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SIX 

SHAPING THE DYNAMIC RESPONSE 

6.1 INTRODUCTION 

At last we have arrived at the point of using state-space methods for control 
system design. In this chapter we will develop a simple method of designing a 
control system for a process in which all the state variables are accessible for 
measurement-the method known as pole-placement. We will find that in a 
controllable system, with all the state variables accessible for measurement, it is 
possible to place the closed-loop poles anywhere we wish in the complex s 
plane. This means that we can, in principle, completely specify the closed-loop 
dynamic performance of the system. In principle, we can start with a sluggish 
open-loop system and force it to behave with alacrity; in principle, we can start 
with a system that has very little open-loop damping and provide any amount 
of damping desired. Unfortunately, however, what can be attained in principle 
may not be attainable in practice. Speeding the response of a sluggish system 
requires the use of large control signals which the actuator (or power supply) 
may not be capable of delivering. The consequence is generally that the actuator 
saturates at the largest signal that it can supply. In some instances the system 
behavior may be acceptable in spite of the saturation. But in other cases the 
effect of saturation is to make the closed-loop system unstable. It is usually not 
possible to alter open-loop dynamic behavior very drastically without creating 
practical difficulties. 

Adding a great deal of damping to a system having poles near the imaginary 
axis is also problematic, not only because of the magnitude of the control 
signals needed, but also because the control system gains are very sensitive to 
the location of the open-loop poles. Slight changes in the open-loop pole 
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location may cause the closed-loop system behavior to be very different from 
that for which it is designed. 

We will first address the design of a regulator. Here the problem is to 
determine the gain matrix G in a linear feedback law 

u = -Gx (6.1 ) 

which shapes the dynamic response of the process in the absence of distur
bances and reference inputs. Afterward we shall consider the more general 
problem of determining the matrices G and Go in the linear control law 

u = -Gx - Goxo (6.2) 

where Xo is the vector of exogenous variables. The reason it is necessary to 
separate the exogenous variables from the process state x, rather than deal 
directly with the metastate 

x = [-~-J (6.3) 

introduced in Chap. 5, is that in developing the theory for the design of the gain 
matrix, we must assume that the underlying process is controllable. Since the 
exogenous variables are not true state variables, but additional inputs that 
cannot be affected by the control action, they cannot be included in the state 
vector when using a design method that requires controllability. 

The assumption that all the state variables are accessible to measurement in 
the regulator means that the gain matrix G in (6.1) is permitted to be any 
function of the state x that the design method requires. In most practical 
instances, however, the state variables are not all accessible for measurement. 
The feedback control system design for such a process must be designed to use 
only the measurable output of the process 

y = ex 

where y is a vector of lower dimension than x. In some cases it may be possible 
to determine the gain matrix Gy for a control law of the form 

(6.4) 

which produces acceptable performance. But more often it is not possible to do 
so. It is then necessary to use a more general feedback law, of the form 

u= -Gx (6.5) 

where x is the state of an appropriate dynamic system known as an "observer." 
The design of observers is the subject of Chap. 7. And in Chap. 8, we shall show 
that when a feedback law of the form of (6.5) is used with a properly designed 
observer, the dynamic properties of the overall system can be specified at will, 
subject to practical limitations on control magnitude and accuracy of 
implementation. 
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6.2 DESIGN OF REGULATORS FOR 
SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS 

The present section is concerned with the design of a gain matrix 

o = g' = [g], gz, ... , gk] 

for the single-input, single-output system 

x = Ax + Bu 

where 

With the control law u = -Ox = -g'x (6.7) becomes 

x = (A - bg')x 

(6.6) 

(6.7) 

(6.8) 

Our objective is to find the matrix 0 = g' which places the poles of the 
closed-loop dynamics matrix 

(6.9) 

at the locations desired. We note that there are k gains g], g2, ... , gk and k 

poles for a kth order system, so there are precisely as many gains as needed to 
specify each of the closed-loop poles. 

One way of determining the gains would be to set up the characteristic 
polynomial for Ac: 

(6.l 0) 

The coefficients I1b 112 , ••• , 11k of the powers of s in the characteristic poly
nomial will be functions of the k unknown gains. Equating these functions to 
the numerical values desired for I1 b ..• , 11k will result in k simultaneous 
equations the solution of which will yield the desired gains gl, ... , gk. 

This is a perfectly valid method of determining the gain matrix g', but it 
entails a substantial amount of calculation when the order k of the system is 
higher than 3 or 4. For this reason, we would like to develop a direct formula 
for 9 in terms of the coefficients of the open-loop and closed-loop characteristic 
equations. 

If the original system is in the companion form given in (3.90), the task is 
particularly easy, because 

-QI - Q2 - Qk-l -Qk 

I 0 0 0 
A= 0 0 0 ( 6.11) 

. . .. 
o o o 
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Hence 
- al - ~l -a2 - g2 

1 0 

A = A - bg' = 0 

o o o 

The gains gt. . . . ,gk are simply added to the coefficients of the open-loop A 
matrix to give the closed-loop matrix Ac. This is also evident from the 
block-diagram representation of the closed-loop system as shown in Fig. 6.l. 
Thus for a system in the companion form of Fig. 6.1, the gain matrix elements 
are given by 

i = 1, 2, ... , k 

or 

where 

u 

1 - - - ----- - ----1 
I I 
I I 
I I 

I 
J 

Figure 6.1 State variable feedback for system in first companion form. 

(6.12 ) 

(6.13) 
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are vectors formed from the coefficients of the open-loop and closed-loop 

characteristic equations, respectively. 
The dynamics of a typical system are usually not in companion form. It is 

necessary to transform such a system into companion form before (6.12) can be 
used. Suppose that the state of the transformed system is x, achieved through 

the transformation 

x = Tx (6.14) 

Then, as shown in Chap. 3, 

x = Ax + bu (6.15) 

where 

A = TAr' and b = Tb 

For the transformed system the gain matrix is 

(6.16) 

since ii = a (the characteristic equation being invariant under a change of state 
variables). The desired control law in the original system is 

u = -g'x = -g'T- 'x = -g'j( (6.17) 

From (6.17) we see that 
g' = g'T- ' 

Thus the gain in the original system is 

g = Tg = T(a - a) (6.18 ) 

In words, .the desired gain matrix for a general system is the difference 
between the coefficient vectors of the desired and actual characteristic equation, 
premultiplied by the inverse of the transpose of the matrix T that transforms the 
general system into the companion form of (3.90), the A matrix of which has 
the form (6.11). 

The desired matrix T is obtained as the product of two matrices U and V: 

T = VU (6.19) 

The first of these matrices transforms the original system into an intermediate 

system 
(6.20) 

in the second companion form (3.107) and the second transformation U 
transforms the intermediate system into the first companion form. 

Consider the intermediate system 

x = Ax + bu (6.2 I) 

with A and b in the form of (3.107). Then we must have 

A = UAU- ' and b = Ub (6.22) 
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The desired matrix V is precisely the inverse of the controllability test 
matrix Q of Sec. 5.4. To prove this fact, we must show that 

V-1A = AV-1 (6.23) 

or 
QA=AQ 

Now, for a single-input system 

Q=[b,Ab, ... ,Ak-'b] 

Thus, with A given by (3.107), the left-hand side of (6.23) is 

o 0 -ak 

I 0 

QA = [b, Ab, ... , Ak-1b] 0 

o 0 -at 

= [Ab, A 2b, ... , Ak-1b, -akb - ak_1Ab - ... - akAk-1b] 

The last term in (6.25) is 

(-akI - ak_1A - ... - akAk-l)b 

Now, by the Cayley-Hamilton theorem, (see Appendix): 

Ak = -aIAk- 1 - a2Ak-2 - ... - akI 

so (6.26) is Akb. Thus the left-hand side of (6.24) as given by (6.25) is 

QA = [Ab, A 2b, ... , Akb] = A[b, Ab, ... , Ak-1b] = AQ 

which is the desired result. 

(6.24) 

(6.25) 

(6.26) 

If the system is not controllable, then Q-l does not exist and there is no 
general method of transforming the original system into the intermediate system 
(6.21); in fact it is not possible to place the closed-loop poles anywhere one 
desires. Thus, controllability is an essential requirement of system design by 
pole placement. If the system is stabilizable (i.e., the uncontrollable part is 
asymptotically stable, as discussed in Chap. 5) a stable closed-loop system can 
be achieved by placing the poles of the controllable subsystem where one 
wishes and accepting the pole locations of the uncontrollable subsystem. In 
order to apply the formula of this section, it is necessary to first separate the 
uncontrollable subsystem from the controllable subsystem. 

The control matrix b of the intermediate system is given by 

b = Vb (6.27) 
We now show that 
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Multiply (6.28) by Q to obtain 

Q6 ~ [b, Ab, ... , A"bj [i] ~ b 

which is the same as (6.27), since Q-l = U. 
The final step is to find the matrix V that transforms the intermediate 

system (6.21) into the final system (6.15). We must have 

x = Vi (6.29) 

For the transformation (6.28) to hold, we must have 

A = VA v- I 

or 

( 6.30) 

The matrix V · I that satisfies (6.30) is the transpose of the upper left-hand 
k-by-k submatrix of the (triangular Toeplitz) matrix appearing in (3.103) 

(6.31 ) 

To prove this, we note that the left-hand side of (6 .30) is 

( 6.32) 

o 0 .. . 0 

(Note that the zeros in the first row of V - I A a re the result of the difference of 
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tWO terms al - a h a 2 - a2, etc.) and the right-hand side of (6.30) is 

0 0 -ak 1 al ak-I 

1 0 -ak-I 0 ak-2 

AV- 1 = 0 -ak- 2 0 0 ak-3 

0 0 -ak 0 0 

0 0 0 -ak 

a 1 ak-2 0 

0 ak-3 0 
.. . .... . ...... . ..... 
o 0 ... o _ 

which is the same as (6.32). Thus (6.30) is proved. 
We also need 

We will show that 

Consider 

with 

Thus jj and ii are the same. 
The result of this calculation is that the transformation matrix T whose 

transpose is needed in (6.18) is the inverse of the product of the controllability 
test matrix and the triangular matrix (6.31). 

The above results may be summarized as follows. The desired gain matrix 
g, by (6.18) and (6.19), is given by 

g = (VU),(a - a) (6.33) 

where 

v= W- 1 and U= Q-l 

Thus 
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Hence (6.33) becomes 

9 = [(Qw)T'(a - a) (6.34) 

where Q is the controllability test matrix, W is the triangular matrix defined by 
(6.31), a is the vector of coefficients for the desired (closed-loop) characteristic 
polynomial, and a is the vector of coefficients of the open-loop system. 

The basic pole-placement formula (6.34) was first stated by Bass and 
Gura.[ 1] It can be derived by other methods as discussed in Note 6.1. 

Now that we have a specific formula for the gains of a controllable, 
single-input system that will place the poles at any desired location, several 
questions arise: If the closed-loop poles can be placed anywhere, where should 
they be placed? How can the technique be extended to multiple input systems? 
We shall address these questions and others after considering several examples. 

Example 6A Instrument servo A dc molor driving an inertial load constitutes a simple 

instrument servo for keeping the load at a fixed position . 
As shown in Chap. 2 (Example 2B), the state-space equations for the motor-driven inertia 

are 
O=w 

OJ = - (>w + f3u 

(6A.l) 

(6A.2) 

where 0 is the angular position of the load, w is the angular velocity, u is the applied voltage, 
and a and f3 are constants that depend on the physical parameters of the motor and load : 

a = -K'/ JR f3 = K / JR 

If the desired position 0, is a constant then we can define the servo error 

e = 0 - 0, 

Then e = 0 - 0, = w (0, = const) (6A.3) 

and (6A.3) replaces (GA.l) to give 

(6A.4) 

The angular position measurement can be instrumented by a potentIOmeter on the motor 

shaft and the angular velocity by a tachometer. Thus, the closed-loop system would have the 
configuration illustrated in Fig. 6.2. Note that the position gain is shown multiplying the 
negative of the system error which in turn is added to the control signal. This is consistent with 

the convention normally used for servos, wherein the position gain mUltiplies the difference 

0, - 0 between the reference and the actual positions. The quantity e defined above (6A.3) is 

the negative of the system error as normally defined in elementary texts. 
The characteristic polynomial of the system is 

I
' -I I lsI - AI = . ° s + (> 

Thus 

a = [~] 
The controllability test matrix Q and the matrix Ware given respectively by 

Q = [b, Ab J = [f30 f3] 
-af3 W = [~ ~] 
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Tachometer Potentiometer 

u 
DC motor 

w 

Velocity gain 

() 

91 
Position gain 

-e 
~---- (}, 

Figure 6.2 Implementation of an instrument servo. 

Thus 

QW = [~ ~] = (QW) ' 

and 

[( QW)T' = [0 II f3] 
II f3 0 

Thus the desired gain matrix, by the Bass-Gura formula (6.34), is 

[
0 1/f3][el' - a] [ el2/f3 ] 

g = 11f3 0 ii2 = (ii i - a)l{3 
(6A.5) 

where ii, and ii2 are the coefficients of the desired characteristic polynomial. 
While the above calculation illustrates the general procedure, the gains could have been 

more easily computed directly. For a control law of the form 

u=-g,e-g2w 

(6A.4) becomes e = w 

w = -g,{3e - (a + f3g2)W 

which has the closed· loop matrix 

[ 
0 

A = 
, -g,{3 

with the characteristic equation 

lsI - A,I = S2 + (a + g2f3)S + g,{3 

Thus 

el, = ex + g2{3 
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or 
g,=iij/3 9, = (ii, - a)/ /3 

which is the same as (6A.5). 
Note that the position and velocity gains 9, and ,!} 2, respectively, are proportional to the 

amounts we wish to move the coefficients from their open-loop positions. The position gain g, 
is necessary to produce a stable system: ii, > O. But if the designer is willing to settle for 
Q, = a, i.e., to accept the open-loop damping, then the gain 9, can be zero. This of course 
eliminates the need for a tachometer and reduces the hardware cost of the system. It is also 
possible to alter the system damping without the use of a tachometer, by using an estimate w 
of the angular velocity w. This estimate is obtained by means of an observer as discussed in 
Chap. 7. 

Example 68 Stabilization of an inverted pendulum An inverted pendulum can readily be 
stabilized by a closed-loop feedback system, just as a person of moderate dexterity can do it. 

A possible control system implementation is shown in Fig. 6.3, for a pendulum con
strained to rotate about a shaft at its bottom point. The actuator is a dc motor. The angular 
position of the pendulum, being equal to the position of the shaft to which it is attached, is 
measured by means of a potentiometer. The angular velocity in this case can be measured by 
a "velocity pick-off" at the top of the pendulum. Such a device could consist of a coil of wire 

u 

Velocity pick-off 

c=J'--------------~ 

o 

Figure 6.3 Implementation of system to stabilize inverted pendulum. 
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in a magnetic field created by a small permanent magnet in the pendulum bob. The induced 
voltage in the coil is proportional to the linear velocity of the bob as it passes the coil. And 
since the bob is at a fixed distance from the pivot point the linear velocity is proportional to 
the angular velocity. The angular velocity could of course also be measured by means of a 
tachometer on the dc motor shaft. 

As determined in Prob. 2.2, the dynamic equations governing the inverted pendulum in 
which the point of attachment does not translate is given by 

O=w 
(6B.I) 

w = n'{/ - o:w + {3u 

where a and {3 are given in Example 6A, with the inertia J being the total reflected inertia: 

J = 1m + ml' 

where m is the pendulum bob mass and I is the distance of the bob from the pivot. The natural 
frequency 0 is given by 

n2 = ~=--g--
1 + mI' I + 11 ml 

(Note that the motor inertia 1m affects the natural frequency.) 
Since the linearization is valid only when the pendulum is nearly vertical, we shall assume 

that the control objective is to maintain {/ = O. Thus we have a simple regulator problem. 
The matrices A and b for this problem are 

The open-loop characteristic polynomial is 

I s -I I lsI - AI = 1 
-0 s+ a 

= S2 + as - n2 

Thus 

The open-loop system is unstable, of course. 
The controllability test matrix and the W matrix are given respectively by 

(which are the same as they were for the instrument servo). And 

[(QW)T' = L~{3 l~{3J 
Thus the gain matrix required for pole placement using (6.34), is 

Example 6C Control of spring-coupled masses The dynamics of a pair of spring-coupled 
masses, shown in Fig. 3.7(a), were shown in Example 31 to have the matrices 

[

0 I 

o 0 
A= o 0 

o 0 

o 

o 
-KIM 
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The system has the characteristic polynomial 

D(s) = 54 + (K I M)s ' 

Hence 

The controllability test and W matrices are given, respectively, by 

Q ~ [! 
0 0 

-~MJ W~[l 
0 KIM 

0 0 

1 0 0 I 

0 -KIM 0 0 

Multiplying we find that 

QW ~ (QW)' - (QW) - ' ~ [l 
0 0 

lJ 

0 I 

I 0 

0 0 

K~Ml (6C.1) 

(6C.2) 

(This rather simple result is not really as surprising as it may at first seem. Note that A is 
in the first companion form but using the right-to-Ieft numbering convention. If the left-to-right 
numbering convention were used the A matrix would already be in the companion form of 
(6.1 I) and would not require transformation. The transformation matrix T given by (6C.2) has 

the effect of changing the state variable numbering order from left-to-right to right-to-Iert, and 

vice versa.) 
The gain matrix 9 is thus given by 

g=[~ ~ 0 ~J[-'<~/MJ=[- :: _] o 0 0 G3 G, - KIM 

I 0 0 0 ii. ii, 

A suitable pole" constellation" for the closed-loop process might be a Butterworth pattern 
as discussed in Sec. 6.5 . To achieve this pattern the characteristic polynomial should be of the 

form 

Thus 

Thus the gain matrix 9 is given by 

ii,=(I+J3)O 

ii2 = (2 + J3)02 

ii3 = (I + J3)03 

6.3 MULTIPLE-INPUT SYSTEMS 

If the dynamic system under consideration 

x = Ax + Bu 
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has more than one input, that is, B has more than one column, then the gain 
matrix G in the control law 

u = -Gx 

has more than one row. Since each row of G furnishes k gains that can be 
adjusted, it is clear that in a controllable system there will be more gains 
available than are needed to place all of the closed-loop poles. This is a benefit: 
the designer has more flexibility in the design than in the case of a single-input 
system; it is possible to specify all the closed-loop poles and still be able to 
satisfy other requirements. How should these other requirements be specified? 
The answer to this question may well depend on the circumstances of the 
particular application. One possibility might be to set some of the gains to zero. 
For example, it is sometimes possible to place the closed-loop poles at locations 
desired with a gain matrix which has a column of zeros. This means that the 
state variable corresponding to that column is not needed in the generation of 
any of the control signals in the vector u, and hence there is no need to measure 
(or estimate) that state variable. This simplifies the resulting control system 
structure. If all the state variables, except those corresponding to columns of 
zeros in the gain matrix, are accessible for measurement then there is no need 
for an observer to estimate the state variables that cannot be measured. A very 
simple and robust control system is the result. 

Another possible method of selecting a particular structure for the gain 
matrix is to make each control variable depend on a different group of state 
variables which are physically more closely related to that control variable than 
to the other control variables. 

Still another possibility arises in systems which have a certain degree of 
structural symmetry and in which it is desired to retain the symmetry in the 
closed-loop system by an appropriate feedback structure. 

The following example illustrates one method of selecting the gain matrix. 

Example 6D Distillation column For the distillation column of Example 4A, having the 
block-diagram of Fig. 4.2, we saw in Example 5G that both inputs are needed in order for 
the system to be controllable, because there are redundant poles at the origin (due to the 
integrators) from either aU I or au2 • If there were only one integrator present, it is easy to see 
that the system would be controllable from 6uI alone. This suggests a gain structure in which 
aUI depends on XI' X2, and x), and auz depends on X •. This gives four adjustable gains for the 
closed-loop fourth-order system and we would expect to be able to locate the closed-loop 
poles at whatever locations are desired. 

Thus we use a gain matrix of the form 

G = [9
0

1 92 {h 0 ] 
o 0 9. 

(6D.I) 

With the A and B matrices as given by (2G.5) it is found that the closed-loop dynamics 
matrix is 

[

all ~ bllg l 

A = A- BG = ZI 
c 0 

o 



.. 
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Thus the closed-loop characteristic equation is 

s - a" + b"gl b ,l g2 bllg, i 0 

- a21 S - an 0 : 0 

o -a'2 s : 0 
------------------------~ -------

lsI - Ael = 

o 0 0: s + b4,g4 

I
s - all+b I19\ bllg2 bllg, 

= (s + b42 g4) -a21 s - an 0 

o -a'2 s 

= (s + b42g4)(S3 + a,S
2 + a2s + a3) (60.2) 

Note that lsI - A,I factors into two terms, a first-order term giving a pole at s = -b42 g4 and a 
third-order term. The third-order term is the same as would result for a third-order system 
having dynamics and control matrices given respectively by 

with a state variable feedback of the form 

Thus we can adjust g" g2, and g3 to achieve any desired location of the roots of the third-order 
factor in (60.2) and use g4 to adjust the location of the pole at s = -b42 94' 

Note that if the gains are real numbers, as they must be in a physical system, then one 
pole must be the real pole at s = -b42 g4, and hence one of the poles arising from the cubic 
factor in (60.2) must also be real when the gains g" g2, and g, are real. Thus, by using a gain 
matrix having the structure of (60.1), we do not have freedom to place the closed-loop poles 
anywhere in the complex plane. This is not a contradiction of controllability, because (60.1) 
is not the most general form that the gain matrix G can take: four of the possible gains have 
been set to zero. Since a very satisfactory transient response can be achieved, however, with 
two real poles, the gain matrix structure of (60.1) is, in the practical sense, perfectly acceptable. 

6.4 DISTURBANCES AND TRACKING SYSTEMS: 
EXOGENOUS VARIABLES 

In the previous section we considered the design of regulators in which the 
performance objective is to achieve a specified closed-loop dynamic behavior 
(pole locations) of the system in response to arbitrary initial disturbances. A 
more general design objective is to control the system error not only for initial 
disturbances, but also for persistent disturbances, and also to track reference 
inputs. 

In Chap. 5 the general problem was set up by defining the system error 

( 6.35) 

where x, is assumed to satisfy a differential equation 

(6.36) 

In addition to the reference input we also have a disturbance Xd, so that the 
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error is given by 

e = Ae + (A - A)xr + FXd + Bu = Ae + Bu + Exo 

In Chap. 5 we defined the metastate 

(6.37) 

which makes it possible to regard the design problem, including reference and 
disturbance inputs, as a regulator problem. As was shown in Chap. 5, however, 
the metasystem is not controllable, so it is not possible to apply the pole
placement design technique to the metasystem. (Since controllability is not a 
requirement for formulating the optimum control problem, as discussed in 
Chap. 9, we will be able to use the metasystem formulation in connection with 
optimum control system design.) 

Instead of working with the metasystem, we work directly with the error 
differential equation (6.37). The exogenous vector Xo is treated as an input just 
like u. The design problem is really to arrange matters so that the control input 
u counteracts the effects of the exogenous variables. The control that we seek 
should be effective not only for a specific exogenous input, but rather for an 
entire class of inputs. Only the characteristics of the class are known to the 
designer; the specific member of the class is determined by measurements on Xo 

while the process is in operation. 
Since we are limiting our attention to linear systems, we consider only a 

linear control law, which now takes the general form 

(6.38) 

The closed-loop system using a control of the form (6.38) has the appearance 
shown in Fig. 6.4. Note the presence of two paths in addition to the feedback 

Process 
x x = Ax + Bu 

Figure 6.4 Schematic of feedback system for process with reference state and disturbance input. 
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loop in which the system error appears . There is a "feedforward" path with a 
gain G, and a path through the gain Gd , the purpose of which is to counteract 
the effect of these disturbances. 

The design is based, as already mentioned, on the assumption that the 
exogenous input vector Xo = [x~, x~J' as well as the system error e are accessible 
for measurement during the operation of the control system (i.e., in "real 
time "). Since x, is a reference input, one might think that it is always accessible. 
The instrumentation, however, might be such that only the system error can be 
measured; it may be difficult (hence costly in terms of hardware) to measure Xd 

independent of the system error. It is noted that reference input x, appears in 
(6.37) through the difference A - A, between the dynamics matrix A and the 
matrix A, used to model the reference input. If A, = A, that is, if the reference 
input can be generated as the solution of the unforced differential equation of 
the open-loop process, then no feedforward path is needed. If the open-loop 
process is stable, then the only reference inputs that can be generated are 
decaying exponentials which go to zero in the steady state. Thus if we need to 
track steps, ramps, etc., in the steady state, we cannot have A, = A for an 
asymptotically stable open-loop system. On the other hand if A has a pole at 
the origin of order /I, then by proper choice of initial conditions x, can include 
a polynomial in time of order /I - I; we can still have A, = A and hence not 
require feedforward. (Recall from Chap. 5 that the presence of a pole of order 
/I in the open-loop system makes it a "type /I" system. We thus see again that 
a type /I system can follow reference inputs containing polynomials of degree 
up to and including /I - I without use of feedforward.) 

Sometimes the disturbance Xd can be measured easily, sometimes not. In a 
temperature control system, for example, in which Xd is the ambient tem
perature of the environment of the process, it is not too difficult to accomplish 
this measurement with an extra thermometer. In an aircraft autopilot design, on 
the other hand, in which the disturbances may consist of wind-induced forces, 
it may be all but impossible to instrument the required measurements. In cases 
where the required quantities, or some of them, are not accessible for measure
ment, an observer, as discussed in Chap. 7, is used to infer estimates of these 
quantities, based on the assumed dynamic model, using the quantities that are 
accessible for measurement. 

For the present, our objective is to design the gain matrices G and Go in 
(6.38). When the control given by (6.38) is used in the general process (6.37) the 
closed-loop dynamics are 

e = Ae + Exo - B(Ge + Goxo) ( 6.39) 

which is the differential equation of a linear system excited by Xo. 

If it were possible, it would be desirable to choose the gains G and Go to 
keep the system error zero. But this is not possible: system errors may be 
present initially that cannot instantly be reduced to zero. And even when initial 
errors are zero, there are usually not enough control variables (i.e., columns in 
the B matrix) to make the coefficients of Xo vanish, as they must in order that 
the error be zero for any Xo and e. 



SHAPING THE DYNAMIC RESPONSE 239 

More reasonable performance objectives are the following: 

(a) the closed-loop system should be asymptotically stable. 
(b) A linear combination of the error state variables (rather than the entire 

state vector) is to be zero in the steady state. 

In order for the closed-loop system to be asymptotically stable the closed
loop dynamics matrix Ac = A - BG must have its characteristic roots in the left 
half-plane. If the system is controllable, this can be accomplished by a suitable 
choice of the gain matrix. 

The steady-state condition is characterized by a constant error state vector, 
i.e., in the steady state 

e=O 
which, from (6.39), means that 

(A - BG)e = (BGo - E)xo 

If the closed-loop system is asymptotically stable, A - BG = Ac has no charac
teristic roots at the origin, and hence its inverse exists. Thus the steady state 
error is given by 

(6.40) 

As noted before it is not reasonable to expect that e be zero. Instead we require 
that 

y = Ce = 0 (6.41 ) 

where C is a singular matrix of suitable dimension. We'll see shortly what a 
"suitable" dimension is. If (6.41) holds, then from (6.40) 

C(A - BG)-I(BGo - E)xo = 0 (6.42) 

Remember that we want (6.42) to hold for any Xo. This can be achieved if and 
only if the coefficient matrix mUltiplying Xo vanishes: 

C(A - BG)-I(BGo - E) = 0 (6.43 ) 

The matrix Go which satisfies (6.43) will meet the requirement of (6.41). We 
note that (6.43) can be written 

(6.44) 

We examine the possibility of solving (6.44) for the required gain matrix Go. 
Here is where the dimension of C becomes significant. Suppose that the 
dimension of y isj. Then Cis aj x k matrix, (A - BG)-I is a k x k matrix, and 
B is a k x m matrix, where m is the number of control variables. The product 
of the three matrices mUltiplying Go is thus a j x m matrix. If j > m, then (6.44) 
is "overdetermined": there are too many conditions to be satisfied by Go and, 
except for special values of E, no solution to (6.44) for Go exists. If j < m, then 
(6.4~) is "underdetermined": Go is not uniquely specified by (6.44). This poses 
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no problem; it only means that Go can be chosen to satisfy not only (6.41), but 
also to satisfy other conditions. 

Analytically the" cleanest" case is when the number of inputs m is equal to 
the dimension of y. (If y is regarded as the system output, then we can say that 
the process is .. square," having the same number of inputs as outputs.) In th is 
case, when the matrix multiplying Go is nonsingular, the desired gain matrix is 
given by 

The big, messy matrix 

that multiplies E in (6.45) has the property that 

B#B = I 

( 6.45) 

( 6.46) 

(6.47) 

A matrix having this property is called a left inverse (or left" pseudoinverse") 
of B. Matrices of this type are encountered frequently in linear systems analysis. 
In terms of B#, (6.45) can be written 

(6.48 ) 

Under what circumstances does the matrix C(A - BG)-' B possess an 
inverse? One might think that the existence of an inverse depends on the 
stabilizing gain matrix G. In fact, this is not the case. The existence of an 
inverse depends only on the open-loop dynamics: it can be shown that 
C(A - BG)-' B possesses an inverse if and only if 

lim Ho(s) = IC(sI - A)-'BI ~ 0 
s~o 

( 6.49) 

If A is nonsingular (6.49) reduces to the requirement that ICA -I BI ~ O. The 
reason that invertability of C(A - BG)-' B is independent of G is related to the 
fact that state-variable feedback does not alter the transmission zeros of a 
process, as discussed in Prob. 4.1. (See also Note 6.2.) 

The specific value of the inverse, however, does in general depend on G. 
Nevertheless, one can safely choose any feedback gain matrix G without being 
concerned about the possibility that this choice of gain will compromise the 
invertability of C(A - BG)-' B. 

In most cases, the reference state x, does not need to have all of its 
components specified. In other words, the error that the control system must be 
designed to reduce to zero may be of lower dimension that the state vector. The 
other components of the state vector may be unspecified. In these cases, the 
component of the exogenous vector corresponding to the reference state may be 
of lower dimension that the state x and the corresponding submatrix of E will 
not be A - Ad but a different matrix with fewer than k columns. Rather than try 
to express this in general terms, we illustrate it by the example that follows. 
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Example 6E Temperature coutrol Consider the temperature control problem having the elec
trical network analog shown in Fig. 6.5. The voltage u may be regarded as the analog of the 
temperature of a heater and X D as the ambient temperature. Since there is only one heater (i.e., 
one input) then we can in general control only a single quantity, perhaps v, or v2 , or a linear 
combination of the two, such as their average y = (v, + v2 )/2. 

The dynamic equations, in state-space form, are (see Example 2C) 

(6E.1) 

with 

I 
--[R-' + D (R-' + R-' + R-')] C 3 '2 D , 

I 
a22 = - C

2 

[R3' + D2(R11 + Ra' + R-')] 

b2 = Ra'D2' 

where 

We assume that the desired state is 

X2d = V2 = const 

Thus 

AD = 0 (6E.2) 

We take as the output matrix 

(6E.3) 

Assume the feedback gain matrix is 

Then 

(6E.4) 

Ro R 

+ + 
Xo 

Control 
input 

Disturbance 
input 

Figure 6.5 Electric network analog of temperature control problem. 
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v, 

and 

(6E.5) 

Note that the numerato r of (6E.5) is independent of Ih e feedback gains, irrespective of c, 

and c2 · 

In this example e(A - BG) ' 'H is a scalar (i .c., a I-by-I matrix) given by 

_ , -c,(anh, + a"h,) - c,(a'l hl + al\b,) 
p = C(A - BG) B = -----'-'--=--'------":......::..;--=..:....=-~--'-'---"..:..--

a'i a2, - a 21 a 12 + g, (b, a'2 + b2a 12 ) + g2(b, a 21 + b2a,,) 

Thus, from (6.47) 

where 

and 

B" = [q" q, l/ p 

q, = -c,(a22 + b2g,) + c,(-a21 + b2g,) 

q2 = c,(-a" + b'{}2) - c,(a" + b,g,) 

Go = B# E = [e,q, + e, q,l/p (a scalar) 

The implementa ti on of the control law is illu strated in Fig. 6.6. It is noted that even 
though the performance crite rion y = Ce = c,(v, - v,) + C2(V2 - ( 2) is a scalar combination of 
the two errors e , and e,. the fcedforward signal gr l v, + g"v, is not ex press ible as a function 
of the difference between V, and V,; both v, and v2 are required in the control law 
implementation. 

Process 

-r~ . 1 g211--~ 1 _ __ U_ .t x = Ax + flu 

Figure 6.6 Control law implementation. 
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6.5 WHERE SHOULD THE 
CLOSED-LOOP POLES BE PLACED? 

Having determined that the closed-loop poles of a controllable system can be 
placed anywhere, it is natural to ask where the poles should be placed. To assert 
that they should be placed to meet the performance requirements is begging the 
question, which is how to relate the performance requirements to the gain 
matrix 0 that is used in the implementation of the feedback law. A systematic 
method of selecting the gains by minimizing a quadratic performance integral is 
given in Chap. 9. That method has many advantages but it is by no means the 
only method available. Among the concerns that the designer might wish to 
address are those to be discussed in this section. 

The control law for a regulator u = -Ox implies that for a given state x the 
larger the gain, the larger the control input. There are limits on the control input 
in practical systems: The actuator which supplies the control u cannot be 
arbitrarily large without incurring penalties of cost and weight. Other reasons for 
limiting the control may be to avoid the potential tlamaging effects of stresses 
on the process that large inputs might cause. If the control signal generated by 
the linear feedback law u = - Ox is larger than possible or permissible for 
reasons of safety, the actuator will" saturate" at a lower input level. The effect 
of occasional control saturation is usually not serious: in fact a system which 
never saturates is very likely overdesigned, having a larger and less efficient 
actuator than is needed to accomplish even the most demanding tasks. On the 
other hand, if the control signals produced by the linear control law are so large 
that the actuator is almost always saturated, it is not likely thal the system 
behavior will be satisfactory, unless the actuator saturation is explicitly 
accounted for in an intentionally nonlinear (e.g., "bang-bang") control law 
design. If such a design is not intended, the gain matrix should be selected to 
avoid excessively large control signals for the range of states that the control 
system can encounter during operation. 

The effect of control system gain on pole locations can be appreciated by 
considering the Bass-Gura formula (6.34) for a single-input system. (Qualita
tively, similar considerations apply to multiple-input systems.) Note first that 
the gains are proportional to the amounts that the poles are to be moved, i.e., to 
the distance that the coefficients of the characteristic polynomial must move 
between the open-loop and the closed-loop system. The less the poles are 
moved, the smaller the gain matrix. Thus, large system gains are avoided by 
limiting the changes in the coefficients of the characteristic equation. It is also 
noted that the control system gains are inversely proportional to the controlla
bility test matrix. The less controllable the system, the larger the gains that are 
needed to effect a change in the system poles. There is nothing surprising about 
this. 

The inference that may be reasonably drawn from this is that the designer 
should not attempt to alter the dynamic behavior of the open-loop process more 
than is required. One reason for trying to alter the behavior of a process is to 
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stabilize it, if it is unstable, or to increase its stability by moving its poles into 
the interior of the left half of the s plane. Although stability is the most 
important consideration it is not the only consideration. Speed of response (i.e., 
bandwidth) is also important. Fast response- high bandwidth-of the closed
loop system is often sought after, since the errors in following rapidly changing 
inputs will be smaller. There may be instances, however, in which the band
width of the closed-loop system is intentionally not made as high as it can be. 
If the reference input contains a good deal of noise, it might be desirable to 
reduce the bandwidth to prevent the system from becoming excessively agitated 
by following the noise. 

Another reason for limiting the bandwidth of the closed-loop system is the 
uncertainty of the high-frequency dynamics of the process. A mechanical system, 
for example, has resonance effects (modes) due to the elasticity of the structural 
members. The dynamic model used for design ignores many if not all of these 
effects : their magnitudes are small; the exact frequencies are not easy to determine; 
the effort required to include them in the model is not justified. Other types of 
processes (thermal, chemical, etc.) also have uncertain behavior at high frequen
cies. If the uncertain high-frequency poles are included within the bandwidth of 
the closed-loop process, these resonances may be excited and result in unexpected 
high-frequency oscillation, or even instability. A prudent design requires that the 
loop transmission be well below unity at the frequencies where these resonances 
may occur. 

The bandwidth of a system is governed primarily by its dominant poles, i.e., 
the poles with real parts closest to the origin. To see this, visualize the 
partial-fraction expansion of the transfer function of the system. Terms corre
sponding to poles whose (negative) real parts are farthest from the origin have 
relatively high decay rates (damping) and hence, after an initial transient 
period, they will contribute less to the total response than terms corresponding 
to poles with real parts close to the origin. (While this behavior is typical of 
physical processes, there is no theoretical reason why the residues at poles with 
high damping cannot be much greater than the residues at the poles with less 
damping. If the highly damped poles have large residues, their effects may 
persist simply because they start out much larger.) 

In order for the transient to decay as rapidly as is required by the poles that 
are far from the origin, it is necessary to change the energy in the system 
rapidly; this would require the use of large control inputs. If there are some 
poles that are far from the origin and others that are close to the origin, the 
maximum control amplitudes will be governed by the former, but the system 
speed of response is slowed by the latter. This behavior suggests that the 
feedback gains are such that the available control is not efficiently used. 
Efficient use of the control signal would require that all the closed-loop poles be 
about the same distance from the origin. 

Having reasoned that it is imprudent to try to move the open-loop poles 
farther than is necessary (obviously it is necessary to move them to the left 
half-plane if the open-loop process is unstable) and inefficient to make some 
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poles much more highly damped (farther from the origin) than the other poles, 
one might seek to optimize the closed-loop pole locations. How to accomplish 
this in general is the subject of Chap. 9. One result of optimization tht:ory that 
can be used here concerns "asymptotic pole location"; As control effort 
becomes increasingly less" expensive," the closed-loop poles tend to radiate out 
from the origin along the spokes of a wheel in the left half-plane as given by the 
roots of 

(:J 2k 

= (_I)k+1 .. (6.50) 

where k is the number of poles in the left half-plane. (Fig. 6.7.) Poles located in 

jw JW 

--~~----------~. a 
- W I I 

k=\ k = 2 

jw 

- -j--------+_u 

k=3 k=4 

Figure 6.7 Butterworth pole configurations. 
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accordance with (6.50) are said to have a "Butterworth configuration," a term 
that originated in communication networks. 

The polynomial having as its factors the zeros of (6.50) in the left half-plane 
only are known as Butterworth polynomials Bk(z), Z = s/wo, the first few of 
which are: 

BJ(z)=z+1 

B2(Z) = z2+/2z+ I 

B3(Z) = z3+2z2+2z+ 1 

B4(Z) = Z4 + 2.613z3 + (2 + .J2)Z2 + 2.613z + I 

Some of the properties of transfer functions having Butterworth polynomials for 
their denominators are given in Note 6.3 and Prob. 6.10. 

In the absence of any other consideration, a Butterworth configuration is 
often suitable. Note, however that as the order k becomes high, one pair of 
poles come precariously close to the imaginary axis. It might be desirable to 
move these poles farther into the left half-plane. 

The considerations that govern the choice of closed-loop poles that were 
discussed above may be summarized as follows: 

Select a bandwidth high enough to achieve the desired speed of response. 

Keep the bandwidth low enough to avoid exciting un modeled high-frequency 
effects and undesired response to noise. 

Place the poles at approximately uniform distances from the origin for efficient 
use of the control effort. 

These broad guidelines allow plenty of latitude for special needs of 
individual applications. 

Example 6F Missile autopilot As noted in Example 4F, the usual function of an autopilot in a 
missile is to make the normal component of acceleration aN track a commanded acceleration 
signal aNC which is produced by the missile guidance system. This example illustrates the 
design of such an autopilot. 

Open-loop dynamics A high-performance missile, when provided with a suitable 
autopilot, is capable of achieving a relatively high bandwidth. This bandwidth may be 
comparable to that of the actuator which drives the control surface. Thus it may be necessary 
to include the dynamics of the actuator in order to have an adequate model of the process. We 
assume this to be the case in the present example, and use the first-order dynamic model for 
the actuator that was used in Example 4F, namely 

. I 
8=-(u-8) 

7 

where u is the input to the actuator and 7 is its time constant. 

(6F.I) 

The complete dynamic model of the missile (airframe and actuator) is thus given by (4F.1) 
and (4F.2) in Example 4F. In this application, however, we are interested in tracking an 
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acceleration command and hence prefer to use the acceleration error 
l 

(6F.2) 

as a state variable instead of the angle of attack. The derivative of the acceleration error is 

Now, although the commanded acceleration is not constant, we can approach the design 
problem on the assumption that it is: ciNe = O. (A better design might be achieved by making 
use of the actual rate of change of normal acceleration command, a signal that might be 
available from the missile guidance system.) 

In addition to approximating the commanded acceleration by a constant, we also assume 
that the aerodynamic coefficients Za and Z6 and the missile speed V are approximately 
constant. Using all these approximations 

(6F.3) 

But, from OF.I) and (3F.4), 

. aN I 
a = q + V = q + V (a Ne - e) 

Thus, by (6F.2) and (6F.I), we obtain from (6F.3) 

(6F.4) 

The angle of attack a, by (4F.3), is 

I . I 
a = - (aN - Z68) = - (a Ne - e - Z68) 

Za Za 
(6F.5) 

Thus the differential equation for the pitch rate, using (4F.I), is 

(6F.6) 

A single third-order vector-matrix equation defining the system is obtained from (6F.1), (6F.4), 
and (6F.6). Defining the state vector by 

x=[e,q,8], (6F.7) 

we obtain the state-space equations 

i = Ax + Bu + BaNe (6F.8) 

where 

[

-Z6/ 7'] 
B= 0 

1/7' 

(6F.9) 

where 

(6F.IO) 

The following numerical data were obtained for a representative highly maneuverable 

tactical missile: 

V = 1253 ft/s (Mach 1.1) 

Za = -4170 ft/ S2 (per radian of angle of attack) 



248 CONTROL SYSTEM DESIGN 

Zs = -IllS ft / s' (per radian of surface deflection) 

Ma = -248 rad/s' (per radian of angle of attack) 

Mq =0 

Ms = -662 rad/s2 (per radian of surface deflection) 

T = .01 s 

The characteristic equation of this system (with Mq = 0) is 

and, using the numerical data given above, (6F.II) becomes 

(s + 100)(s' + 3.33s + 248) = 0 

with roots at 

s = -100 (due to actuator) 

and at 

s = -1.67 ±jI5.65 (due to a irframe) 

(6F.II) 

as shown in Fig 6.8. The open loop thus has very little damping and a natural frequency w of 
approximately 15.65 rad/s = 2.49 Hz. 

Design considerations If the damping factor were raised to a more suitable value (say 
I: = 0.707) the natural frequency of 2.49 Hz would result in a time constant of about 0.4 s. A 
shorter closed-loop time constant would be desirable for a high-performance missile: about 0.2 s 
would be more appropriate. Thus we should seek a natural frequency of w = 30 and { = 0.707. 
This suggests a quadratic factor in the closed-loop characteristic polynomial of 

(Open loop) 

S2 + 30J2s + (3W (6F.12) 

(Closed loop) 
- 21.2 + j21.2 X __ 

(Closed loop) 

--
JW 

20 
(Open loop) 
-1.67 + j15 .67 

~f---------~-------------'~---L--------~--------~~-'a 
-100 -80 -60 -53.8 - 40 -20 o 

---X-- -20 

Figure 6.8 Open- and closed-loop poles for missile autopilot. 
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The location of the real pole at s = -100 due to the actuator is satisfactory: it is far enough 
away from the origin so as not to add substantially to the autopilot lag. We shall shortly 
discover, however, that to keep a closed-loop pole at s = -100 entails measuring (or estimat
ing) and feeding back the actuator output fi. To simplify the implementation of the autopilot 
it might be desirable to permit the open-loop actuator pole to move to a different location 
provided that the overall system performance is not degraded. This is a design option we wish 
to explore. 

The autopilot design will be done in two steps, as described earlier in the text. First we 
will design a regulator for a commanded normal acceleration of zero, theri we will compute the 
feedforward gain to eliminate the steady state error for a nonzero commanded acceleration. 

Regulator design To apply the Bass-Gura formula we need the open-loop characteristic 
equation: From (6F.ll) this is 

S3 + 103.33s2 + 581.s + 24800. = 0 

Thus the open-loop coefficient vector is 

thus 

We also find 

and 

from which: 

a = 581. 
[ 

103.33] 

[

111500. 

Q = O. 

100. 

24800. 

103.33 

1 

o 

581. ] 
1O~.33 

-11.5 X 106 

-66.2 X 103 

_104 

[

11500. 

QW= O. 

100. 

O. 

-66204. 

333.0 

- 0.248 x 10
9

] 

0.198 X 106 

24800. 

[ 

0.8657 X 10-6 0.4544 X 10-4 

(Qw)-t = 0.1090 X 10-7 -0.1517 X 10-4 

-0.3637 X 10-8 0.2040 X 10-7 

0.9035 x 10-
2

] 

-0.1215 x 10-4 

0.4055 X 10-5 

For any choice of closed-loop poles, the feedback gain matrix is given by: 

(6F.13) 

As discussed earlier, practical implementation is simplified by omitting the feedback from 
the control surface deflection. This is achieved by having g3 = O. From (6F.13), this require
ment is satisfied by making 

0.9035 x 10-2(l1 t - at) - 0.1215 x 1O-4(ii2 - a2 ) + 0.4055 x 10-5(113 - a3 ) = 0 (6F.14) 

We already decided that One factor of the characteristic polynomial be given by (6F.12). Thus 
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the complete characteristic polynomial is chosen to be 

(s + wcl(S2 + 30JZs + 900) = S3 + a,s2 + a2s + a) 

where 

a, = We + 30n 

a2 = 30nwc + 900 (6F.15) 

a3 = 900we 

with We as yet undetermined. Equations (6F.14) and (6F.15) constitute four linear equations in 
the four unknowns a" a2, a), and We" These are solved to yield 

,;, = 96.24 

a2 = 3182. 

a) = 48419. 

We = 53.8 

The location of the real pole at s = -We = - 53.8 is satisfactory, so no feedback gain from 
the surface deflection is necessary. Thus the gain matrix contains only two nonzero elements: 

G = [ -0.6366 x 10-4
, -0.3929 x 10-', 0] (6F.16) 

Feedforward gain Having decided that no feedback of the control surface deflection is 
necessary, and having adjusted the gains from the acceleration error aNC - aN and the pitch 
rate q to provide the desired closed-loop poles, it now remains to set the feedforward gain Go 
to eliminate the steady-state error for a step input of acceleration. 

The C matrix for the scalar error is 

C = [I 0 0] 

and the closed-loop A matrix is 

and 

Thus 

[ 

3.767 -8550.3 

Ac = A - BG = -0.0595 O. 

0.006366 3.929 

[ 

0.04833 8.613 

A~' = - -0.000201 0.00688 

-0.000005 0.000 82 

-111500. ] 
-595.7 

-100. 

-105.20 ] 
0.1834 

0.0105 

CA~' = [-0.04833 -8.613 105.20] 

and 

CA~' B = 5130. 

Hence 

and, finally, 

Go = B'" E = -1.313 X 10-4 (6F.17) 

The autopilot can be implemented as shown in Fig. 6.9. A body-mounted accelerometer 
measures the actual normal acceleration and a rate gyro measures the actual body pitch rate. 
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Figure 6.9 Dynamics of missile with autopilot. 
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- 100 

Robustness or design The .. robustness" of the design, i,e., its ability to withstand 
parameter variations, is of interest. It is not likely that the gain of the accelerometer or the gyro 
will vary by more than a fraction of a percent. The actuator and airframe dynamics are much 
more liable to change, In a careful performance evaluation, one would study the effect of 
parameter variations one at a time and in combination, Possibly the most likely change would 
be the dc transmission through the actuator to the output acceleration. This could be the result 
of an actuator gain change or the result of variations of airframe parameters from the values 
used in the design, Regardless of the true cause of the change, it can be represented by a gain 
K (with a nominal value of unity) multiplying the control signal u as shown in Fig. 6,9. 

The return difference for the loop containing the gain K is 

1+ KG(sI - A)- I B 

The forward loop transmission 

I -=G~(c:.S~3 I=____+~E=-I!.::s_2_+~E=.:2s=____+_=E=_3~)=_B N (s ) 
Go(s) = G(sJ - A)- B = 

lsI - AI D(s) 

Using the above numerical data we find that 

(iI) 

N(s) = -7,09s 2 + 2601." + 23 608 

= 7.09( -s + 376.)(s + 8,86) 

jw 

(b) 

Figure 6.11) Root·locus plot for missile autopilot 

G(s) = 7.09( -s + 376)(s + 8.86) 

(s + 53.8)(S2 + 30hs + 900) 

800 
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which results in apparent zeros at s = 376. and s = -8.86. (These are not zeros of the 
open-loop process, but are created by the use of the sensors of acceleration and pitch rate.) 

The root locus has the appearance shown in Fig. 6. l0. The root locus starts at the 
open-loop poles at s = - lOO and s = -1.67 ± j 15.65 and goes to the apparent zeros. At a 
nominal gain of K = I, the loci pass through the poles for which the operation was designed 
(s = -ISJ2±jI5J2, and s = - 53.8) and then continue toward the imaginary axis and 
ultimately into the right half-plane. Because of the nonminimum phase zero at s = 376, the 
locus has a branch that goes out along the positive real axis as K .... 00, as was discussed in 
Chap. 5. 

The range of gain K for which the system is stable can be found using the Routh or 
Hurwitz algorithm of Chap. S and is 

-1.14 < K < l2.21 

The gain margin is thus l2.2 (or 22 dB) which is more than ample. The frequency at which the 
root locus crosses the imaginary axis is found to be w = l87. The right half-plane root-locus 
plot is shown in Fig. 6.10(b) . It should be noted that the loci, after crossing the imaginary axis , 
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Figure 6.11 Bode plot for open-loop transmission for missile autopilot. 
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bend over toward the positive real axis and reach it at some positive real value of s > 376, the 
positive zero of N(s) . Then one branch goes to the zero and the other goes to +00. 

The Bode plot for the open-loop transmission Go(s) is shown in Fig. 6.11. 

PROBLEMS 

Problem 6.1 Inverted pendulum on cart: statc variablc feedback 

Consider the inverted pendulum on the motor-driven cart of Prob. 2.1 with numerical data as 
given in Prob . 3.6. [t is desired to place the dominant poles (in a Butterworth configuration) at 

s =-4 and s = -2 ±j2J:;' 

and to leave the pole at s = -25 unchanged. 
(a) Find the gain matrix that produces this set of closed-loop poles. 
(b) It is desired to move the cart from one position to another without causing the pendulum 

to fall. How must the control law of part a be modified to account for a reference input x, ? 

Problem 6.2 Hydraulically actuated gun turret 

It is desired to increase the bandwidth of the hydraulically actuated gun turret of Example 4E 
by use of state-variable feedback. _ 

The dominant poles, i.e., those closest to the origin, are to be moved to s = -IOJ2( I ± j I). The 
other poles (at s = -64.5 ± j69.6) are already in suitable locations, but they can be moved in the 
interest of simplifying the feedback law by eliminating feedback paths. 

(a) Determine the regulator gains for which the closed-loop poles are at s = -IOJ2(i ± j I) 
and at s = -64.5 ± j69.6. 

(b) For simplicity, only two nonzero regulator gains are permitted: the gain from X, = 0 and 
one other gain, either from X 2 = W or from X3 = p. [s it possible with a gain matrix of the form 

or 

g8 = [g" 0, g3, OJ 

to place the dominant poles at s = -I OJ2( I ± j I) and still keep the "fast" poles at their 
approximate locations? If both 9A and 9B can achieve this requirement, which is the better choice? 
Explain. 

(e) Let the tracking error e be defined by 

e = 0 - 00 = x, - 00 

where Oil is a constant reference angle. Show that a feedforward gain is not needed to achieve zero 
steady state error in tracking a constant reference. (Note that the open-loop system is "type \''') 

(d) There are three possible disturbances dq, dp, and dT as shown in Fig. 4.4. Since, by part a, 
it is unnecessary to estimate the reference input 00 , we can define the exogenous vector as 

and the distribution matrix as 

For each of the sets of gains in parts a and b, find the feedforward gains for the exogenous variables 
which will ensure zero steady state error. 
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Problem 6.3 Two-car train 

It is desired to bring the two-car train of Probs. 2.5 and 3.9 to rest at the origin using only the 
motor on car I. Find the gain matrix G = g' in the control law u = -g'x which places the poles at 
s == -I ±jl and at s = -100 ±jIOO. 

Problem 6.4 Two-car train (continued) 

Modify or redesign the control law obtained in Prob. 6.3, so that the train maintains a constant 
velocity V = const. 

Problem 6.S Aircrart longitudinal motion with simplified dynamics 

The speed variations in aircraft longitudinal motion are often "trimmed" by a separate throttle 
control so that 6.u can be assumed negligible. Thus we can use a simplified dynamic model in which 
the state variables are 

X z = q 

Using these state variables and the aerodynamic coefficients of Prob. 4.5, find the gains that place 
the closed-loop poles in the Butterworth pattern : s = -2, s = -I ±jJi 

Problem 6.6 Constant-altitude autopilot 

The altitude h of an aircraft is given by 

h=V,,=V(O-a} 

where " is the Hight-path angle. (See Fig. P6.6.) Hence the aircraft altitude can be maintained 
constant by keeping the Hight-path angle" = 0 - a zero. Add a state variable 

where ho is a reference altitude, to the state variables used in Prob. 6.5. 
(a) Draw the block diagram of the closed-loop system. 
(b) Find the gains for which the closed-loop poles lie in the Butterworth pattern: 

s = 2.5(-1/2±jJ3/2) s = 2.5( -J3/2±jl/2) 

Problem 6.7 Aircraft lateral dynamics: turn coordination 

When an aircraft executes a perfectly coordinated turn the sideslip angle {J is zero. (When this 
occurs, the net force vector acting on the aircraft lies in the vertical plane of the aircraft so the 
occupant has the same kinesthetic sensation as when the aircraft is Hying without banking.) 

v 

Figure P6.6 Aircraft longitudinal dynamics. 
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(a) The rudder is often used for turn coordination. We may thus assume a control law for the 

rudder, using (2.41) 

Y" YA 9 ( y,) Yp ( YfJ I) Vii" = - VIiA - \I</> + I -V r - VP - v+y. (3 ( P6.7a) 

when (P6.7a) is substituted into the first equation of (2.41) we obtain 

. 1 
(3= - y.{3 (P6.7b) 

Hence any sideslip that may be initially present will be reduced to zero with a time constant of T 
When (P6.7a) is substituted into the next three equations of (2.41) a third-order system with a single 
control IiA and a di stu rbance (3 is obtained. The pol es of that system may be placed by use of the 
Bass-Gura formula. Using the data of Prob. 4.4, find the control law for the ailerons that makes the 
sideslip decay time constant T = 0.2 s and places the remaining poles at s = -I and s = -I ± j3. 
Combine the result with (P6.7a) to obtain the entire control law. 

(b) As the aircraft makes a constant-radius turn the bank angle</> becomes constant. Thus if a 
constant radius turn is desired, a constant bank angle </>0 is commanded. Modify the control law of 
part a so that the aircraft error e = </> - </>0 is reduced to ze ro in the steady state. (Let e be a state 
va ri able in place of </>.) 

Problem 6.8 Three-capacitance thermal system 

A state-variable feedback control law is to be designed for th e thermal control sys tem 
considered in Prob. 3.7, et seq. 

(a) Find th e control gains that place the regul a tor poles in a third-order Butterworth 
configuration of radius 2, i.e., the characteristic equatio n of the closed-loop system is to be 

(b) It is desired to keep point 3 ( i.e., v3 ) at a consta nt temperature V in the presence of an 
external temperature vo' Let the state be defined as x = [v" v2 , e]' where e = V3 - V, and the 
exogenous vector as Xo = [v, va]'. Find the matrix E for the system, and, using the gain matrix from 
part a, find the feedforward gain matri x Go = B# E. 

(e) Draw a block diagram of the control law showing the feedback a nd feedforward paths. 
Does anything seem unusual about this structure? 

Problem 6.9 Two-axis gyro: gains by pole placement 

A control law such as shown in Fig. 2.15 is to be designed for a two-axis gyro described in 
Example 2F (et seq.). The design will be acco mplished in a number of steps which will encompass 
several problems. 

The present problem is to design a determinis ti c control law under the assumption that all the 
state variables are measurable. The dynamic model to be llSed for the design is summarized in 

Example 3. The following data, typical of a small gyro , may be used for numerical calculations: 

H - = 3000 sec- l 

Jd 

For this stage of the design it is assumed that the state variables /5" Oy, Wx/J, wyfJ, arid the 
external angular velocity components WxE, WyE are all measurable. (The external angular velocity 
components are not measurable, of course. [f they were, there would be no need for the gyro!) [n 
subsequent problems we shall consider the design of observers to measure those state variables, 
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namely WxB, WyB, WxE, WyE that cannot be measured, using only observations given the measure
J1lents of 8x and 8y . 

A linear control law of the form 

u = [~:] = [:;:;:J = -G.[::] -Gw[:::J -Go[:::J 
The matrices G. and Gw are the" regulator" gains, to keep the gyro wheel stable in the absence of 
external angular velocity components, and Go is the gain matrix for the exogenous inputs, in this 
case the external angular velocity components WxE and wyE' 

(a) Considerations of symmetry suggest that the regulator gain matrices should be of the form 

Gs = [ g, g2J 
-g2 g, 

This means that there are four parameters for a fourth-order system, and a unique design can be 
achieved by pole placement. Determine the regulator closed-loop characteristic equation in terms of 
g" g2' g" g •. Does this place any restriction on the closed-loop pole locations? 

(b) Using the theory developed in Sec. 6.4, find the matrix Go that maintains 8., 8y at zero in 
the steady state, given that the exogenous input angular velocity components WxE and WyE are 
constants. 

(e) In the steady state with W"E "" 0 and WyE "" 0 the control vector u = [Tx/ Jd , T,/ JdJ' is not 
zero. How does it depend on the input angular velocity components? Does this suggest a method 
for determining the input angular velocity? 

problem 6.10 Properties of Butterworth filters 

Let 

I 
H(s)=--

Bk(s/ wo) 

where Bk(z) is a Butterworth polynomial of order k. 
(a) Show that 

IH(jw)1 = [I + (w/wO)2k]'/2 

(b) Sketch the amplitude plot corresponding to H(jw). 
(e) Explain why the Butterworth polynomial is said to have a "maximally Rat" amplitude 

response as compared with other systems of the same order. 

NOTES 

Note 6.1 Bass-Gura formula 

The Bass-Gura formula[l] was originally derived by a method that closely resembles that used 
in this book. A simpler but less intuitive derivation may be found in Chap. 3 of Kailath's book[2] 
which contains several other formulas for the fee~back gains. 

Note 6.2 Zeros of closed-loop system 

The matrix of transfer functions for the m-input, m-output system 

x = Ax + Bu y = ex (I = m) 

is H(s) = C(sI - A)-' B 
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(n accorda nce wi th th e defin ition o f transmiss ion zeros given in Sec. 4. 10, the transmi ss io n 
zeros of H(s ) a re the ze ros of IC(sJ - A)-I RI · 

As reveal ed in the ana lys is of Prob 4.1, the transm issio n ze ros of a sys tem in wh ich 
state-variable feedback is used a re not altered by th e use of such feedback, i.e., the tra nsmi ssion 
zeros of H,.(s) = C(sJ - A + BG) - ' B are the zeros of H(s) . 

For B# as given by (6.46) to exist, it is necessary th a t IC(A - RG)BI "" 0, which is th e same as 
requiring that Hc(s) have no transmission zeros at the origin (s = 0). Since the transmission zeros o f 

H,.(s) coincide with those o f H( s), however, we conclude th a t the necessary and sufTicient condition 
for B# to exist is that H( s) have no transmission zeros at th e origin. 

Note 6.3 Butterworth polynomials 

Butterworth po lynomials have found ext en ivc appl ica tion iJl om mun icalio n not works fo r 
their .. max ima lly nat" rrequency response cha racteris tics. ( ee Problem 6. I 0.) Th ey have a l 0 

occurred in conlro l system design by class ica l methods. (See [31. fo( example.) H uH the optimum 
closed · loop pole locations tend to a nutte rwonh configura tio n as the control cost decreases was firs t 
pointed out by KaJ man[4] and subsoquently stud ied in considerable det"dil by Kwakernaak.[5] (Ste 

ote 9.4 for rurther di scussio n or asym ptotic behavior.) 
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---------------------------------------------------------------
CHAPTER 

SEVEN 

LINEAR OBSERVERS 

7.1 THE NEED FOR OBSERVERS 

In Chap. 6 we studied methods for haping the dynamic response of a 
closed-loop sy tern by electing th e feedback gains to "place" the resulting 
poles at desired locati.ons. In order to place the pol es at arbitrary locations, it is 
generally necessary to have all the sUl te variable available for feedback. There 
are many systems, of course, such as those illustrated in xamples 4D and 4E, 
in which acceptable performance can be achieved by feeding back only tho ' c 
state variables that are accessible to measurement. But often it is not possible to 
achieve acceptable performance using only those state variables that can be 
measured . Must we abandon the hope of co ntrolli ng such system? Fortunately 
not. U the system is observable, it is poss ible to estima te those state variables 
that are not directly access ible to measuremenl using the measurement data 
from those state variables that are acce.ssib le. And by u e of the e tate-variable 
estimates ra ther than tbei r measured values one can usually achieve ac eptable 
performance. State-variable estimates may in orne circumstances be even prefer
ab le to direcl measurements, becau e the errors introduced by the instruments 
that provide these measurements may be larger than the errors in estimating lhese 
variables. 

A dynamic sy tem Whose state variables are the estimates of the slate 
variables of another sys tem i called an observe,. of the latter ystem. This term 
was inlroduced into linear sys tem theory by D. Luenberger iJl 1963[1 ,2,3] (see 
Note 7 J). Luenberger showed thaI , for any observable linea r sy tern, an 
observer can be designed having the property thaI the estimation rror (i.e., the 
difference between the state of the actual system and the sjate of the observer) 
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