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is known in mathematical literature as the resolvent of A. In engineering 
literature this matrix has been called the characteristic frequency matrix[ I] or 
simply the characteristic matrix.[ 4] Regrettably there doesn't appear to be a 
standard symbol for the resolvent, which we have designated as <I>(s) in this 

book. 
The fact that the state transition matrix is the inverse Laplace transform of 

the resolvent matrix facilitates the calculation of the former. It also character
izes the dynamic behavior of the system, the subject of the next chapter. The 
steps one takes in calculating the state-transition matrix using the resolvent are: 

(a) Calculate sf - A. 
(b) Obtain the resolvent by inverting (sf - A) . 
(c) Obtain the state-transition matrix by taking the inverse Laplace transform 

of the resolvent, element by element. 

The following examples illustrate the process. 

Example 3C DC motor with inertial load In Chap. 2 (Example 2B) we found that the dynamics 

of a dc motor driving a n inertial load are 

O=w 
w = -aw + (3u 

The matrices of the state-space characterization are 

Thus the resolvent is 

)_, [s -I J-' I [-,+a IJ [~ s(!+a)] ClJ(s) = (sf - A = = --- = o s+a 5(s +a ) 0 s I o -
s + a 

Finally, taking the inverse Laplace transforms of each term in ClJ(s) we obtain 

eA ' = <P(l) = [~ (1 - ee_-:,')/ a J 

Example 3D Inverted pendulum The equations of motion of an inverted pendulum were 

determined to be (approximately) 

O=w 
w=o'e +u 

Hence the matrices of the state-space characterization are 

B = [~J 
The resolvent is 

[ s -IJ-' I [s IJ ClJ(s) = (sf - A)-' = = - -_0 2 S s2 - 0 2 0 2 
S 

1 
1 
! 
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DYNAMICS 01"' L1N~AR SYSTEMS 71 

and the state-transition matrix is 

A [COSh HI <1>(1) = e '= 
H sinh HI 

sinh lll/fl] 
cosh HI 

For a general kth-order system the matrix sf - A has the following 

appearance 

[

s - all - a 12 - alk J 
-a s - a . . . - Q k 

sf - A = .... 2.1 • •..... . 2~ . .. •• . •..•• . . 

- akl - a u .. • S - (/ kk 

(3.50) 

We recall (see Appendix) that the inverse of any matrix M can be written 
as the adjoint matrix, adj M, divided by the determinant IMI. Thus 

( 
_ ,) - 1 adj (sf - A) 

s1 - A = -;:.....;.--~ 

1sT - AI 

If we imagine calculating the determinant Isf - AI we see that one of the terms 
will be the product of the diagonal elements of sf - A: 

(s - all)(s - an)' .. (s - akk) = Sk + CIS
k

-
1 + ... -I- Ck 

a polynomial of degree k with the leading coefficient of unity. There will also be 
other terms coming from the off-diagonal elements of sf - A but none will have 
a degree as high as k. Thus we conclude that 

(3.51 ) 

This is known as the characteristic polynomial of the matrix A. It plays a 
vital role in the dynamic behavior of the system. The roots of this polynomial 
are called the characteristic roots, or the eigenvalues, or the poles, of the system 
and determine the essential features of the unforced dynamic behavior of the 
system, since they determine the inverse Laplace transform of the resolvent, which 
is the transition matrix. See Chap. 4. 

The adjoint of a k by k matrix is itself a k by k matrix whose elements are 
the cofactors of the original matrix. Each cofactor is obtained by computing the 
determinant of the matrix that remains when a row and a column of the original 
matrix are deleted. It thus follows that each element in adj (sf - A) is a 
polynomial in s of maximum degree k - 1. (The polynomial cannot have degree 
k when any row and column of sf - A is deleted.) Thus it is seen that the 
adjoint of sf - A can be written 

Thus we can express the resolvent in the following form 

- I Els
k

-
I + ... + Ek 

(sf - A) = -k;-' - - ;-k---:"I--- 
S + als + ... + ak 

(3.52) 
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200 CONTROL SYSTEM DESIGN 

* 

>---- --+--y 

Figure 5.6 Block diagram showing that ba lanced bridge is neither controllable nor observable. 
(Elements with * open when bridge is balanced . ) 

When numerical values are inserted for the physical parameters in the systems 
of Examples 5B and 5C there is no way of distinguishing between the qualitative 
nature of the uncontrollability of the two systems: they are both simply uncontrol
lable. But physically there is a very important distinction between the two systems. 
The two-mass mechanical system is uncontrollable for every value of the param
eters (masses, spring rates); the only way to control the position of the center 
of mass is to add an external force . This necessitates a structural change to the 
system. The balanced bridge, however, is uncontrollable only for one specific 
relationship between the parameters, namely the balance condition (5CA). In 
other words, the system is almost always controllable. (As a practical matter, it 
will be difficult to control VI and V2 independently when (5CA) is nearly true. 
This raises the issue of degree of controllability, a topic discussed in Note 5.3.) 

It is important for the control system engineer to recognize this distinction, 
particularly when dealing with an unfamiliar process for which the state-space 
representation is given only by numerical data. A numerical error in calculating 
the elements of the A and B matrices, or an experimental error in measuring 
them, may make an uncontrollable system seem controllable. A control system 
designed with this data may seem to behave satisfactorily in simulation studies 
based on the erroneous design data, but will fail in practice. On the other hand, 
a process that appears to be uncontrollable (or nearly uncontrollable), but which 
is not structurally uncontrollable, may be rendered more tractable by changing 
some parameter of the process-by "unbalancing the bridge." 

Example 5D How not to control an unstable system (inverted pendulum) There are many ways 
of designing perfectly fine control systems for unstable processes such as the inverted 
pendulum of Examples 2E and 3D. These will be di scussed at various places later on in this 
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CONTROLLABILITY AND OBSERVABILlTY 201 

COMPENSATOR INVERTED PENDULUM 

u 8 

Figure 5.7 Unstabilizable compensation of inverted pendulum. 

book. But one w~y guaranteed to be disastrous is to try to cancel the unstable pole with a zero 
in the compensator. The reason for the disaster is the subject of this example. 

Co nsider the inverted pendulum of Example 30 with the output being the measured 
position. The transfer function from the input (force) to the output (position) is 

yes) I 1 
H(s) = -= --~=-----

f(s) 52 - 0 2 (.I + O)(s - 0) 

This is obviously unstable. A much better transfer function would be 

I 
H(s)=--

sis + 0) 

(SO.I) 

(50.2) 

which is stable and, because of the pole at the origin, would be a "type-one" system, with zero 
steady state error , Thus, one might be tempted to .. compensate" the unstable transfer function 
by mea ns of a compensator having th e transfer function (Fig. 5.7) 

s -.!1 0 
G(s) = ---= 1- - (SO.3) 

s s 

with 

Of course it will not be possible to make fl precisely equal to 0 so the compensation will not 
be perfect. But that is not the trouble, as we shall see. 

The compensator transfer function (50.3) represents" proportional plus integral" com
pensation which is quite customary in practical process control systems. The transfer function 

of the compensated system is now 

s -0 
He(s) = G(s)H(s) = 2 2 -> H(s) 

sis - 0 ) 
as (SO.4) 

A block diagram representation of this system is shown in Fig. 5.7, and the state-space 
equations corresponding to this representation are 

XI = X2 

X2 = 02XI - X J + U 

X; = flu 

(SO.5) 

where XJ is the state of the integrator in the compensator. The matrices of the process (50.5) 

are 
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Figure 5.8 Partial fraction representation of Fig. 5.7. 

The A matrix can be transformed to diagonal form by the transformation matrix 

c 0 '] T-' - [~ 
I 

i,j T=-I- 0 2 -0 -I -0 
202 

0 0 2 0 

We find that 

A - TAT' - [: 

0 

:] -0 

0 

[ n-u ] _ I _ 
B = TB = -2 -(0 + 0) 20 _ 

20 

y 

The state-space representation of the transformed system is as shown in Fig. 5.8. This 
block-diagram corresponds directly to the partial-fraction expansion of (50.4): 

[i/H 2 (0 - [i)/20 2 -(0 + [i)/2n2 

H (s) = --+ + --'---'----
c s s-O s+O 

(50.6) 

Note carefully what happens when n -> O. In the block-diagram the connection between 
the control input u 'and the unstable state x, is broken, rendering the system uncontrollable 
and unstabilizable. In (50.6) the residue at the unstable pole vanishes. But now we understand 
that the vanishing of a residue at a pole of a transfer function does not imply that the subsystem 
giving rise to the pole disappears, but rather that it becomes" invisible." 

If the original inverted pendulum could have arbitrary initial conditions, the transformed 
system (50.5) could also have arbitrary initial conditions and hence the inverted pendulum 
would most assuredly not remain upright, regardless of how the loop were closed between the 
measurement y and the control input u. 

More reasons for unobseevability The foregoing examples were instances of 
uncontrollable systems. Instances of unobservable systems are even more abun
dant. An unobservable system results any time a state variable is not measured 
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Figure 5.9 Systems in tandem that are unobservable. 

directly and is not fed back to those state variables that are measured. Thus, any 
system comprising two subsystems in tandem (as shown in Fig. 5.9, in which 
none of the states of the right-hand subsystem can be measured) is unobservable. 
The transfer function from the inputs to the outputs obviously depends only on 
the left-hand subsystem. 

Physical processes which have the structure shown in Fig. 5.9 are not 
uncommon. A mass m acted upon by a control force f is unobservable if only 
its velocity, and not its position, can be measured. This means that no method 
of velocity feedback can serve as a means of controlling position. In this regard 
it is noted that the integral of the measured velocity is not the same as the actual 
position . A control system shown in Fig. 5.10 will not be effective in controlling 
the position x of the mass, no matter how well it controls the velocity x; any 
initial position error will remain in the system indefinitely. 

In addition to the obvious reasons for unobservability there are also some 
of the more subtle reasons such as symmetry, as was illustrated by Example 5C. 

5.3 DEFINITIONS AND CONDITIONS FOR 
CONTROLLABILITY AND OBSERV ABILITY 

In Secs. 5.1 and 5.2 we found that uncontrollable and! or unobservable systems 
were characterized by the property that the transfer function from the input to 

; 
>---e--.!J 

x 

Figure 5.10 Position of mass cannot be observed and cannot be controlled using only velocity 
feedback. 
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232 CONTROL SYSTEM DESIGN 

or 
9,=!i,/{3 .'J ,= (Il, --a) / {3 

which is the same as (6A.5). 
Note that the position and velocity gains {/, and {/" respectively, are proportional to the 

amounts we wish to move the coefficients from their open-loop positions. The position gain 9, 
is necessary to produce a stable system: 11, > O. But if the designer is willing to settle for 
a, = «, i.c. to accept the open-loop damping, then the gain {/, can be zero. This of course 
eliminatcs the need for a tachometer and reduces the hardware cost of the system. It is also 
possible to a lter the system damping without the use of a tachometer, by using an estimate w 
of the II ngula r velocity liJ. This estimate is obtained by means of an observer as discussed in 

Chap. 7. 

Example 6B Stabilization of an inverted pendulum An inverted pendulum can readily be 
stabilized by a closed-loop feedback system, just, s a person of moderate dellterity can do il. 

A possible control system implementation is shown in Fig. 6.3, for (I pendulum con
strained to rotate about a shaft at its bottom point. The acnnltor I a dc motor. The angular 
position of lht) pendulum, being equal to the position of the shaft to which it i II.lt3ched, is 
measured by mcan. of a poteotiometer. The !tllgu lar velocity in this case can ht measured by 
a "velocity pick-oU" nl the top of the pendulum. Sl.Ich It device could consist of n coil of wire 

Velocity pick-off 

u 

Figure 6.3 Implementation of system to stabilize inverted pendulum. 

uqssing7
Line

uqssing7
Highlight



SHAPING THE DYNAMIC RESPONSE 233 

in a magne tic field crc,)ted by a ~m (l\l permanent magnet in the pendulum bob. The induced 
vOltage in the ooil is proportional to the tinear velocity of the bob as it pas~es the coil. And 
since the bop is at a fixed distance from the pi v L point the linear ve locity is proportional La 
the angular veloci ty . TIle angular veloci ty could of course also be measured by means of a 

tachometer 011 the de molor shuft. 
As determined in Prob. 2.2 , the dynamic equations governing the inverted pendulum in 

which the point of attachment does not translate is given by 

8=w (6 3.1) 

w = 0 2 0 - (fW + {3u 

where a and {3 are given in Example 6A, with the inertia J being the total reflected inertia: 

where m is the pendulum bob mass and I is the distance of the bob from the pivot. The natural 

frequency 0 is given by 

02=~ =--g--
J + me l + Jlml 

(Note that the motor inertia J,,, affects the natural frequency.) 
Since the linearization is valid only when the pendulum is nearly vertical, we shall assume 

that the control objective is to maintain IJ = O. Thus we have a si mple regulator problem. 

The matrices A and b for this problem are 

The open-loop characteristic polynomial is 

\ 

S - \ \ Is/ - AI = _02 S + a 
= S2 + as - 0 2 

Thus 

a2 = _ 0 2 

The open-loop system is unstable, of course. 
The controllability test matrix and the W matrix are given respectively by 

'(which are the same as they were for the instrument servo). And 

[(QW)T' = L~{3 1~{3] 
Thus the gain matrix required for pol e placement using (6.34), is 

.. 

Example 6C Control of spring-coupled masses The dynamics of a pair of spring-coupled 

masses, shown in Fig. 3.7(a), were shown in Example 3110 have the matrices 

l
o l 

o 0 
A = o 0 

o 0 

o 

o 
- KIM 
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The system has the characteristic polynomial 

D(s)=s4+(KIM)s2 

Hence 

The controllability test and W matrices are given, respectively, by 

lo ° 
o ° Q = 0 I 

I 0 

Multiplying we find that 

o 

° -KIM 

KIM 

° 
o 

o 0 I 0 
QW = (QW)' = (QW)-I = 

l

o ° ° I] 
o I 0 0 

I 0 0 0 

(6C.1) 

(6C.2) 

(This rather simple result is not really as surprising as it may at first seem. Note that A is 
in the first companion form but using the right-to-left numbering convention . If the left-to-right 
numbering convention were used the A matrix would already be in the companion form of 

(6 .11) and would not require transformation. The transformation matrix T given by (6C.2) has 

the effect of changing the state variable numbering order from left-to-right to right-to-Ieft, and 

vice versa.) 

The gain matrix 9 is thus given by 

= [~ ~ ~ ~] [-2 -ii~ I Ml = [ : : _] 
goo 0 ii, if]. - K j M 

I 0 0 0 ii4 ii, 

A suitable pole "constellation" for the closed-loop process might be a Butterworth pattern 
as discussed in Sec. 6.5. To achieve this pattern the characteristic polynomial should be of the 

form 

Thus 

Thus the gain matrix 9 is given by 

ii, = (1 + -/3)0 

ii2 = (2 + -/3)02 

ii, = (1 + /3)0' 

6.3 MULTIPLE-INPUT SYSTEMS 

If the dynamic system under consideration 

i = Ax + Bu 
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