10 Given the second-order rational fraction 

B(z) 1 - 1. 7z- 1 

--= 
A(z) 1 - 2.0Sz- L + Z-2' 

the corresponding PFE is readily found to be 

B(z) 2 1 
-- = ----~ 

A(z) 1 - 0.8z- 1 1 - 1.2Sz- l · 

Since there are poles at z = 0.8 and z = 1.2S, there are three possible 
forms for the ROC: namely, Izl > 1.2S, 0.8 < Izi < 1.2S, and Izl < 
0.8, as depicted in Fig. 6.S. 

Assuming first that Izi > 1.2S, we know from the ROC properties 
in Section 6.2 that the corresponding signal x[ n] must be causal. In 
particular, from Example 6.2, we have 

1 
(0.8)"u[n] ~ -I' 

1 - 0.8z 
Izl > 0.8, 

and 

[ 
1 

(1. 2S)"u n] ~ -I' 
1 - 1.2Sz 

Izl > 1.2S. 
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Im(z) Im(z) 

~~t---I--*4~~ Re(z) --*:sffi.--I--~~- Re(z) 
1.25 

Im(z) 

---t-I~~~~*+*-- Re(z) 
1.25 

FIGURE 6.5 Three possible ROes for given pole plot. 

Hence, the combined transform, 

2 1 
X(z) = 1 - 0.8z- 1 1 - 1.25z- 1 ' 

Izl > 1.25, 

implies the causal signal 

x[n] = {2(0.8t - (1.25t}u[n]. 

On the other hand, if the ROC is 0.8 < Izl < 1.25, we know that 
x[n] is two-sided. That is, from Examples 6.2 and 6.3, 

and 

1 
(0.8tu[n] ~ 1 - 0.8z-1' 

1 
-(1.25tu[ -n - 1] ~ -1---1.-2-5z---1 ' 

Izl > 0.8, 

Izl < 1.25, 
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and thus the combined transform , 

2 1 
X( z ) - ----,-

- 1 - 0.8z- 1 1 - 1.25z - 1 ' 
0.8 < Izl < 1.25, 

implies the two-sided signal 

x[n] = 2(0.8)"u[n] + (1.25tu[ - n - 1]. 

Lastly, if X(z) converges for Izl < D.8, the signal must be 
anticausal, and thus, since 

and 

- (0.8)nu[-n - 1] ~ 1 
1 - 0.8z- I ' 

1 
-(1.25)"u[ - n - 1] ~ -1---1.-2-5z--- I ' 

the combined transform, 

2 
X( z ) - ---....,. 

- I - (Usz - I 1 

corresponds to the anticausal signal 

1 
1. 25z - 1 ' 

Izl < 0.8, 

Izl < 1.25, 

Izl < 0.8, 

xfn] = {(l.25)" - 2(O.8),,}ul - n - 1]. 

The three forms of the inverse z transform (causal, two-sided, and 
anticausal) corresponding to the three ROes in Fig. 6.5 are shown in 
Fig. 6.6 . 

The case of N :s; M rcquires an additional step before the PFE can be 
performed . Illustrating this step for a causal transform, we divide B (z) by 
A(z), starting with the highest powers of Z - I, to produce 

gl.Z·-L + ... + g lz - I + go + C(z)/A(z ) 

aNz-N + ... + {/I Z - I + (/o)bMz- M + ... + bi Z - I + bo 

(6.3.10) 

where L = M - N and the rcmainder polynomial C(z ) is of order K < N. 
That is, X(z) is rewritten as 

B(z) C(z) 
X(z) = - (- ) = G(z) + - ) ' 

A z A(z 
Izl > r, (6.3. 11) 

where G(z) and C(z) arc Lth- and Kth-order polynomials in Z - I, 

respectively. Then, since K < N, the rational fraction C(z)/A(z) can be 
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x[n] 

,t (1'1>'·251 

--• .-•. ~.~.~.~o~~r_~" 

x(n] 

2 
(0.8 < Izl < 1.25) 

_···1 T 

x(n] 

( Izl < 0.8) 

FIGURE 6.6 Signals x[n 1 corresponding to ROes in Fig. 6.5. 

expanded in a PFE as in Eq . (6.3.9), that is, 

C(z) = .f!:, qk -1 . .6 (6.3.12) 
A(z) k=ll - PkZ 

Finally, from Eqs. (6.3.11) and (6.3.12), the resulting (causal) Inverse z 
transform can be expressed as 

L N 

x[n] = Lg,D[n - i] + L qk(Pk)"u[n]. (6.3.13) 
' =0 k=l 

EXAMPLE 6.11 The z transform 

2 - 3.5z - 1 + 2.5z - 2 
- O.5z- 1 

X(z) - -----;---~--
- 1 - 1.5z 1 + O.5z-2 ' 

Izl > 1, 

has N == 2 and M = 3, and hence the additional step described in Eq . 
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(6.3.10) is required before the PFE . Performing this division , we have 

_ Z - 1 + 2 

0.5z- 2 
- 1.5z- 1 + 1)-0.5z - 3 + 2.5z ·-2 

- 3.5z·- 1 + 2 

-0.5z - 3 + 1.5z - 2 - Z-1 

Z-2 - 2.5z- 1 + 2 

Z - 2 - 3z- 1 + 2 

0.5z- 1
• 

That is, the quotient polynomial G(z) equals -Z-1 + 2, while the 
remainder polynomial C(z) is simply 0.5z- 1

• Next, expanding 
C(z)/A(z) in a PFE, we find that 

C(z) 0.5z - 1 

A(z) - l.5z - 1 + ().5z - 2 

1 - 0.5z - 1 • 

Finally , therefore, the inverse z transform is obtained from Eq. (6.3.13) 
as 

x[n] = 2 b[n] - b[n - 1] + {J - (O.5)"}u[n]. 

Anticausal z transforms with M 2:: N can be inverted using a similar 
procedure after expressing A(z) and 8(z) [and thus C(z) and G(z)] as 
polynomials in z rathe r than z -1. 

6.4 

Properties of the z Transform 

As in the case of the Fourier and Laplace transforms, there are many 
properties of the z transform that are quite useful in system analysis and 
design. These z-transform properties closely parallel those [or the Laplace 
transform, as should be expected, since both are usually rational fractions in 
the complex variable s or z and are thus characterized by their poles, zeros, 
and regions of convergence in the complex plane. In describing these 
properties, a z- transform pair is denoted by x[n] ~ X(z), as before . 

6.4.1 • Linearity 

Given that the signals xL[n] and x2[n] have the z transforms X1(z) and 
X 2(z), with regions of convergence RL and R 2 , respectively, it is readily 



6.4 PROPERTIES OF THE z TRANSFORM 307 

shown that 

(6.4.1) 

for arbitrary constants a and b, with a region of convergence R' satisfying 

R' :::::> RI n R 2 . 

As before, the set notation A :::::> B means that set A contains set B, while 
B n C denotes the intersection of sets Band C. In words, therefore, the z 
transform of a linear combination of two signals x I[ n] and X2[ n] is the same 
linear combination of the corresponding transforms X](z) and X 2(z), with a 
resulting ROC at least as large as the region in common between R] and R2 . 

Usually, as for the Laplace transform, we have simply R' = R] n R2, but 
occasionally a pole/zero cancelation is produced in the linear combination 
that extends the boundary of R' beyond that for R] n R2. Of course, if R] 
and R2 do not intersect, R' equals the empty set, in which case the z 
transform for ax 1 [n] + bX2[n] does not exist. 

EXAMPLE 6.12 From Examples 6.2 and 6.5, we have that the z 
transforms of the signals 

and 

a =1= b, 

are given by 

1 
X1(z) = -I' 

1 - az 
Izl> lal, 

and 

x (z) __ ----'( a_-:----'b )_Z_-_I _,-

2 - (1 - az- I )(1 - bz- I )' 
lal < Izl < Ibl, 

respectively. Therefore the z transform of the sum 

x[n] = xI[n] + x2[n] 
is given by 

X(z)=X(z)+X(z)= 1 + (a-b)z-' 
1 2 1 _ az- 1 (1 - az- I)(1 - bZ-I) 

(1 - bZ-I) + (a - b )Z-I 
=~----~~~----~-

(1 - az- I)(1 - bz I) 

1 + (a - 2b)z-1 
=--- ---'--:-- - -----;-

(1 - az- I )(1 - bz- I
)' 

lal < Izl < Ibl · 

Hence, for this linear combination, R' = R 1 n R2 = R2. 
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However, computing the z transform of the difference 

we find that 

1 (a-b)z - ' 

(1 - bZ - I) - (a - b)Z-' 
= =---------(1 - az-I)(l - bZ - ') (1 - az - I )(1 - hZ - I) 

1 
Izl < Ibl· 

That is, the pole at z = a is canceled by a zero. Therefore, in this case, 
the region of convergence R I is larger than R I n R 2 . This effect is 
explained in the time domain by noting that the causal term a"u[n] 
cancels out in the difference xl[n] - x2[n], yielding the anticausal result 
x[n] = -b"u[-n - 1]. 

6.4.2 • Time Shift 

The z transform of the shifted signal x[n - no] is, by definition, 

n = - :J:. 

where £t{ } denotes the z-transform operation. Employing the change of 
variables m = n - nu, we find that 

£t{x[n - no]} 
111 =-'Y. 

= Z-IIO L x[rn]z - III 
"I::=:-:I"..l 

= Z- II()X(Z), 

with the same ROC as for X(z) itself except possibly at z = 0 or 00. 

Specifically, for no > 0, up to no additional poles are introduced at z = 0 
and! or deleted at z = 00 by the factor z - lin, and vice versa for no < O. 
Therefore the points z = 0 and z = 00 can either be added to or deleted 
from the ROC by time shifting. In the time domain, this reflects the fact 
that a right-sided but noncausal signal will become causal if delayed 
sufficiently, while a causal signal will become noncausal if advanced 
sufficiently. Similarly, a left-sided signal that is not anticausal will become 
anticausal if advanced sufficiently, but an anticausal signal will not remain 
anticausal if delayed by a sufficient amount. 

s 
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In summary, therefore, we have the relationship 

R' ::::> R n ° < Izl <: co, (6.4.2) 

where Rand R' denote the ROCs before and after the time-shift operation, 
respectively. In particular, letting no = 1 and -1, we have the important 
special cases 

R' ::::> R n Izl > 0, (6.4.3a) 
and 

x[n + 1] ~ zX(z), R' ::::> R n Izl < co. (6.4.3b) 

Because of these relationships, Z - 1 is often called the unit-delay operator 
and z is called the unit:advance operator. [Note that the time-domain effects 
of the similar Laplace transform operators S-1 and s are, in fact, quite 
different from Eq. (6.4.3) since these operators correspond to time-domain 
integration and differentiation, respectively.] 

6.4.3 • Modulation 

Multiplication of a time-domain signal x[n] by an exponential z3 for an 
arbitrary complex number Zo constitutes the general form of discrete-time 
modulation. The student can readily verify that 

z3x[n] ~ X(z/zo), R' = IZol R. (6.4.4) 

In particular, a pole (zero) at z = Pk in X(z) moves to z = ZOPk after 
modulation, and the ROC expands or contracts by the factor IZol. In. the 
important special case of complex modulation where Zo = ejo.o, Eq . (6.4.4) 
becomes 

R' = R. (6.4.5) 

Hence, in this case, all poles and zeros are simply rotated by the angle Qo, 

and the ROC is unchanged. 

EXAMPLE 6.13 To find the z transform of the sequence 

we note that 

and that 

x[n] = r"(cos Qon)u[n], 

1 
r"u[n] ~ -1----"":-1' 

- rz 

r > 0, 

Izl > r. 
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Im(z) 

~~~I---"",)--.rO-t~mt-- Re(z) 

FIGURE 6.7 Pole/zero plot with ROC for r"(cos Q"n)u[n] . 

Therefore, by linearity and the modulation property in Eg. (6.4 .5), 

(1 - re jQoz- 1)(1 - re - iQ"z- l) 

1 - r(cos QO)Z - I 

1 - 2r(cosQo)z 1 + r2z 2' 
Izl > r. 

The corresponding pole/zero plot is shown in Fig . 6.7 . 

6.4.4 • Time Reversal 

If x[n] is time-reversed to produce x[-n], we readily find from the 
definition of X(z) that 

x[-n] ~ X(1/z), R' = 1/R. (6.4.6) 

Therefore a pole (zero) in X(z) at z = Pk moves to 1/ Pk after time reversal. 
The relationship R' = 1/R reflects the fact that a right-sided signal becomes 
left-sided if time-reversed, and vice versa. 

6.4.5 • Differentiation in z 

Differentiating both sides of the z-transform definition in Eg. (6 .2.1) , we 
find that 

dX(z) = L 
dz 

[ 1 
- ,, - 1 - nx n z , 

n=-oo 

s 
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and thus 

dX(z) 
nx[n] ~ - z ---;;;-' R' = R. (6.4.7) 

This relationship is useful in certain derivations, as we show in the following 
example. 

EXAMPLE 6.14 In Example 6.9 we used power-series expansion to 
invert the irrational z transform 

X(z) = -log (1 - az - 1
), Izl > lal· 

However, an alternative inversion method is provided by the 
differentiation property because 

dX(z) -az - 2 

dz 1 - az- 1
' 

Izl > lal , 

which is a rational fraction. Specifically, from Eq. (6.4.7), we then have 

dX(z) az- 1 

nx[n] ~ -z-- = 
dz 1 - az- I • 

Writing this result as 

1 ( 1 ) nx[nJ ~ (a)z - -I ' 
1 - az 

and utilizing the linearity and time-shift properties, we deduce that 

nx[n] = (a)a" - lu[n - 1] = a"u[n - 1]. 

Therefore the inverse z transform is given by 

1 . 
x[n] = -a"u[n - 1]. 

n 

as previously determined. 

6.4.6 • Convolution of Signals 

From Chapter 3 we know that the input and output of a discrete-time LTI 
system are related by the convolution 

y[n] = x[n] * h[nJ = L x[k]h[n - k). 
k = - OCJ 

Computing the z transform of y[n], we readily find that 

Y(z) = H(z)X(z), (6.4.8) 

as in the analogous Laplace transform property. Usually we have, as before, 
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simply Ry = Rh n Rn but if a zero of one transform cancels a pole of the 
other, Ry may be larger than Rh n Rx- Generalizing this result to the 
convolution of arbitrary signals, we have the z-transform pair 

(6.4.9) 

This relationship plays a central role in the theory and design of discrete­
time systems, in analogy with the continuous-time case. 

EXAMPLE 6.15 To invert the z transform 

1 
X(z) = (1 _ az-1)2' Izl > lal, 

which has a double pole at z = a, we recognize that 

where 
X(z) = [X1(z)f. 

1 
X1(z) = - - -- I' 

1 - az Izl > lal· 

Hence x[n] is given by the convolution 

x[n] = xl[n] * xl[n] = a"u[n] * a"u[n]. 

= (n + l)a"u[n] . 

6.4.7 • Accumulation 

The discrete-time counterpart to integration 10 the time domain is called 
accumulation and is defined by 

n 

y[n] = L x[k] . 
k = -oo 

Recognizing that y[n] can be considered to be the convolution 

y[n] = x[n] * urn], 
we can thus write 

1 
Y(z) = X(z) -I' 

1 - z 
(6.4.10) 

(Note that the comparable Laplace transform operator for integration is 
1/ s.) 

EXAMPLE 6.16 In Example 3.14, the step response of the system 

h[n] = (Inu[n] 

was determined in the time domain from the relationship 

s[n] = h[n] * urn], 

s 
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or equivalently, 
11 

s[n] = L h[k]. 
k= - CXJ 

Using now, instead, the accumulation property of the z transform to 
compute s[n], we have 

Izl > max (1, lal) · 

Determining the residues 'I and '2 of this PFE, we find that 

1 -a 
'1=--

1 - a 
'2 = - -. 

1 - a 

Therefore, the step response is given by 

1 - a"+ 1 

s[n] = . urn], 
1 - a 

in agreement with Eq. (3.6.12). 

6.4.8 • Summary of Transform Properties 

Table 6.1 contains a summary of the properties presented in this section for 
the z transform. Some common signals and their z transforms are then given 
in Table 6.2. 

TABLE 6.1 Properties of the z Transform 

P,operly Time domain Transform ROC 

Linearity axl[n] + bX1[n] aX1(z) + bXlz) R' ::l R, n R2 

Time shift x[n - lIo] Z- II(lX(Z) R'::lRn 
0< Izl < 00 

Modulation z;;x[n] X(z/zo) R' = IZol R 
eiQ(lllx[n] X(ze- iQu) R' = R 

Time reversal x[-n] X(l/z) R' = l/R 

Differentiation Ilx[n] 
dX(z) 

-z--
dz 

R' = R 

Convolution xl[n] * x2[n] X 1(Z)X 2(z) R' ::l R, n R2 
II 

X(z) 1 _l
z

_
1 Accumulation L: x[k] R' ::l R n Izl > 1 

k~-oo 
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TABLE 6.2 Common z Transforms 

Signal 

Impulse 

Unit step 

Exponential 

Weighted 
exponential 

Causal sine 

Causal cosine 

Damped sine 

Damped cosine 

6.5 

Time domain Transform 

o[n] 1 

o[n - Ilo], Ilo > 0 z-no 

o[n + no]. no > 0 zoo 

urn] 

-u[-n - 1] 

a"u[n] 

-a"u[-n - 1] 

(Il + l)a"u[n] 

(sin Qon)u[n] 

(cos Qon )u[ Il] 

r"(sin Qoll)u[n] 

r"(cos Qon)u[n] 

1 

1 

1 

1 

1 
(1 - az 1)2 

(sin QO)Z-I 

1 - 2( cos Qo)z 1 + Z 2 

1 - (cos QO)Z-I 

1 - 2( cos Qo)z 1 + Z 2 

resin Q,,)Z-I 

1 - 2r(cos QO)Z-I + r2 z-2 

1 - r(cos QO)Z-I 

1 - 2r(cos Qu)z 1 + r2z 2 

The System Function for LTI Systems 

The z transform H(z) of an impulse response h[n], that is, 

cr. 

H(z) = L h[n]z-n, 
,,= -::0::: 

ROC 

All z 

Izl > 0 

Izl < co 

Izl > 1 

Izl < 1 

Izl > lal 

Izl < lal 

Izl > lal 

Izl > 1 

Izl > 1 

Izl > r 

Izl > r 

(6.S . I) 

is known as the system function (or sometimes the transfer function) of the 
corresponding discrete-time LTI system. Recall from Section 6.1 that If (z) 
can also be considered to be the eigenvalue associated with the eigenfunc­
tion z" (for values of z in the ROC). Since h[n] completely characterizes the 
LTI system with respect to its input/output relationship, and since h[n 1 can 

d 
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be recovered from H(z) via the inverse z transform, the system function 
H(z) must also completely characterize the LTI system. Many useful 
insights into the properties and design of an LTI system are provided by 
H(z), as was seen in Chapter S for the analogous Laplace transform H(s). 
The utility of the system function derives, of course, from the relationship 

Y(z) = H(z)X(z), (6.S.2) 

since y[n] = h[n] * x[n]. Several simple but important system functions 
implied by the properties in Table 6.1 are as follows: 

Unit Delay H(z) = Z-I, Izi > O. 

Unit Advance H(z) = z, Izl < 00 . 

Accumulator 
1 

H(z) = _I' Izl>1. 
1 - z 

EXAMPLE 6.17 To find the output y [n] of the system 

h[n] = O.S"u[n] 

for the anticausal input 

x[n] = 2"uf - nl = o.s-nu[-n], 

we can either directly convolve h[n] and x[n], or we can find and then 
invert the z transform Y(z). Taking the latter approach, we have 

1 
H (z) = -1 --- O- .-SZ----:-I ' Izl > O.S, 

and 
1 - 2z- 1 

X(z) = 1 - O.Sz = 1 - 2z - I ' 
Izl < 2, 

and thus 

-2z- 1 

Y(z) - H(z)X( z ) - . -:--------:---- --:-
- - . (1 - O.Sz - I)(l - 2z - l ) 

4/ 3 4/3 
0.5 < Izl < 2. 1 - O.SZ- I 1 - 2z- I ' 

Therefore , inverting Y(z), we determine that 

yfn] = (4/3){0.5"ufnl + 2"u[-n - I]} 

= (4/3){0.S"u[n] + o.s-nu[ -n - 1]) 

= (4/3)0.SIIII. 
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6.5.1 • Frequency Response 

A special input signal of particular interest is the complex sinusoid 

x[n]=eiQn 

for arbitrary radian frequency Q. Since this signal is an eigenfunction for 
any LTI system, we have immediately from Eqs. (6.1.8) and (6.1.9), with 
z = eiQ , that the corresponding output signal is also a complex sinusoid of 
the form 

where 

(6.5.3) 
n = - oo 

The function (eigenvalue) H (e iQ ), if it converges, is known as the frequency 
response of the discrete-time L TI system and plays the same role as H(jw) 
in the continuous-time case. Note that if the ROC for the system function 
H(z) contains the unit circle, then H(e iQ ) does converge and equals H(z) 
cvaluated on the unit circle. 

The frequency response H (e iQ ) is the discrete-time Fourier transform 
(OTFf) of the impulse response h[n] and, as such, will be investigated in 
depth in Chapter 7. However, certain of its properties can be determined 
now from our knowledge of the system function H(z). For instance, since 
H(e,

Q
) equals H(z) evaluated on a circle in the z plane, it must be a 

periodic function of the frequency Q. In particular, since e jQ is a periodic 
function of Q with period 2n:, H(e iQ ) must also be a periodic function of Q 

with period 2n:. Specific values of the frequency response of interest are the 
dc response H(e iO ) = H(l) and the response H(e' 1t

) = H( -1) at the Nyquist 
frequency Q = n:. Tn addition, for real-valued h[n], we have 

h(n] = h*(nJ, 

and thus, from Eg . (6.5.3), 

(6.5.4) 

That is, H(e iQ ) is a conjugate-symmetric function of frequency. Therefore 
the magnitude response IH(eiQ)1 is an even function of Q, while the phase 
response LH(eif;2) is an odd function of Q, that is, 

IH(eiQ)1 = IH(e-iQ)I, h[n] real, 
and (6.5 .5) 

EXAMPLE 6.18 The exponential impulse response 

h[n] = anu[nJ, lal < 1, 

s 



6.5 THE SYSTEM FUNCTION FOR L TI SYSTEMS 317 

implies the familiar system function 

1 
H(z) = -1' 

1 - az 
Izl > lal· 

Hence, since the ROC contains the unit circle for lal < 1, the 
frequency response exists and equals simply 

'Q 1 
H(e l 

) = -Q' 
1 - ae I 

Computing the corresponding magnitude response, we have 

IH(eiQ)1 = [H(e iQ )H*(eiQ )fl2 

[ 
1 ] lI2 

- 1 - 2a(cos Q) + a 2 ' 

which is clearly an even function of Q since cos Q is even. To obtain the 
phase response, we write H(e iQ ) as 

and thus 

.Q 1 
H(e l ) = --------

1 - a(cos Q) + ja(sin Q) , 

LH(eiQ) = -arctan [ a(sin Q) ], 
1 - a(cos Q) 

which is indeed an odd function of Q. Plots of IH(eiQ)1 and LH(e iQ ) 
are shown in Fig. 6.8 for a > O. Note that both functions are periodic in 

IH(e ifl ) I 

(O <a< 1) 
1 - a 

-r1----------~-----------~--------~----------_r Q 
-2rr -rr 0 rr 2rr 

LH(e ifl ) 

FIGURE 6.8 Magnitude and phase responses for H(z) = 1/(1 - az 1). 
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Q with period 2n, as required. Therefore only one period of the 
frequency response is usually displayed in such plots--either for the 
interval 0 s; Q s; 2n or for -n s; Q s; n . 

6.5.2 • Causal and Anticausal Systems 

In Chapter 3 we investigated several important attributes of discrete-time 
systems in terms of associated conditions on the impulse response h[ n]. In 
this and following sections, we will reconsider these attributes in terms of 
the system function H(z) and, where appropriate, the frequency response 
H(e iQ ). 

As previously argued, the system function H(z) for a causal impulse 
response h[n] must have an ROC of the form 

Izl > rmax , 

that is, outside a circle containing all of the system poles in the z plane. 
Similarly, an anticausal impulse response implies an ROC for H(z) of the 
form 

that is , inside a circle containing no poles. 

6.5.3 • Stable Systems 

In Section 3.7 we found that an LTI system is BIBO stable if and only if the 
impulse response h[n] is absolutely summable, that is, 

L Ih[n]1 < 00. (6.5.6) 
fI=- ':IO 

But this is also a sufficient condition for H(z) to converge on the unit circle, 
as we now show. Using Eq . (6 .5.3) to bound IH(eiQ)I, we have 

IH(eiQ )1 = II1~ oo h[n]e - iQIl I 

... 
$ L Ih[n ]e - iQ"1 (6.5.7) 

Il= - 'X) 

= L Ih[n]l . 
,,=-00 

Therefore, if the inequality in expression (6.5 .6) holds, H(z) converges for 
z = eiQ. That is, for a stable discrete-time system, the ROC for H(z) must 
contain the unit circle, and the frequency response H(e iQ ) thus exists. The 
four possible forms for the ROC of a stable system function are illustrated 
in Fig. 6.9, corresponding to right-sided, left-sided, two-sided, and finite-
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Im(z) Im(z) 

Re(z) 

Im(z) Im(z) 

--t~~f--t--R~~-- Re(z) 

FIGURE 6.9 Four possibLe forms for ROC of a stable system. 

duration impulse responses h [n], respectively. (The points z = 0 and! or 
z = 00 mayor may not be included.) Note that if the system is both causal 
and stable, all of the poles must lie inside the unit ci,cLe because the ROC is 
of the form Izl > 'max and thus, since the unit circle is included in the ROC, 
we must have 'max < l. 

6.5.4 • System Interconnection 

For two LTI systems h\[n] and h 2[n] in cascade, the overall impulse 
response h[n] is given by the convolution 

h[n] = h\[n] * h2[n]. 

Therefore, from the convolution property in Eg. (6.4.9), the corresponding 
system functions must be related by the product 

(6.5.8) 
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x[nl y[nl 

FIGURE 6.10 Feedback interconnection of subsystems F(z) and G(z). 

As noted earlier, the overall ROC will actually be R = R t n R2 unless one 
or more poles defining an ROC boundary are canceled by zeros when Ht(z) 
and HzCz) are multiplied. 

Similarly, the impulse response of a parallel combination of two LTI 
systems is given by 

h[n] = ht[n] + h 2 [n], 

and thus from the linearity property in Eq. (6.4.1), 

(6.5.9) 

Again, the overall ROC will bc largcr than the intersection R[ n R2 only if 
a pole/zero cancelation produced by adding HI (z) and H 2 ( z) extends the 
ROC boundary. 

Finally, the feedback interconnection of systems is depicted in Fig. 6.10 
for (causal) subsystems F(z) and G(z). As will be shown in Problem 6.37, 
the overall system function H(z) for this feedback system is given by 

F(z) 
H(z) - -----'---­

- 1 - F(z)G(z) ' 
(6.5.10) 

Again therefore, as for continuous-time systems, H(z) is given by the 
feedforward gain F(z) divided by 1 minus the loop gain F(z)G(z). The 
feedback interconnection is also fundamental in discrete-time control theory 
and signal processing. 

In addition, as for continuous-time systems, certain block-diagram 
manipulations can be useful in analyzing or reconfiguring discrete-time 
systems. These simple manipulations, illustrated in Fig. 5.13, will not be 
shown again here because they are exactly analogous in the discrete-time 
case, as were the above relationships for cascade, parallel, and feedback 
interconnections. The purpose of the manipulations is to move branch or 
summing nodes behind or ahead of adjacent system blocks, as desired. 

6.5.5 • Invertible Systems 

It was argued in Section 3.7.6 that, if an LTI system h[n] is invertible, there 
must exist an inverse system with impulse response h,[n] such that 

h[n] * h,[n] = (j[n]. (6.5.11) 
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Expressing this relationship in terms of z transforms, we thus have 

H(z)Ht(z) = 1, 

or 
1 

Ht(z) = H(z)· (6.5.12) 

That is, H/z) is the algebraic inverse of H(z), as for the analogous Laplace 
transforms H(s) and HI(s) . Therefore, if H(z) is the rational fraction 
B(z)/A(z), then HI(z) is the rational fraction A(z)/B(z), and the poles of 
H(z) are the zeros of Ht(z), and vice versa. Note then that, in general, the 
inverse system HI(z) for a given H(z) is not unique because multiple ROCs 
can be defined for a rational fraction A(z)/B(z) having at least one pole at 
other than z = 0 or z = 00. Usually, however, only one of the possible 
inverse systems will be useful in practice because of additional requirements 
on HI(z), such as stability and/or causality. 

EXAMPLE 6.19 Given the accumulator system function 

1 
H(z) = -I' 1 - z 

the associated inverse system is simply 

HI(z) = ] - Z - I, 

corresponding to the impulse response 

Izl > 1, 

Izl > 0, 

h,[n] = b[n] - b[n - 1]. 

(6.5.13) 

This system is known as a first-difference operator and is the only 
possible inverse system in this case because H,(z) has only a pole at 
z = O. Checking that Eq. (6.5.11) is indeed satisfied by h,[n], we have 

h[n] * h,[n] = u[n] * {b[n] - b[n - I]} 

= u[n] - u[n - 1] = b[n]. 

Similarly, the inverse system for the unit delay 

Izl > 0, 

is the unit advance 

Izi < 00, 

and vice versa. 

EXAMPLE 6.20 Given the stable and causal system 

1 + 0.8z- 1 

H(z) = 05 - I' 1 - . z 
Izl > 0.5, 
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6.6 

we can identify two corresponding inverse systems, as follows: 

and 

1 - 0.5z - 1 

Hll (Z) = -1-+-0-.8-z---:-1 ' 

1 - 0.5z - 1 

H (z) - ----
f 2 - 1 + O. 8z - 1 ' 

Izl > 0.8, 

Izl < 0.8. 

In most practical applications, however , only Hfi (z ) is useful because it 
is both stable and causal, while Hf2( z) is neither. 

On the other hand, for the stable and causal system 

1 - 2z - 1 

H(z) = 1 _ 0.5z - 1 ' 

the two possible inverse systems are 

1 - 0.5z- 1 

H/l(z) = 1 _ 2z - 1 ' 

and 
1 - 0.5z - 1 

HaC z) = -1--- 2z---1 ' 

Izl > 0.5, 

Izl > 2, 

Izl < 2. 

Hence, in this case, we must choose between stability and causality for 
the inverse system because H/l(z) is causal but not stable, while HaCz) 
is stable but not causal. 

Difference Equations 

As discussed previously in Chapter 3, most discrete-time L TI systems of 
practical interest can be described by finite -o rder linear difference equations 
with constant coefficients of the form 

N ,W 

2: aky[n - k] = 2: bkx [n - k], (6.6. 1) 
k = O k=() 

where the order of the system is the larger of Nand M . From our previous 
results for continuous-time systems described by linear differential equa­
tions, we might expect that the system function H(z) corresponding to Eq. 
(6.6.1) is a rational fraction in z, and this is indeed true as we now show. 
Note first, since Y(z) = H(z)X(z), that the system function H(z) can be 
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expressed as the ratio 

H(z) = Y(z) 
X(z) , (6.6.2) 

where we defer for the moment a discussion of the corresponding ROC. 
Next, taking the z transform of both sides of Eq. (6.6.1), we have 

or, by the linearity property of the z transform, 

N M 

I ak~{y[n - k]} = I bk~{x[n - k]}. 
k = () k=() 

Then, using the time-shift property of the z transform, we have 

N M 

I akz - ky(Z) = I b"z-kX(z) 
k=O k = O 

or, factoring Y(z) and X(z) from the summations, 

IV M 

Y(z) I a"z-k = X(z) I h"Z - k. 
k = O k = O 

Finally, dividing through this equation by X(z) r.':=oakz - \ we produce 

M 

L hkz-" 

( 
Y(z) k = () 

Hz) = -- = ---
X(z) ~ -k 

L.. a"z 
k = O 

(6.6.3) 

which is the expected rational fraction B(z)/ A(z). Unlike the analogous 
Laplace tranform H(s), however, there is no restriction that M :s N for 
actual systems or filters. Note that the ROC for H(z) is not specified by Eq. 
(6.6.3) or by the original diffcrcnce equation in Eq. (6.6.1), but must be 
inferred from auxiliary information or requirements on the system such as 
stability or causality. 

EXAMPLE 6.21 In the first-order linear difference equation 

y[n] - ay[n - 1] = x[n], 

we have N = 1 and M = 0, with ao = 1, a l = -a, and bo = 1, 
implying the familiar rational fraction 

B(z) 1 
- -=----
A (z ) 1 - az - I . 
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The actual system function can thus be either 

1 
H](z) = -1 ' 

1 - az 
Izl> lal, 

or 
1 

Hiz) = _]' 
1 - az 

Izl < lal, 

corresponding to the causal and anticausal impulse responses 

and 
h2 [n] = -anu[ -n - 1], 

respectively. (The student should check that the given nrst-order 
difference equation is indeed satisned for all n by either y[n] = h 1[n] or 
y[n] = h2[n], with x[n] = b[n].) Of course, Ht(z) is stable if and only 
if (iff) lal < 1, while H2(z) is stable iff lal > 1. Since h][n] and h2 [n] are 
both nonzero for an infinite time duration (one for n 2: 0 and the other 
for n < 0), they are classined as infinite-impulse-response (fIR) filters. 
Clearly, any filter with at least one nonzero, finite pole (i.e., a pole at 
other than z = 0 or z = 00) that is not canceled by a zero will be IJR 
because such poles imply exponential components in h[n]. 

The choice between H] (z) and H 2(z) is dictated by auxiliary 
information or requirements on the system implying stability and/or 
causality. From the difference equation alone, we can only conclude 
that the ROC is either Izl > lal or Izl < lal, implying H[(z) or Hiz), 
respectively. In particular, we have the following cases: 

1. If the system is causal, it must be H] (z). 

2. If the system is anticausal, it must be Hiz). 

3. If the system is stable and lal < 1, it must be H](z). 

4. If the system is stable and lal > 1, it must be H 2(z). 

5. If the system is unstable and la I > 1, it must be H] (z). 

6. If the system is unstable and lal < 1, it must be H2(z). 

7. If h[O] = 1, it must be H[(z) because limz~~ H1(Z) = 1. (See 
Problem 6.9.) 

8. If h[O] = 0, it must be H2(z) because limz~() Hiz) = o. 

EXAMPLE 6.22 The first-difference operator was defined in Example 
6.19 by the system function 

Izl > O. 

Recognizing that H(z) is a nrst-order rational fraction of the form in 
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Eq . (6.6.3), with bo = 1, b l = -1, and a() = 1 (and thus M = 1 and 
N = 0), we can write the corresponding difference equation from Eq. 
(6.6.1) as simply 

y[n] = x[n] - x[n - 1]. 

Since the associated impulse response 

h[n] = c5[n] - c5[n - 1] 

is nonzero for only a finite time duration, this filter is classified as a 
finite-impuLse-response (FIR) filter. Note, in particular, that in contrast 
with the IIR case, this filter has only a pole at z = O. 

The first-difference operator is somewhat analogous to a 
continuous-time differentia tor because the first derivative can be 
defined as the limit of the first difference 

x(t) - xU - ;},.t) 
yet) = .. ;},.~ 

as ;},.t ---7 O. In fact, substituting z = e iQ into H(z) to determine the 
frequency response H(e iQ ), we find that 

H(e iQ ) = 1 - e- jQ = e- jQ/2(e j Q/2 - e - i Q/2) 

= 2je- jQ
/
2 sin Q/2. 

Distinguishing the linear-phase (delay) factor e- iQ /2 from the rest of 
H(eiQ

), we thus have 

where 
I(Q) = 2j(sin Q/2). 

Note that since sin e = e for e < n/6, the purely Imagtnary factor 
I(Q) satisfies 

I(Q) = jQ, Q < n/3, 

and thus approximates the ideal differentiator response H(jw) = jw for 
small w. 

6.6.1 • First- and Second-Order Filters 

As noted in Eq. (2.4.14), discrete-time sinusoids with frequencies Q I and Q 2 

separated by some multiple of 2n (that is, Q\ - Q 2 = 2nk) are indistin­
guishable. This fact helps explain why any discrete-time frequency response 
H(e jQ

) must be periodic in Q with period 2n. Therefore, considering the 
frequency response in Fig. 6.8 for the system 

1 
HI(z) = 1 - I' - az 

Izl > lal, (6.6.4) 
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with 0 < a < lover the unique interval -Jr :0; Q :0; Jr, we see that it can be 
identified as a lowpass filter (LPF). Recall also from Example 6.21 that this 
is classified as a first-order IIR filter. On the other hand, the simple 
first -order FIR filter 

H2(z) = 1 + Z - I, 

is also a discrete-time LPF because 

Izl > 0, 

H2(e iQ ) = 1 + e-iQ = e - iW2(ejW2 + e - jQ/2) 

= 2e-jW2 cos Q/2, 

and thus 

and 
IHz(eiQ)I = 2 cos Q/2, -Jr :0; Q :0; Jr, 

LHz(e iQ ) = -Q/2, -Jr < Q < Jr, 

(6.6.5) 

(6.6.6) 

(6.6.7) 

as depicted in Fig. 6.11. Observe, however, that IH2(e iQ )1 is a wideband 
response because its 3-dB point occurs at Q = Jr 12, whereas the bandwidth 
of IHI(eiQ)1 can be narrow or wide depending upon the value of a. Note also 
the abrupt 1800 phase shift in LH2(e iQ ) at Q = ±n because the factor 
cos Q/2 in Eq. (6 .6.6) changes sign at those frequencies. An improved 
first-order LPF with controllable bandwidth is obtained by cascading HI (z) 
and Hz(z) to produce 

1 + Z - L 

HL(z)H2(z) = - I' Izl > lal· 
1 - az 

2 

1.414 

__ ~ _______________ -L ______ ~ ______ ~~_~ 

-Tr o Trl2 

------_~7r~------------~~~-------------rTr-------- n 

FIGURE 6.11 Magnitude and phase responses for H2(z) = 1 + z I 
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Im(z) 

FIGURE 6.12 Pole/zero plot for improved first-order LPF. 

Actually, since we often want unity gain at dc [that is, H(eiO ) = H(I) = 1], 
let 

) 
(1 - a)(l + Z - l) 

H(z = 2(1 _ az - 1) , Izl > lal · (6.6.8) 

This filter is again IIR because it has a finite, nonzero pole at z = a, but it 
also has a zero at z = -1, as illustrated in Fig. 6.12 for a > O. The 
corresponding magnitude response is proportional to IH1(e iQ )IIH2(eiQ )1 and 
is shown in Fig. 6.13 for various values of a in the range -l < a < 1. Note 
that the bandwidth of the filter increases as the parameter a decreases, but 
that we always have H(e i7r ) = H( -1) = 0 at the Nyquist frequency Q = :rr 
due to the zero at z = - 1. 

A first-order highpass filter with controllable bandwidth can be 
produced by replacing z by -z in Eq. (6.6.8), that is, 

() 
(1 - a)(l - Z - l) 

H z = 2(1 + az - I ) , Izl > lal· 

a <O 

--~~~~------~~~---=~~--- n 
-Tr o Tr 

FIGURE 6.13 Magnitude responses from Fig. 6.12 as a varies. 
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Im(z) 

Re(z) 

FIGURE 6.14 Pole/zero plot for first-order HPF. 

or, letting e = -a, 

H(z) _ (1 + e)(l - Z-l) 
- 2(1 - ez- I ) , 

Izl > lei· (6.6.9) 

Note, in particular, that the dc gain is now H(e/O) = H(l) = 0, but that 
H(e IJr

) = H( -1) = 1. The corresponding pole/zero plot is shown in Fig. 
6.14 for e > O. 

To see the overall effect of this transformation on H(e/ Q
), note that the 

effect of replacing z by - z is simply to replace e/Q by -e/Q = e/(Q+JT), and 
thus the HPF frequency response corresponds to the LPF frequency 
response shifted by :rr radians, as shown in Fig. 6.15. 

Consider next the causal second-order system function 

H(z) = bll 

1 + a1z- 1 + a2 z- 2
' 

(6.6.10) 

corresponding to the second-order linear difference equation 

c>o 

c<o 

·~--------~~~~~~----------~-- n 
-IT o IT 

FIGURE 6.15 Magnitude responses from Fig. 6.14 as c varies. 
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The poles of the system equal the roots of the denominator quadratic, 
that is, 

(6.6.11) 

and hence the poles are complex-conjugates if ai < 4az, and real otherwise. 
Rewriting H(z) in terms of its poles as 

H(z) _ bo 
- (1 - P l z- 1)(1 - pzz- I ) 

(6.6.12) 
bo 

= ------------~------~ 
-1 - (PI + PZ)Z-I + PIP2Z - 2' 

we note that the denominator coefficients al and az in Eq. (6.6.10) can be 
expressed in terms of PI and pz as simply 

(6.6.13a) 

and 

(6.6.13b) 

Therefore, since the poles of a stable and causal system must be inside the 
unit circle, that is, 

Ipil < 1 and 

the coefficients a I and a2 will satisfy 

and 

if the system is stable. Actually, however, necessary and sufficient condi­
tions for the stability of H(z) are given by (see Problem 6.23) 

(6.6.14a) 

and 
(6.6.14b) 

The corresponding stability triangle of stable coefficient values in the a I, az 
plane is illustrated in Fig. 6.16, which also shows the regions associated with 
real and complex-conjugate poles. 

In the underdamped case of complex-conjugate poles 

PI, P2 = re±jQo, 

with r > 0 and 0 < Qo < Jr, it often convenient to rewrite H(z) in the form 

bo H(z) = , 
1 - 2r(cos QO)Z-l + r2z- 2 Izl > r, (6.6.15) 

where r is thus the radius of the poles in the z plane and ± Q o are the 
associated pole angles, as depicted in Fig. 6.17 for the stable case of r < 1. 
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FIGURE 6.16 Stability triangle for denominator coefficients a I and a2 • 

If we use the time-shift property and let hI) = (sin QO)-I, the corresponding 
impulse response is readily determined from Table 6.2 to be 

h[n] = r"[sinQ()(n + l)Ju[n], (6.6.16) 

which is a damped sinusoid for r < 1. Second-order LPF, HPF, BPF, and 
BSF responses based on underdamped denominators of the form in Eq. 
(6.6.15) will be analyzed in the next section and in Problems 6.26 and 6.29. 

By analogy with second-order continuous-time systems, the boundary 
case of Q() = 0, corresponding to the system function 

b() 
H(z) = (1 - rz - 1f' Izl > r, (6.6.17) 

is called critically damped. In this case, H(z) has a double pole at z = r, 

Im(z} 

FIGURE 6.17 Pole/zero plol for underdamped second-order system. 
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and h[ n] is given by 

h[n] = bo(n + 1)r"u[n]. (6.6.18) 

Also, as for continuous-time systems, the case of unequal real-valued poles 
PI and P2 [see Eq. (6.6.12)] is called overdamped. 

6.6.2 • Geometric Evaluation of the Frequency Response 

The geometric method introduced in Section 5.5.2 to estimate and sketch 
the magnitude and phase responses of continuous-time systems from 
pole/zero plots of H(s) works equally well for discrete-time systems using 
pole/zero plots of H(z). First, factoring the numerator and denominator 
polynomials of the rational fraction in Eq. (6.6.3) into products of 
first-order factors of the form 

M 

C IT (1 - ZkZ-1) 
k=l 

H(z) = -N----- (6.6.19) 

Il (1 - PkZ-I) 
k=l 

where Zk and Pk are the zeros and poles, respectively, of H(z) and 
C = bo/ao. we may write H(z) in the equivalent form 

M 

CZ
N

-
M IT (z - Zk) 

k = l 
H(z) = --N-----

IT (z - Pk) 
k =l 

The corresponding frequency response H(e iQ
) is then simply 

(6.6.20) 

(6.6.21) 

Therefore, for a given frequency Q, each complex-valued numerator term 
(e iQ 

- Zk) can be thought of as a vector in the complex (z) plane from the 
zero Zk to the point e iQ on the unit circle; and likewise, each denominator 
term (e iQ - Pk) is effectively a vector from the pole Pk to the point e iQ . 

Also, the N - M zeros (or M - N poles if M > N) at Z = 0 produce an 
additional factor eiQ(N-M) in the frequency response. 

Utilizing Eq. (6.6.21) to write the magnitude response IH(ei~2)1. we 
thus have 

(6.6.22) 
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That is, the magnitude response at the frequency Q equals the scaled 
product of the lengths of all vectors (e iO - Zk) from the zeros to the point 
e iO divided by the product of the lengths of all vectors (e iQ - Pk) from the 
poles to the point e1n , with thc scaling constant being ICI = Ibo/aol. 
Similarly, the phase response L H(e iQ ) can be written from Eq. (6.6.21) as 

M N 

L H(e iO ) = L L(e iO - zd - L L(e iQ - Pk) + (N - M)Q + LC; 
k = l k = l 

(6.6.23) 

and thus LH(ei~l) is simply the sum of the angles of all numerator vectors 
(e iO - Zk) minus the sum of the angles of all denominator vectors 
(e iO - Pk) plus a linear-phase term (N - M)Q + L C. 

EXAMPLE 6.23 The reader can readily check that the first-order LPF 
and HPF magnitude responses in Figs. 6.13 and 6.15, respectively, are 
indeed consistent with the pole/zero plots in Figs. 6.12 and 6.14 for 
various (stable) values of the parameters a and c. The 3-dB bandwidth 
of these filters is also easily approximated in narrowband cases using 
geometric analysis, as follows: From Eq. (6.6.8), we can write the LPF 
frequency response H(e iU ) as 

( 1 + e-1Q
) 

H(ei~l) = C-'-----:::-
(1 - ae-1Q

) 

(e iO + 1) 
= C (eiO _ a) , 

(6.6.24) 

where C = (1 - a) /2 for unity gain at dc. The vectors (e iO + 1), 
(e iQ - a), and also (1 - a) are depicted in Fig. 6.18 for 0 « a < 1. 

Im(z) 

el fl 

--_-:10=::::...--------1----- -.IT-I ..... '---- Re(z) 

FIGURE 6.18 Geometric approximation oj 3-dB bandwidth for 
first-order LPF. 
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Since the dc gain of the LPF is unity, the 3-dB point occurs at the value 
Q b for which H(e iQh) = 1/0. 

Approximating the unit circle in the vicinity of z = 1 by the dotted 
vertical line shown in the figure, we note that the vectors (e iQ - a) and 
(1 - a) and the dotted line approximate an isosceles triangle for 
o « a < 1 when the angle of (e iQ - a) is :rr / 4, as illustrated. Hence, 
since the vector (e iQ - a) forms the approximate hypotenuse of this 
triangle, its length can be estimated as 0(1 - a) at this angie, while, 
on the other hand, the length of the numerator vector (e iQ + 1), which 
equals 2 for Q = 0, is only slightly less in this case. 

We thus find that Q = Q b for this geometric situation because, 
from Eq. (6.6.22), 

Q 2 1 
IH(e! )1 = let V2(1 - a) = Vi · 

Finally, to estimate the value of Qb, we note that the two sides of an 
isosceles triangle have equal lengths and that the length of an arc on the 
unit circle equals the associated angle (in radians) . Therefore the 
vertical side of the triangle has length 1 - a, and for 0 « a < 1, the 
associated angle (bandwidth) Q b is also approximately 

(6.6.25) 

as depicted in the figure . 
A similar geometric derivation can be employed to estimate the 

bandwidth of a first-order HPF in the narrowband case. Expressing the 
HPF frequency response from Eq . (6.6.9) as 

(1 - e- iQ ) 
H(e i Q ) = C . 

(1 - ce-!Q) 
(6 .6.26) 

(e i Q - 1) 
= C (eiQ - c) , 

where C = (1 + c)/2, the vectors (e iQ - 1), (e iQ - c), and also 
(1 - c) are shown in Fig. 6.19 for 0 « c < 1. Again, since the 
maximum gain of the HPF is unity (at Q = :rr), the 3-dB point occurs at 
the value Q /J for which H(e iQb

) = 1/0. Note that the vector (e iQ 
- 1) 

is almost vertical and thus forms an approximate isosceles triangle with 
the other two vectors when the angle of (e iQ - c) is :rr/4, as illustrated. 
Therefore the length of (e iQ - 1) is approximately 1 - c, while the 
length of the hypotenuse (e iQ - c) is approximately Vi(1 - c). Note 
also that C = 1 for 0« c < 1. Hence, from Eq. (6.6.22), the 
magnitude response in this situation is approximated by 

.Q 1 - c 1 
IH(e! )1 = \1'2(1 - c) = Vi' 
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Im(z) 

elf! 

-;--II'{}--- Re(z) 
-1 

FIGURE 6.19 Geometric approximatio/l ()j' 3-d13 bandwidth for 
first-order HPF. 

and thus Q = Q/>. As before, the associated value of the angle Q" 

(bandwidth of the stopband) is then simply 

APPLICA T/ON 6.1 Second-Order IIR Filters 
The second-order underdalllped system fUllction 

I + h1 z - 1 + h )Z -2 

H(z) = 1 - 2r(cos Q()Z -' I -+ r2Z- 2 ' 

(6.6.27) 

Izl > r, (6.6.28) 

can provide an LPF, HPF, BPF, or BSF response, depending upon the 
values of the numerator coefficients /;1 and 02, as illustrated by the 
following cases: 

LPF Case. For b 1 = 2 and h~ = I, Eq. (6.6.28) becomes 

1 + 2z - I + Z -2 
H (z) - - - --- -:-----::--:: 

- I - 2r(cos Q()z ·· 1 + r2z- 2 

(I + Z - I)" 

I - 2r( cos Q()z - 1 + r2z -2 ' 
Izl > r, 

(6.6.29) 

and hence there is a double zero at z = -1 . Therefore H(e l") = 0, 
implying an LPF response. Sketching the corresponding pole/zero plot 
and magnitude response, we can actually identify two possible cases, as 
illustrated in Fig. 6.20. In particular, if the poles are close enough to 
the unit circle to produce discernible peaks in IH(eiQ)I, the response is 
nonmonotonic in the passband, as shown in Fig. 6.20(a) . By analogy 
with the corresponding continuous-time case, such filters arc called 
highly underdamped. On the other hand, if the radius (r) of the poles is 
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Im(z) 

---O----¥~--_t- Re(z) 

(a) 

Im(z) 

--<">~---¥~----l-- Re(z) 
1 

(b) 

FIGURE 6.20 Pole/zero plots and magnitude responses for 
second-order LPF. 

n 

sufficiently small, distinct peaks due to the poles are not discernible in 
IH(eIQ)I, and the response decreases monotonically, as depicted in Fig. 
6.20(b). 

HPF Case. For b l - 2 and b z = 1, we have instead 

1 - 2z - 1 + Z - 2 

H(z) = 1 - 2r(cos Q())Z - I + r2z- Z 

(l - z-If 
(6.6.30) 

Izl > r. 1 - 2r(cos Q())Z - I + r2z-Z' 

Thus there is a double zero at z = + 1, implying an HPF response with 
H(e IO ) = O. As in the LPF case, we have again depicted two possible 
forms for the associated magnitude response in Fig. 6.21. That is, if the 
poles are close enough to the unit circle to produce discernible peaks in 
IH(eIQ)I, the response is nonmonotonic in the passband, as shown in 
Fig. 6.21(a), and the (ilter is said to be highly underdamped. However, 
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Im(z) 

.I-----l'-- --<)-- Re(z) 

~-----~~--------+--n 
- 7f 

(a) 

Im(z) 

----I-------1'~-----o--- Re (z) 

(b) 

FIGURE 6.21 Pole/zero plots and magnitude responses for 
second-order H P F. 

o 7f 

if the radius (r) of the poles is sufficiently small, distinct peaks due to 
the poles are not evident in 1/-/(eiQ)I, and the response increases 
monotonically, as illustrated in Fig. (j.21 (b). 

BPF Case . For b, = 0 and "2 = -], Eq. (6.(j .2R) becomes 

1 - Z-2 

(6.6.31) 

1 - 2,. (cos Qo)z - ' + r2z - 2
' 

Izl > r, 

implying single zeros at both z = 1 and z = - L. and thus !f(c iO ) = 
H(ejJr:) = O. Figure 6.22 depicts the corresponding pole/zero plot and 
magnitude response . Note that the center frequency for the BPF 
response is approximately Q(J since the denominator vector from the 
pole at reiQ" to the point eiQ on the unit circle is shortest when Q = Qo. 

The associated 3-dB bandwidth is readily shown to be about 2(1 - r) 
radians for narrowband tllters, that is, () « ,. < 1 (see Problem 6.26). 



6.6 DIFFERENCE EQUATIONS 337 

Im(z) 

- -0-------1''-'--- -0- Re(z) 

n 

FIGURE 6.22 Pole/zero plot and magnitude response for second-order BPF. 

BSF Case. For b I 
form 

- 2(cos QIl) and b2 = 1, Eg . (6.6 .28) takes the 

Izl > r, (6.6.32) 

implying complex-conjugate zeros on the unit circle at angles of ±Qo, 
as shown in Fig. 6.23. That is, H(e, Q O) = fI(e - in,,) = O. Note then that 
the pole angles and the zero angles are the same. Using the geometric 
method to sketch the resulting notch-filter response in Fig. 6.23, we 
produce IH(ei~~)1 as shown. Note that at Q = 0, and also at Q = Jr, the 
llumerator and denominator vectors all have about the same length, 
and hence H(e iO

) = H(e l
") = 1. As in the BPF case, the associated 

3-d8 bandwidth (of the stopband) is readily shown to be about 2(1 - r) 
radians for BSF responses with narrow stopbands, that is, 0 « r < 1 
(see Problem 6.2()). 

Im{z) 

I H{e/11)1 

:vk 
- Tr -flo 0 flo Tr 

n 

- -f----r-'--I--- -I-_ Re{z) 

FIGURE 6.23 Pole/zero plot and magnitude response for second-order BSF. 
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APPLICATION 6.2 Linear-Phase FIR Filters 
Letting ao = 1 and ak = 0 for all k > 0 in the general difference 
equation in Eq. (6.6.1), we produce the nonrecursive difference 
equation 

M 

Y [ n] = L b kX [n - k], (6.6.33) 
k=(J 

and thus, setting x[n] = b[n], we find that the corresponding impulse 
response is simply M 

h[n] = L bk ()[n - k]. 

That is, 
h[n] = Ibn, 

0, 

k = () 

n = 0, 1, ... , M 

otherwise . 
(6 .6.34) 

Therefore any discrete-time system satisfying a finite-order non recur­
sive difference equation is FIR. (As might then be expected, a recursive 
difference equation having ak * 0 for some k > () usually implies an 
IIR system, but pole/zero cancelations can still cause such systems to 
be FIR.) Because of their special properties, discrete-time FIR filters 
find wide application in digital signal processing and communications. 

The most important class of FIR filters in practice are those having 
piecewise linear-phase responses. Assuming h [11] to be real, such 
Linear-phase filters have either even or odd symmetry about the 
midpoint of Il[ n], that is, 

(6.6.35) 

or 
(6.6.36) 

Examples of even- and odd-symmetric impulse responses are shown in 
Fig. 6.24 for even and odd values of M. Note that the center of 
symmetry (shown by a dotted line) occurs at the coefficient h,'v1f2 for M 
even, but between two coefficients for M odd. Note also that b ,\//2 must 
equal zero for odd symmetry and M even. 

To show the linear-phase property of such filters, we first express 
the FIR system function H(z) as 

M 

H(z) = L b"z-II 
II = () 

(6.6.37) 
L 

= be Z- M12 + L (b
ll
z - 11 + bM _"z - (M-I1) 

n=() 

where L is the integer part of (M - J )/2 and b, is the central coefficient 
(if there is one), that is, 

b = {b M I2 , 
c 0, 

M even 

M odd. 
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h[n] h[n] 
I 

: ./ bMI 2 I 
I 

• _n IiI I ! • • n 
0 0 M/2 1 M 

(M even) (M odd) 

(a) 

h[n] h[n] 

(b) 

FIGURE 6.24 Four cases of symmetry j(i/" linear-phase FIR jilters: (a) even 
symmetry and (b) odd symm etry. 

In the even-symmetry case (b" = hM -,,) , we then have 

t. 

H(e iQ ) = bce-i~~Mt2 + I bll(e/~211 + e- i {1(M - "l) 

n=--"O 

t l \!1 1 } = e - iQJH!:l{h, + ,~) 2h" cos QC2 - 11) J 

= e -i~2MI2R(Q), 

where R(Q) is a purely real function of Q . Therefore the associated 
magnitude and phase responses arc simply 

1[-{(ei~2)1 = IR(Q)I 

and 

-QM 
L[-{(e iQ ) = -- + L R(Q), 

2 
(6.6.39) 

where LR(Q) = 0 if R(Q) > 0, and L R(Q) = ±.rr if R(Q) < O. Hence 
the phase response is a piecewise linear function having a discontinuity 
of.rr radians at each zero crossing of R(Q). A simple example of such a 
linear-phase filter is the LPF described by Eqs. (6 .6. 6) and (6.6.7) and 
depicted in Fig. 6.11. 

339 
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A similar derivation for odd symmetry (bl1 = - bM - I1 ) leads to the 
result 

= je-iQMI2R(Q) 
((i.6AO) 

= ei (Jr/2-nMI2)R(Q) 

for real R(Q). Therefore the associated magnitude response IS agalll 

simply 

but the phase response has an additional component of nl2 (9()O), 
that is, 

Q n QM 
LH(e l ) = - - - + L R(Q). 

2 2 
(6.6.41 ) 

A simple example of this case is the first-difference operator H(z) 
I - Z -I from Example 6.22, which has the frequency response 

H(e iQ ) = 2je - iW2 sin Q. 
2 

Thc corresponding magnitude and phase responses are thell 

---r----------------~--------------_r--- fl 
-rr o 

rr/2 

---~rr~---------------+--------------~rr~-- n 

-rr/2 

FIGURE 6.25 Magnitude and phase responses for H(z) = 1 - Z -I , 

«().6.42) 

< 
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and 

'Q {n12 - Q/2, 
LH(e l ) = 

-n12 - Q/2, 

o < Q ::; n, 

-n ::; Q < 0, 

as shown in Fig. 6.25. Note, in particular, the phase discontinuity of -n 
radians at Q = 0 due to the real factor R(Q) = 2 sin Q/2, which 
changes sign at Q = O. 

EXAMPLE 6.24 A crude but common technique for smoothing a noisy 
data sequence is to average the sequence over M + 1 adjacent data 
samples, that is, 

1 M 
y[n] = -- L x[n - k] . 

M + I k = () 

(6.6.43) 

Hence, y[n] is computed as the average of x[n] and the M preceding 
samples x[n - 1], x[n - 2], ... ,X[II - M]. The corresponding im­
pulse response is thus 

1 M 1 
h[n] = -- L D[n - k] = -- (u[n] - u[n - M - tn, 

M + 1 k~O M + 1 

implying the system function 

1 M 1 - Z-(M+I) 

H(z) = L Z -k = 
M + 1 k =0 (M + t)(l- Z - I) ' 

The zeros of H(z) occur at values of z satisfying 

Z-(M+l) = 1 

and thus equal the (M + 1)st roots of unity, that is, 

k = 1.2, ... , M. 

(6.6.44) 

(6.6.45) 

The zero at z = 1 for k = 0 is not included in Eq. (6.6.45) because, as 
seen from Eq. (6.6.44), this zero is canceled by a pole at z = 1. 

Im(z) 

h[n] 

. :'i 1 1 1 1 1 1 I --O---~~-----1f-:-- Re(z) 

•• n 

(M = 7) 

FIGURE 6.26 Impulse response and flole / zero plot for simple-averaJiillg filter 
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Therefore H(z) has M zeros on the unit circle spaced by 2n/(M + 1) 
radians and M poles at z = 0, as illustrated in Fig. 6.26 for M = 7. 
Note that M zeros are expected since this is an Mth-order FIR filter, 
and the M poles at z = () result from the fact that the filter is causal. 
Also, since h[n] has even symmetry about its midpoint, this is a 
linear-phase FIR filter. 

To determine the magnitude and phase responses, we set z = elo. 

in Eq. (6.6.44) to produce 

. 1 - e-io.(M+t) 
H(e 'o. ) = ---------:c=_ 

(M + 1)(1 - e-io. ) 

e-io.(M+l)/2(eio.(M+l)/2 _ e-io.(M+l)/2) 
= --------~~~--~~--~~~ (M + l)e-iQJ2(eio./2 - e-iQ'/2) 

e-io.Ml2 sin [Q(M + 1)/2] 

(M + 1) sin (Q/2) 

= e-io.MI2R(Q), 

which is consistent with Eq. (6.6.38). Figure 6.27 shows IH(ei~l)1 and 
LH(e iQ ) for M = 7. Hence the simple-averaging filter defined by Eq. 
(6.6.43) has a lowpass response and a bandwidth of about n/(M + 1). 
Note that the zeros on the unit circle in the z plane produce zeros of 
transmission in IH(eio.)1 at Q = ±2::rrk/(M + 1), k = 1, 2, ... , M, and 
that phase discontinuities of n radians occur in LH(e io. ) at the same 
frequencies. 

-rr 0 rr/4 rr/2 3rr/4 rr 

L.H(eifl ) 

7rr/8 

FIGURE 6.27 Magnitude and phase responses for simple-averaging filter. 

n 
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6.7 

Structures for Discrete-Time Filters 

In Section 3.8 block diagrams were employed to show the structure of 
discrete-time filter implementations as described by the corresponding 
difference equations. The structure corresponding directly to the general 
difference equation in Eq. (6.6.1) was called the direct form and is shown 
again in Fig. 6.28, with z - \ denoting each unit delay. (Interestingly, the 
corresponding block diagrams for continuous-time systems in Section 5.6 
have S-l = lis in place of Z-l, although the time-domain equivalents of 
these operators are completely different.) 

Note that the structure in Fig. 6.28 consists effectively of the cascade of 
two sybsystems. The first subsystem corresponds to the nonrecursive 
difference equation 

M 

v[n] = 2: bkx[n - k] (6.7.1) 
k=O 

and is thus FIR, while, in general, the second subsystem is llR because it 

x[nl y[nl 

)+--41-----4 y[n-2] 

+ !+--4----. 

FIGURE 6.28 General discrete-time direct-form structure. 
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implements the recursive difference equation 

N 

y[n] = v[n] - L aky[n - k]. (6.7.2) 
k=J 

Calling these subsystems f-{J(z) and H2(z), respectively, we thus have 

H(z) = HJ(z)H
2
(z) = 8(z), 

A(z) 
where 

and 

M 

HJz) = 8(z) = 2: bkz - k 

1 

A(z) 

k=O 

1 

(6.7.3) 

(6.7.4) 

with all = 1. [n the special case of N = 0 (i .e., no feedback), we have 
simply A(z) = 1, and the direct form reduces to the transversal structure 
shown in Fig . 6.29, implementing the FIR system function H(z) = 8(z). 

As noted in Section 3.8, the direct form in Fig. 6.28 is not canonical 
because the number of delays (M + N) is not minimum unless M = 0 or 
N = O. Reversing the order of HJ(z) and Hiz) and eliminating the 
redundant delays, as shown in Fig. 3.43, we produce the canonical direct 
form II, shown in Fig. 6.30 for M = N. Note that, in addition to N delays, 
this canonical form includes (2N + 1) multipliers and 2N adders, in general, 
for an Nth-order filter. 

For example, direct-form-£[ implementations of the first-order LPF and 
HPF from Eqs. (6.6.8) and (6.6.9), respectively, are shown in Fig. 6.31. In 
each case, an additional scaling multiplier has been included at the input for 
unity gain. Note that the signs of the feedback multipliers (a and c) and the 
corresponding terms in the denominators of H(z) are different, as opposed 
to the feedforward multipliers (± 1) and the corresponding numerator 
terms. 

x[n] x[n-2] 

YIn] 

FIGURE 6.29 Transversal (direct-form) structure for FIR filter . 
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x[n] w[n] y[n] 

-a1 

w[n-N] 

FIGURE 6.30 General discrete-time direct-form-ll structure. 

x[n] y[n] 

1-a 
2 

(LPF) 

x[n] 

1 + c 
2 

(HPF) 

y[n] 

FIGURE 6.31 First-order LPF and HPF direct-form-ll structures. 
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There are many other structures (canonical and otherwise) that are 
useful for implementing discrete-time filters. These structures have various 
desirable properties such as modularity and/or reduced sensitivity to 
quantization effects in digital realizations (digital filters). Two canonical 
structures having both of these properties are the parallel form and the 
cascade form. To derive the parallel form, we expand H(z) in the 
partial-fraction expansion 

N qk 

H(z) = go + L -I 
k~1 1 - PkZ 

(6.7.5) 

(assumi ng no multiple pies), where go = 0 if M < N. This furm for H(z ) 
impljes a paralle l combi nCl ti n of N fir I-order subfil,tcrs. However, ince, in 
genera l, the pol S PI< and residue (Ill. a re c mplcx-valuecl, complex 
multip liers would be required in Lh rresponding implemenLation. [0 

particular, if we assume that h[n] is real-valued, H(z) can be rewritten as 

f. (q q:) ~ qk 
H(z) = gil + L k -I + * _[ + L... - I' 

k = l 1 - PkZ 1 - PkZ k =2L+11 - Pk Z 

where Pk> k = 1, ... ,L, (L:S N /2) are complex-valued and Pk, k = 
2L + 1, ... , N, are real-valued. To avoid the unnecessary complication of 
complex multipliers, we combine the terms in the first summation to obtain 

where 

l. YOk + Ylk Z -
1 

N q 
H(z) = go + L -I -2 + L 1 k - I' (6.7.6) 

k = ll + a1k z + a 2k Z k = 2L+I - Pk Z 

alk = - 2 Re{pd 

YOk = 2 Re{qd 

a2k = IPkl
2 

Ylk = -2 Re{p:qd· 

Hence all of the coefficients in Eq. (6.7.6) are real-valued. Using direct­
form-II networks to realize each of the terms in Eq. (6.7.6), we produce 
parallel form 1I, which is shown in Fig. 6.32 for N odd and L = (N - 1)/2. 
Note that the parallel form is also canonical since, in general, it has N 
de lay . 2N + I) mulLiplie rs, and N add r . . Jf s veral po les are real -valued 
(that i.s , if N - 2L ?: 2) , some o r all of th a ·sociate<.l Ilrst-order terms in 
Eq. (6.7.6) are oft '0 coml in 'd int se 'ond-order term I produce 
additi !l al seco Il(J -ordl.:r s' lio/1\' in th' parallel form which increases the 
modularity of the corresponding hardware or software implementations. 

To obtain the cascade form, we instead factor H(z) into a product of 
first-order terms of the form 

N 1 - Zk Z - 1 

H(z)=bo I1 - I' 
k= ll - 1h Z 

(6.7.7) 

where for simplicity we have assumed that M = Nand ao = 1. (Multiple 
poles and/or zeros are allowed). This expression for H(z) implies a cascade 
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x[n] go Yin] 

-a" 

• 
• 

'YOL 

-aiL 

'---.... , + }--------1~--..... --.... 

FIGURE 6.32 Nth-order parallel-farm-If structure for N odd. 

combination of N first-order subfilters, but again complex-valued Pk and Zk 

would necessitate complex multipliers . Therefore , rewriting H(z) as 
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where Zk, k = 1, . .. ,K, and Pb k = 1, ... ,L, (K, L s N /2) are 
complex-valued and ZkI k = 2K + 1, . .. , N, and Pb k = 2L + 1, ... , N, 
are real-valued, we can combine the complex factors to obtain 

where 
(l'lk = -2 Re{Pk} 

(31k = - 2 Re{zd 

(l'2 k = IPklz 

(3zk = IZklz. 

Therefore, since all of the coefficients in this expression are real-valued, 
H(z) can be implemented as a cascade of first- and second-order sections 
with real multipliers. Again, if there are several real-valued poles and/or 
zeros (i .e., if N - 2L 2': 2 and/or N 2K 2': 2), the corresponding factors 
are usually combined in pairs to produce additional second-order sections. 
Realizing the resulting first- and second-order sections using direct-form-II 
networks, we produce cascade form II, illustrated in Fig. 6.33 for N odd. 
Note that the cascade form is also, in general, canonical. 

A useful property of the cascade form is that for zeros on the unit 
circle, IZkl = 1 and thus (32k = 1 (or (32k = -1 for zeros at Z = ±1). 
Furthermore, (3lk = 2, -2, or 0 for zeros at z = -1, Z = 1, or z = ± 1, 
respectively. Since these integer values for (32k and (31k do not require actual 
multiplication (only shifting in binary for (31k = ±2), substantial savings in 
component count or execution time are often realized by employing the 
cascade form. 

Many other structures have been developed to implement discrete-time 
filters with various trade-offs involving modularity, sensitivity , and number 
of components (primarily multiplers) . These structures have names such as 
state-space structures, normal forms, lattice structures, and wave digital 
filters . By far the most popular structure in practice, however, is the cascade 
form because it is modular, has low sensitivity, and is canonical. 

SUMMARY 

In this chapter we have seen that the z transform plays< an analogous role in 
the analysis and design of discrete-time signals and systems to that of the 
Laplace transform in the continuous-time case. Hence, as might be 
expected, the properties of these transforms and their regions of conver­
gence are closely parallel, with the counterpart of vertical lines in the s 
plane being circles in the Z plane. Of particular importance is the 
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characterization of an LTI system in terms of its system function H(z) and 
the associated poles and zeros in the z plane. Also, the frequency response 
H(e iQ") of a (stable) system is given by H(z) evaluated on the unit circle and 
can be determined geometrically from the pole/zero plot. Discrete-time 
filters are classified as having either finite or infinite (duration) impulse 
responses, with IIR filters satisfying recursive difference equations and FIR 
filters satisfying nonrecursive difference equations (although recursive 
realizations also exist for FIR filters). An important subclass of FIR filters 
are those having piecewise linear phase responses, corresponding to even or 
odd symmetry in the impulse response. Several canonical filter structures 
were presented. 

APPENDIX 6A 

The Unilateral z Transform 

The z transform defined in Eq. (6.2.1) is sometimes referred to as the 
two-sided or bilateral z transform (8ZT) to distinguish it from the one-sided 
or unilateral z transform (UZT) defined by 

X(z) = L x[n]z-II. (6.A.1) 
n~O 

The UZT is useful for calculating the response of a causal system to a causal 
input when the system is described by a linear difference equation with 
constant coefficients but nonzero initial conditions. That is, the system need 
not be at initial rest. Specifically, the zero-input response Yzi[n], as well as 
the zero-state response YZI.[n], is readily determined using the UZT (see 
Section 3.8). Note that such analysis is not anticipated by the relationship 
Y(z) = H(z)X(z) using the BZT because this assumes that the system is 
LTI, not merely incrementally linear. (On the other hand, if the nonzero 
initial conditions are replaced by an equivalent nonzero input x [n] for 
-00 < n < 0, then the BZT can be employed.) 

The basic properties of the UZT that are useful in this application 
relate to the transforms of the delayed signals x[n - k] and are listed in 
Table 6A. These properties may be derived as follows: Computing the UZT 
of the unit delay x[n - 1], we have 

.. 
L x[n l]z-11 = xl-I] + L x[n - l]z-fl 
n~O Il=l 

..., 
= xl-II + Z-1 L x[m]z-m 

(6.A.2) 

rn=O 

= xl-I] + z-lX(z), 
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TABLE 6A Unilateral z Transforms 

Delayed signal TrallS/orm 

z-rX(z) + x[-I] 
z- 2X(z) + x[-I]z-r + x[-2] . 

x[n - 1] 
x[n - 2] 
X(II - 3] 
x[n - k] 

z-~X(z) + x(-lJz-2 + x[-2]z- r + x[-3] 
z-kX(z) + x[-l]z-(k-r) + ... + x[-(k - 1)]i - 1 + x[-k] 

as indicated in Table 6A. Likewise, 

'" 
I x[n - 2JZ-fl = x[ - 2J + I x[n - 2jz-fl 

n = () 
II ~-. I 

= xl-2j + z- r I x[m - 1Jz - m (6.A.3) 
11l-=(J 

and so forth. 

EXAMPLE 6.25 Repea ling Example 3.16 using the UZT, we have the 
linear difference equation 

y[nJ - ay[n .. IJ = x[nj = b"u[n], 

with y[ -lJ = f't. Applying the UZT to both sides of this equation, we 
obtain 

1 Y(z) - az-ry(z) - ay[-lj = _ [ 
1 - bz 

or 

-I 1 
(1 - az ) Y (z) - a Y, = _ 1 ' 

1 - bz 
and thus 

from which 

n ~ O. 

In particular, note that 

b"+ 1 - a,,+1 
yz,[nJ = b • 

- a 
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while 

EXAMPLE 6.26 The response of an all-pole discrete-time system with 
zero input for n 2': 0, but nonzero initial conditions, can be modeled as 
the impulse response of a pole/zero system at initial rest. To see this, 
consider the second-order difference equation 

y[n] + a\y[n - 1] + a2y[n - 2] = x[n], (6.A.4) 

with x[n] = 0, n 2': 0, and initial conditions y[-l] = YII and y[-2] = 
Y12 , corresponding to the L TI system 

1 
H( z) = -1-+-- --:-\-+-- ---::2 ' 

al z a2z 

with an unknown input for n < O. Taking the UZT of both sides of Eq . 
(6.A.4), we obtain 

Y(z) + al{z-Iy(z) + y[-l]} + a2{z - 2y(z) + z·ly[ - l] + y[-2]} = 0 

or 

from which 

where bo = -[aIYII +az Y12] and b l = -az YIi' Hence Y(z) has the 
form of a system function with the same poles as H(z), plus a zero at 
z = -bJb(l, and y[n] can be thought of as the corresponding impulse 
response . 

APPENDIX 68 

Partial-Fraction Expansion for 
Multiple Poles 

The partial-fraction expansions of B(z)/A(z) in Eq. (6 .3 .9) or C(z)/A(z) in 
Eg. (6.3.12) assumed that there are no multiple poles, i.e., that the roots of 
A(z) are distinct. If this is not the case, the PFE must be modified to 
include higher-order terms of the form in Table 6B with inverse transforms 
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TABLE 6B Higher-Order PFE Terms 

PFE Term ROC Inverse transform 

1 
Izl > lal (n + l)a"u[n] 

(1 - az- 1)2 

1 
Izl < lal -en + l)a"u[ -n - 1] 

(1 - az 1)2 

1 1 
(I - QZ- I) Izl > lal - (n + l)(n + 2)a"u[n] 

2! 

1 1 . 

(1 - az-1)3 Izl < lal - - (n + l)(n + 2)a n u[ -n - 1] 
2! 

1 1 

(1 - az 1)4 Izi > lal 3! (n + l)(n + 2)(n + 3)a"u[n] 

1 
Izi < lal - ~ (n + l)(n + 2)(n + 3)a"u[ -n - 1] 

(1 - az It 

as given (see Problem 6.10). That is, writing 8(z)/ A(z) from Eq. (6.3.11) as 

B(z) = G z) + . (.'(z) . . , 
A(z) ( (1 - az - I )""(1 - bz - I)""(l - cz - I)",. . . (6.B.l) 

where K" is the multiplicity of the pole at z = a, K" is the multiplicity of the 
pole at z = b, etc. , the rational fraction C(z)/A(z) can be expanded in the 
PFE 

C(z) 

A(z) 

r/,\ r/o r/ , . + + '" + ... + "," + ... 
1 - bz - l (1 - bZ - I )2 (1 - bZ - I)Kb 

(6.B.2) 

[Note that C(z) = B(z) unless G(z) -=I=- 0.] 
There are several methods to determine the residues I'"i, r"i, ... , 

associated with these higher-order terms , as in the case of Laplace 
transforms , and we will demonstrate two in the following examples. The 
method of successive PFEs is simple and often applicable but requires that 

M S N,. 

or 
(ifM 2: N), 

(6. B.3) 

(6.B.4) 

where M and M' are the orders of 8(z) and C(z), respectively, and N" is 
the number of distinct poles. In particular, this method can always be used 
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if there is only one double pole (Np = N - 1) since M' < N. On the other 
hand, the derivative method always works but is more complicated. 

EXAMPLE 6.27 Successive PFEs 
Given the z transform 

3 - 2z- 1 

X(z'1 - ----:-----...,......." 
. - (1 - z-I)(l - 0.5z - I?' 0.5 < Izl < 1, 

we note that M = 1 and N" = 2, and thus Eq . (6 .B.3) IS satisfied . 
Rewriting X (z) as the product 

[ 
- 2z- 1 

] j 

X(z) = (1 _ z- I)(1 - 0.5z - ') (1 - O.5z 1)2' 

with the first factor containing only single poles , we expand that factor 
in a PFE to produce 

[ 2 1] 1 
X(z) = 1 _ Z-1 + 1 - 0.5z- 1 (1 - 0.5Z - 1)2 · 

2 1 
= 

1 - z - I)(l - 0.5Z- ' )2 (1 - 0.5z - I)' · 

Since the first term in this expression is still not of the form In Eq . 
(6.B.2), we repeat the above steps for that term, as follows: 

[ 
2 J 1 1 

X(z) = (1 - z-I)(1 - 0.5z- 1) (1 - 0. 5z - ' ) + (1 - O. Sz - 'rJ 

_ [ 4 _ 2 ] 1 -1 1 
- 1 - Z-1 1 - 0.5z- 1 (J - 0. 5z- ' ) (I - O. 5z - ' )3 

4 2 1 - - + - - ---
- (1 - Z- I)(1 - 0.5z - l) (1 - 0.5Z- I)2 (I - 0.5Z- I )3 

842 1 - - - + - - - - -
- 1 - Z - 1 1 - 0.5z - 1 (1 - 0.5Z-· 1) 2 (l - 0.5z - I

)" 

which has the form of Eq. (6 .B.2). Therefore, since 0.5 < Izl < 1, the 
corresponding inverse transform is given by 

x[n] = - 8u[ -n - 1] 

+ {-4 - 2(n + 1) + 0.5(n + 1)(n + 2)}(0.5)"u[n]. 

EXAMPLE 6.28 Derivative Method 
Given the z transform 

5 - 12z - 1 + 8.5z - 2 
- 2z-3 

X(z) = (1 _ z - I)3(1 _ 0.5z - 1) , 
Iz l > 1, 
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we now have M = 3, N = 4, and Np = 2. Hence, neither Eg. (6.B.3) 
nor Eg. (6.B.4) is satisfied, and the method of successive PFEs cannot 
be employed. However, X(z) can still be expanded in the form 

5 - 12z-1 + 8.5z-2 
- 2z - 3 rl rz -------,-,,--------,- = -- + ------=-

(1 - z-I)3(1 - 0.5z - l ) 1 - Zl (1 - Z - I)2 

(6.B.5) 

as follows: First, letting Z-I = -v, we rewrite Eg. (6.B.5) in the more 
convenient form 

5 + 12v + 8.5v 2 + 2v 3 
l' r, ___ ~ _____ = __ I _ + __ ----= 

(1 + v)3(1 + O.5v) I + v (I -I- 11)2 

r -I- J 

( I 

,.~ 

1+ - --
) 1 - 0. 51) 

(6.B.6) 

Then, multiplying both sides of Eg . (6.B.6) by (\ -I- O.Sv) and setting 
v = -2, we find that 

r4 = 5 + 12v -I- 8. 5~2 + 2v
3

\ = l. 
(1 + v) u--2 

Next, multiplying both sides of Eq. (6 .8.6) by (1 + V)3, we obtain the 
expression 

5 -I- 12v -I- 8.5v2 + 2v 3 

1 + O.5v = rl (l -I- vf + 1'2(1 + v) 

r4(1 + V)3 
+ 1'3 + ----'-- --''-

. 1 -I- O.Sv ' 

(6.8.7) 

from which we have 

r3 = 5 -I- 12v + 8.5v
2 

-I- 2V3 1 = _ 1. 
. 1 + O.5v ,,=_1 

To determine r2 , we differentiate both sides of Eq. (6. B. 7), yielding 

12 + 17v -I- 6v2 5 + 12v + 8.5v 2 + 2v3 

1 -I- O.5v 2(1 + O.Sv)Z = 2r l (1 -I- v) + r2 

where F(v) is some function of v, and thus 

-I- r4 (1 -I- v)2F(v), 

(6.8.8) 

r2 = 12 -I- 17v + 6v
2 

_ 5 + 12v -I- 8.5v
2 ,+ 2vll = 3. 

1 -I- O.5v 2(1 + O.5v)- u = -i 
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Finally, to obtain r2 , we differentiate Eq. (6.B.8), producing 

17 + 12v 12 + 17v + 6v2 12 + 17v + 6v2 

1 + O.5v 2(1 + 0.5V)2 2(1 + 0.5V)2 

2(5 + I2v + 8.5v2 + 2v 3
) 

+ 3 = 2r1 + r4(1 + v)C(v) 
4(1 + 0.5v)· 

for some C(v), and thus 

or 

17 + 12v 12 + 17v + 6v2 
2r, =-- -

1 + 0.5v (1 + 0.5V)2 

+ 2(5 + 121) + 8.51)2 + 21);\) I = 4 
4(1 + 0.51) 3 JJ =- ' 

r, = 2. 

Therefore, substituting these residue values into Eq. (6.B.5), we 
produce 

Izl > 1, 
rrom which 

x[n] = {2 + 3(n + 1) - 0.5(n + 1)(n + 2) + (O.5)"}u[n] . 

PROBLEMS 

6.1 Find the eigenvalues H(z) associated with the following LTI systems 
h[n] and eigenfunctions <p[n] = z". State any restrictions on lhe 
(complex) values of z for H(z) to converge . 

(a) h[n] = urn] . 

(c) h[n] = a"u[-n]. 

(b) h[n] = u[n] - urn - N] . 

(d) h[n] = (cos Qon)u[n]. 

6.2 Find the z transform X(z) and the associated region of convergence 
for each of the following signals and draw the corresponding pole/zero 
plot. 

(a) x[n] = (sin Qon)u[n]. 

(c) x[n] = b[n + N] - o[n - N]. 

(e) x[n] = a"-'u[n - 1]. 

(b) x[n] = (cos Qon)u[-n - 1] . 

(d) x[n] = a 1fll
, lal < 1. 

(f) x[n] = afl+'u[n + 1]. 
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6.3 Find X(z), including the ROC, for the signal 

x[n] = Arn cos (Qon + 8)u[n]. 

Plot the corresponding pole/zero plot for 8 = 0 and for 8 = - n 12 
with 0 < r < 1. 

6.4 Invert the following z transforms, using both long division and 
partial-fraction expansion, and plot the pole/zero diagram with ROC 
for each X(z). 

1 
(a) X(z) = 1 2 -2' 

-az 
1 

(b) X(z) = 2 -2' 
1-az 

/z/ > /a/. /z/ < /a/. 
1 

(c) X(z) = 2 - 2' 
1 + a z 

1 
(d) X(z) = 2 -2' 

1 + a z 
/z/ > /a/. /z/ < /a/. 

1 
(e) X(z) = 4 - 4' 

1 - a z 
1 

(f) X(z) = 4 -4' 
1 - a z 

/z/ > /a/. /z/ < /a/. 

6.5 Tn vert each of the following X(z) to find the associated signal x[n]. 

2 - Z-1 

(a) X(z) = 1 _ Z-1 _ 0.75z-2 ' /z/ > 1.5. 

2 - Z-1 

(b) X(z) = 1 _ Z-1 _ 0.75z- 2 ' 0.5 < /z/ < 1.5. 

2 - Z-1 

(c) X(z) = 1 _ Z-1 _ 0.75z- 2 ' /z/ < 0.5. 

( ( ) 
_ 1 - Z - 1 - 0.75z- 2 

d) X z - -1' 
2 - z /z/ > 0.5. 

( ( ) 
_ 1 - Z-1 - 0.75z-2 

e) X z - -1' 
2 - z 0< /z/ < 0.5. 

6.6 Invert each of the following irrational z transforms. 

(a) X(z) = e"IZ, Iz/ > O. 

(b) X(z) = -log (1 - az), /z/ < 11/al. 

6.7 Show the following properties for the z transforms of even and odd 
discrete-time functions. 

(a) If x[n] is even, that is, x[n] = x[-n], then X(z) = X(Z - l). 

(b) If x[n] is odd, that is, x[n] = -x[-n], then X(z) = -X(Z-l). 

(c) If x[n] is odd, then there is a zero in X(z) at z = 1. 
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(d) If x[n] is even or odd, then for each pole in X(z) at z = p", there 
is also a pole at z = l/Pk' 

(e) If x[n] is even or odd, the ROC for X(z) is of the form 
a < Izl < l/a, or else it is the entire z plane (if it exists at all). 

6.8 Prove the following properties of the z transform: 

(a) The linearity property in Eg. (6.4.1). 

(b) The moduiation property in Eg. (6.4.4). 

(c) The time-reversal property in Eg . (6.4.6). 

(d) The convolution property in Eg. (6.4.9). 

6.9 (/flilial- Value Theorem) Show that for a causal seg uence x [n], the 
initial value x[O] is given by the following limit: 

x[O] = lim X(z). 
Z--l> :.r.: 

Determine the initial value of x[n] in each of these cases: 

(a) X(z) = (a - z- I)/(1 - az- I
), Izl > lal· 

(b) X(z) = z- I/(l - az- I + a2z - 2
), Izl > lal. 

(c) X(z) = log (l - az- I
), Izl > lal. 

(d) X(z) = ea
!" Izl > O. 

6.10 The following results are reguired to invert z transforms having 
multiple poles by partial-fraction expansion, as described in Appendix 
6B. 

(a) Using the differentiation property in Eg. (6.4.7), determine the 
inverse z transform of 

. J 
X (z) = -( 1---a-z---1 )-2 ' Izl > lal · 

Repeat for Izl < lal. 
(b) Gencralize this rcsult to the transform 

1 
X (z) = -( 1---a-z---:-1 )-:-CN ' Izl> lal 

Repeat for Izl < lal. 

6.11 Using the properties in Table 6.1, find the z transform (including the 
ROC) for each of the following signals. 

(a) al/u[n - noj, no > O. (b) al/u[n + no], no > O. 

(c) Od{al/u[n]}, lal < 1. (d) eiQ""u[nj. 

(e) (cos Qon)u[ -n]. (f) r[n] = urn] * u[n]. 
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n 

(h) I aku[ -k - 1], lal > 1. 
k = -CX) 

6.12 Let x[n] be a real-valued signal with a pole (zero) at z = Zo in X(z). 

(a) Show that X*(z*) = X(z) for x[n] real, in general , and thus that 
there is also a pole (zero) at z = z~ . Therefore the poles and zeros 
of real-valued signals must occur in complex-conjugate pairs 
except for those on the real axis. 

(b) If a real-valued x[ n] is even or odd, show that the poles and zeros 
occur in quadruples at z = Zo, z~, l/zo, and l/z~ except for those 
on the real or imaginary axes or on the unit circle. 

(c) Determine the poles and the ROC for the signal r lnl cos Qon, 
O<r<l. 

6.13 Show that all of the common z-transform pairs in Table 6 .2 can be 
derived from only the impulse transformation 

D[n] ~ 1, all z, 

using various properties from Table 6.l. 

6.14 Find the output y[nJ of the system 

1 - 0.5z- 1 

H(z) = 1 - Z - I - 0.75z - 2 

for each of the following inputs, assuming that the system is stable . 

(a) x[n] = u[n]. 

(c) x[n] = 0.5n u[nJ. 

(e) x[nJ = 3D[n] - 2(0.5tu[n]. 

(g) x[n] = D[n] - 0.25D[n - 2]. 

(b) x[n] = u[-n - 1]. 

(d) x[n] = 0.5 Inl . 

(f) x[n] = D[n] - 1.5D[n - 1]. 
(h) x[n] = D[n + 1] - D[n] 

- 0.75D[n - 1]. 

6.15 In the following problems, one or more multiple poles is produced in 
Y(z) = H(z)X(z) . Using the partial-fraction expansion for mUltiple 
poles given in Appendix 6B, determine y [n] in each case. 

(a) h[n] = (n + 1)0.2S"u[n] and x[n] = 0.5 nu[n]. 

(b) h[n] = 0.5"u[n] and x[n] = (n + l)u[-n - 1]. 

(c) h[n] = (n + 1)2"u[-n - 1] andx[n] = (n + l)u[n]. 

6.16 Evaluate the frequency response H(e jQ) for each of the following 
second-order FIR systems and sketch the corresponding magnitude 
response IH(ejQ)I, phase response LH(e jQ), and pole/zero plot. 

(a) H(z) = (1 + Z-I)2. 

(c) H(z) = 1 - Z-2. 

(e) H(z) = 1 - Z - 1 + Z - 2. 

(b) H(z) = (1 - Z-l? 
(d) H(z) = 1 + Z-2. 

(f) H(z) = 1 + Z-1 + Z - 2. 
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6.17 Find the step response sl n] for each of the following systems: 

(a)H(z)=l -I' Izl>l. + z 
2z - ' 

(b) I-I(z) = 1 _ 3z - I' Izl < 3. 

(c) H(z) = 1 - Z - 3, Izl > O. 
Z- I - Z-2 

( d) Ii (z) = J _ 2z -. I + 2z - 2 ' Izl < Vi. 

6.18 For each of the following pole/zero piOlS, show the ROC for stab ility. 
Also, assuming no poles at z = 00, identify the (stable) systems that 
are causal, anticausal, IIR, and/or FrR. 

Im(z) Im(z) 

- ---II-- --If----D- --Re(z) "~--Re(z) 

(a) (b) 

Im(z) Im(z) 

- ----4- - --0- * - 4-- -- Re(z) - - --C)---4- - -I---- Re(z) 

(e) (d) 

6.19 For each of the following pairs of syste ms, determine the system 
function I-I,,(z) and the impulse response h"ln] for the parallel 
interconnection of the two systems and likewise Hc(z) and h, l n] for 
the cascade interconnection. 



(a) hJ[n] = anu[n] and h2[n] = anu[n - 1]. 

(b) hJ[n] = h2[-n] = anu[n], lal < 1. 

(c) h1[n] = anu[n] and h2 [n] = b,,-lu[n - 1], a =1= b. 

(d) hJ[n] = (jatu[n] and h2[n] = (-jaYu[n]. 
(e) hJ[n] = eiQnu[n] and h2 [n] = e-iQ"u[n]. 
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6.20 A new international standard has recently been established for digital 
telephone transmission at 32 kilobits per second using adaptive 
differential pulse-code modulation (ADPCM). The ADPCM encoder 
at the transmitter can be diagramed as shown. 

x[n] + y[n] 

x[nJ 

The feedback loop generates a prediction i[ n] of the input signal 
x[nJ, and the difference signal d[n] = x[n] - i[n] is quantized by an 
adaptive quantizer Q to produce the encoder output y[n]. The decoder 
at the receiver corresponds to the inverse of the encoder and produces 
the recovered signal r[n] that, in the absence of quantization and 
transmission errors, would equal the original signal x[n). If we neglect 
the time-varying nature of the adaptive filters A(z) and B(z), their 
system functions are given by 

A(z) = aJz - 1 + a2z-2 

and 
B(z) = bLz- L + b2 z- 2 + ... + b6 z-6 . 

The quantizer Q is also neglected in the following analysis. 

(a) Find the encoder system function He(z) from x[n] to y[n]. 

(b) Show that the signal r[n] in the encoder equals x[n], that is, that 
the system function Hr(z) from x[n] to r[n] is unity. 

(c) Diagram a decoder network Hd(z) in terms of A(z) and B(z) with 
input y[n 1 and output r[n 1 such that HAz) = 1/ He(z). 

(d) How many finite nonzero poles and zeros does the encoder have? 
The decoder? 
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(e) A minimum-phase system has all of its zeros, as well as its poles, 
inside the unit circle. Why is it necessary for the encoder to be 
minimum phase? 

6.21 For each of the following systems, find all of the corresponding inverse 
systems H/(z), Which inverse systems are stable? Causal? FIR? 

(a) h[n] = (0.9" + O.sn)u[n]. 

(c) h[n] = b[n] + b[n - 2]. 
(e) h[n] = r lnl

. 

(b) h[n] = (0.9" - O.S")u[n]. 

(d) h[n] = (-lYu[-n]. 

(f) h[n] = 16b[n] - b[n + 4]. 

6.22 (a) Write difference equations relating the input x[n] and the output 
y[n] for the first-order LPF in Eg. (6.6.8) and HPF in Eq. (6.6.9). 

(b) Repeat for the second-order LPF, HPF, BPF, and BSF in Egs. 
(6.6.29-32). 

6.23 Show that the conditions 

and 

guarantee the stability of a causal, rational second-order system 
function with denominator 1 + a 1 z - I + (l2 Z - 2 for real-valued 
coefficients ([1 and a2' (Hint: For complex-conjugate poles p and p*, 
we need Ip I < 1, while for real poles P I and P2, we must have 
-1<P],P2<1.) 

6.24 Given an Nth-order prototype LPF design Hp(z), a set of correspond­
ing 1 PF, BPF, and B d signs with 'pc ifi d cu lo[f rrequcncies can 
b pr ducecl by thc spectral trall!;Jormation I-I (z ) = Hl,fC z)J, where 
C(z ) is one of lhe aI/pass funclions deAn d I c low. (Fo rmulas for the 
parameters g, g I , and g2 arc I ro vidt:d in sev ' ral references not d in 
lhe Bibliography e .g. in Ja ck. o n £lml in ppenilcim and chafe r.) 

(i) H(z) is an Nth-order HPF for G(z) = -(z - g)/(1 - gz). 

(ii) H(z) is a 2Nth-order BPF for G(z) = _(Z 2 + glz + g2)/(1 -:­
glz + g2Z2). 

(iii) H(z) is a 2Nth-order BSF for C(z) = (Z 2 + glz + g2)/(1 + 
glz + g2Z2). 

In each of the following, let Hr,(z) be the first-order LPF in Eg. 
(6.6.8). 

(a) Show that the spectral transformation in (i) produces a first-order 
HPF of the form in Eg. (6.6 .9). 

(b) Show that the spectral transformation in (ii) produces a second­
order BPF of the form in Eg. (6.6.31) . 

(c) Show that the spectral transformation in (iii) produces a second­
order BSF having a numerator of the form in Eg. (6.6.32). 
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6.25 For each of the pole/zero plots below, sketch the magnitude response 
IHeiQ)1 of the corresponding (stable) system. 

Im(z) Im(z) 

--+ c >*---+- ----)otO-t-- Re(z) ---t------t----If--- Ae(z) 

(a) (b) 

Im(z) Im(z) 

t----t-------I- - Re(z) - ----<D----{ I),-----<.}---- Ae (z) 

(e) (d) 

6.26 (a) Using geometric analysis, show that the 3-dB bandwidth of the 
second-order BPF in Eq. (6.6.31) is about 2(1 - r) radians for 
Q « r<l. 

(b) Repeat for the second-order BSF in Eq. (6.6.32) . 

For each of the following denominator polynomials A(z), give 
corresponding SPF and SSF systems functions H(z), sketch the 
magnitude responses IH(eiQ)I, and state the approximate 3-dB band­
width and center frequency Q(J. 

(c) A(z) = 1 - 0.9z - 1 + 0.81z- 2
• 

(e) A(z) = 1 - 1.5z - 1 + 0.75z - 2
• 

(d) A(z) = 1 + 0.98z - 2
• 

(f) A(z) = 1 + Z- I + 0.5z- 2 . 
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6.27 The 3-dB bandwidth of the first-order LPF 

1 + Z - I 

H(z) = C -I' 
1 - az 

Izl > lal, 

was estimated in Example 6.23 as simply QI, = (1 - a) in the 
narrowband case (0 « a < 1). Given a desired bandwidth Q h in the 
general case (narrowband or wideband), the required values of the 
parameters a and C can be determined precisely from the magnitude­
squared response IH(e iQ)12, as follows: First, 

.Q 2 .Q n 1 + cos Q 
IH(e l )1 = H(e l )H*(el'~) = , 

10 + II cos Q 

where [() and II are functi ns ur a ami . Noting thal IH( , io)1 = I and 
11I(e/~lh ) 1 = 1/V2 for a unity-gain LPF with -dB bandwidLh Q'JJ and 
using the above expressio n fo r IH(eJQW. wrile lwo simullaneouS linear 
equation ' trom whjch the vruucs of In and [I can h dclcnnined, given 
Q/,. Then indicate how the dc. ir d I aramcters (/ a nti can be 
evaluated . 

6.28 An allpass filter has the property that IH(ei~J)1 = 1 for all frequencies 
Q, that is, 

where LH(e iQ ) = B(Q). Such filters are used in cascade with other 
systems to modify (equalize) the phase response of the overall cascade 
system, as well as in certain derivations and transformations. 

(a) Given the Nth-order polynomial A(z) = au + alz- I + ... + 
aNz-N, show that the filter 

is allpass if the coefficients ak are real-val ued. 

(b) Determine the explicit form of the numerator polynomial 
Z-N A(Z-I). 

(c) If the allpass filter is both stable and causal, what restriction 
applies to the locations of its zeros in the z plane? If the poles have 
values PI' ... ,PN, give the values of the zeros. 

(d) If A(z) = 1 - a4z-4
, 0 < a < 1, draw the corresponding 

pole/zero plot. 

(e) Sketch the phase response LH(e iQ ) for 

Z - I - a 
H(z) = - I' 

1 - az 
O<a < l. 
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6.29 One class of second-order LPF or HPF has double zeros at z = -lor 
z = 1, respectively, as shown in Eqs. (6.6.29) and (6.6.30). Another 
LPF/HPF class has complex-conjugate zeros on the unit circle, 
corresponding to system functions of the form 

Izl > r, 

where H(z) is lowpass for Q o < Q, and highpass for Q o > Ql' Draw 
the pole/zero plot for H(z) in each of the following cases, indicating 
the values of r , Q(b and QI , and sketch the corresponding magnitude 
response IH(ejQ)I . 

1 + Z-1 + Z- 2 

(a) H( z) = -1---z --'- +-0-. -5Z---=-2 . 

1 - Z-l + Z-2 

(b) H(z) = 1 + z-' + 0.5z- 2 • 

1 + Z - 2 

(c) H(z) = 1 _ Z - 1 + 0.333z-2· 

] + Z - 2 
(d) H(z) = - - ------: 

1 + z-' + 0.333z- 2
· 

1 + V3z- 1 + Z-2 

(e) H(z) = 1 _ 0.8z - 1 + 0.64z -2 · 

1 - V2z- 1 + Z-2 
(f) H(z) = ------,------" 

1 + 1.5z - 1 + 0.75z - 2
· 

6.30 The zeros of Ii near-ph as ' PIR fill >rs ha e ::, ' veral inLeresting and 
useful prop rli S relative LO th ir loca tions in the z plane. In Lh 
following assume Lhal the Mth-order FlR filt e r I-I z ) i linear-phas 
and that its coefl'icienl.s 111/ are rea l-v'Jlued . 

(a) Show that H(z) satisfies H(z) = z - M H(z - l) or H(z) = 
-Z - M H(Z-I) . 

(b) Show that if Zo is a zero of H(z), then z~, l/zo, and l/z; are also 
zeros. 

(c) As a consequence of part (b), zeros can occur singly at z = ±1, in 
real-valued pairs, in complex-conjugate pairs on the unit circle, or 
in conjugate/reciprocal quadruples. Give simple examples of H(z) 
in each case. 

(d) Show that for even symmetry in h[n] and M odd, there is always a 
zero at z = -1. [Hint: Consider Eq. (6.6.37) for H(-I) in this 
case.] Similarly, for odd symmetry in h[n] and M even, show that 
there is always a zero at z = -]. 
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(e) Show that for odd symmetry in h[n] with M even or odd, there is 
always a zero at z = 1. [Hint : Consider Eq. (6.6.37) for H(1) in 
this case.] 

6.31 A simple but useful method for smoothing a noisy data sequence is 
called smoothing by 3s and 5s. It consists effectively of the cascade of 
two uniform-averaging filters as defined in Eq. (6.6.43), with M + 
1 = 3 in one filter and M + 1 = 5 in the other . 

(a) Sketch the pole/zero plot and magnitude response for each of the 
cascaded averaging filters. 

(b) Sketch the pole/zero plot and magnitude response of the overall 
filter. 

(c) Find the impulse response of the overall filter. 

(d) What is the order of the overall filter? 

(e) What is the dc gain of the overall filter? What is the gam at 
Q = n? 

(f) Draw block diagrams for the overall filter as the cascade of two 
transversal structures and as a single transversal structure . 

6.32 Each of the following linear-phase FIR filters has its zeros on the unit 
circle and thus annihilates sinusoidal signals of the form x [n] = 
sin (Qon + cp) for some frequency Qo and all phase anglcs cp; that is, 
y[n] = 0 for all n. 

(a) H(z) = 1 - ViZ - l + Z-2. (b) H(z) = 1 + Z-l + Z - 2 

(c) H(z) = 1 - Z-l + Z- 2. (d) H(z) = 1 + Z-2 . 

Match each of these filters with one or more of the sequences x[n] 
below that it annihilates. Carry out the convolution y[n] = h[n] * x[n] 
for several values of n in each case to check that y [n] is indeed zero. 

(i) { .. . , A, A, -A, -A, ... } 

(ii) { ... ,A,-A,O, .. . } 

(iii) { ... ,A,O,-A,O, ... } 

(iv) { ... , A, A, 0, -A, -A, 0, ... } 

(v) { . . . , A, 2A, A, -A, -2A, -A, . .. } 

(vi) { . . . , A, ViA, A, 0, -A, -ViA, -A, 0, ... } 

6.33 Draw direct-form-II structures for the second-order LPF, HPF, BPF, 
and BSF in Eqs. (6.6 .29-32). If coefficients with integer values do not 
require actual multipliers (only binary shifts and/or sign changes), how 
many multiplications per output sample y[n] are required, in general, 
to implement each filter? 

6.34 In general, an Mth-order FIR filter requires M + 1 multipliers in its 
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(transversal) implementation. However, for linear-phase filters, only 
about M /2 multipliers are required if the distribution property of 
arithmetic is utilized. Show how this savings is accomplished for both 
even and odd symmetry in h[n) by drawing the corresponding 
transversal structures . 

6.35 Draw direct-farm-II, parallel-farm-II, and cascade-farm-II structures 
for each of the following filters, using first-order sections with 
real-valued coefficients wherever possible. 

1 
(a) H( z ) = 1 _ 0.49z-2· 

0.5 - 2z - 1 + 0.8z - 2 

(c) H(z) = --- -------,,-
1 - 1.3z- 1 + 0.4z - 2

• 

1 + Z-3 

(b) H(z ) = 1 _ 0.512z - 3" 

0.25 + Z-4 

Cd) H(z) = 1 + 0.25z -4 · 

6.36 It is possible (although usually not desirable) to imple ment FIR filters 
using recursive structures. As an example, draw a (recursive) direct­
form-II structure for the uniform-averaging filter as expressed in Eq, 
(6.6.44). Is this structure canonical? Is it stable in the sense that the 
intermediate signal w[n) in Fig. 6.30, as well as the output y[n), is 
bounded for all bounded inputs x[ n)? 

6.37 (a) Show that the feedback interconnection of two (causal) subsystems 
F(z) and G(z) depicted in Fig. 6.10 results in the overall system 
function 

H(z) = F(z) 
1 - F(z)G(z) 

(b) Given that F(z) = K (constant), determine K and G(z) such that 
H(z) is the first-order LPF in Eq. (6.6.8). Repeat for the 
first-order HPF in Eq. (6.6.9). Is G(z) stable in either case? 

(c) Determine H(z) for the filter shown. Is the filter FIR or lIR? Is 
the structure recursive or nonrecursive? 

x[n] + YIn] 

a 

6.38 Determine H(z) for each of the second-order systems shown. Give 
conditions on the coefficients d; for the system to be stable and 
minimum-phase (i.e., both poles and zeros inside the unit circle). 
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x[n] 

x[n] 

(al 

(b) 

YIn] 
f--...... - ..... """"""1Ii>{+---...;...;.-.;.... .. 

6.39 For each of the following difference equations and initial conditions, 
determine the output y [n] for n 2:: 0 using the unilateral z transform: 

(a) y[n] - O.5y[n - 1] = 2, 

(b) y[n] - O.5y[n - 1] = 2, 

(c) y[nJ - O.5y[n - 1] = 2, 

(d) y[nJ + O.25y[n - 2] = 0, 

y[-1] =0. 

y[ - 1] = 2. 

y[ - .1] = 4. 

y[ - 1J = 0, y[-2J = 4. 

6.40 The autocorrelation function of a discrete-time signal x[n] is defined as 

"" 
<pxx[n] = x[n] * x*[-n] = ~ x[n + k]x*[kJ. 

k = - oo 

(a) Express the z transform <I>xx(z) of the autocorrelation function in 
terms of X(z). Also relate the regions of convergence R, and R",. 
State a condition on X(z) for <I>xAz) to exist. What must be the 
form of R", if it exists? 

(b) Let y[n] be the output of an LTI system with system function H(z) 
to the input x[ n J. Express the z transform <I>yy (z) of the output 
autocorrelation in terms of H(z) and <I>xx(z). 
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(c) Let H(z) in part (b) be an all pass filter, as defined in Problem 
6.28. Express the output autocorrelation cJ>yy[ n J in terms of cJ>xA n J. 

(d) Let x[nJ = O.5"u[nJ and h[n] = (-O.8tu[n]. Find cJ>xAn] and 
cJ>yy[n]. 

6.41 Write the following subroutines in Fortran, Pascal, Basic, etc., with 
the indicated arguments to implement discrete-time filters in parallel 
and cascade form II: 

(a) CASSEC (Xl, Yl, AI, A2, B1, B2, 01, 02) to implement a 
second-order cascade-form-II section, where Xl is the section 
input, Y1 is the section output, Al and A2 are the feedback 
coefficients, Bl and B2 are the feedforward coefficients, and 01 
and 02 are the contents of the delays. (Hint: Be careful to update 
Oland 02 in the correct order.) 

(b) PARSEC (Xl, Y1, AI, A2, G1, G2, 01, 02) to implement a 
second-order parallel-form-I1 section as above, except that Gland 
G2 are the feedforward coefficients . 

(c) CASFORM eX, Y, K, A, B, 0, N, BO) to implement the overall 
cascade form, where arrays X and Y of dimension K contain, 
respectively, the input and output data x[n] and y[n 1 for n = 
1,2, ... ,K; arrays A, B, and 0 of dimension N contain the 
feedback coefficients, feedforward coefficients, and delayed data, 
respectively; and BO is the coefficient bo o Assume that all arrays 
are initialized before the subroutine is called and make use of the 
subroutine CASSEC. 

(d) PARFORM (X, Y, K, A, G, 0, N, GO) to implement the overall 
parallel form as above, except that G is the feedforward coefficient 
array and GO is the coefficient go . Make use of the subroutine 
PARSEC. 




