
CHAPTER 3 

Sampled-Data Systems 

3.1 INTRODUCTION 

The usc of digital logic or digital computers to calculate a control acL ion for 
a cOlltinuous, dynamic system introduces the fundamental operatio)l of sam
pling. Samples are taken from the continuous, physical signals sllch as posi
tion, velocity, or temperature, and these Sl'l.l llpies are us(~d in the COlllputn 
to calculate the controls to be applied. Such digital cOlltrob an~ hybrids, 
where discrete signals appear in some places and continuous signals occur 
in other parts. Such systems arc called sampled-data systenu; because sorne 
continuous data are sampled before being used. In many ways, tllC analysis 
of a purdy continuous system or of a purely discret.c systCtll is siIIlplr~r than 
is that of the hybrid case. However, in digital control Illuch of the proc(~ssing 
is done via digital logic on discrete signals, but tlw origin of the signals is 
in the continuous world, and the destination of our computed outputs is 
there as welL Thus the role of sampling and the conversion from continuous 
to discrete and back from discrete to continuous arc very iIllportant to IlIl

derstamling digital control, and we must st udy Lhe process of ::;<1mplillg and 
how to make mathematical models of analog-to-digital COItVnSiOll h(~CallSC 

our real interest is in the hybrid, sampled-data casco This allalysis will re
quire some careful treatment via the Fourier transform, uut. the d[ort will 
he well rewarded with the understanding it will bring to later systems. 

In this chapter, we introduce the analysis of the s,ulljJlillg proccss and 
describe both a time domain and a frequency domain n~prcscntation . We 
also describe the companion process, that of sample extrapolation or hold
ing to rc~cover a continuous time signal from its samples. As part of this 
analysis , we show that, because a sampled-data system is ltlade t.o he time 
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varying by the introduction of sampling, it is not possible to describe such 
systems exactly by a transfer function. However, after sampling and holding, 
a continuous signal is recovered, and we can approximate the response of a 
sample and hold to a sinusoid by fitting another sinusoid of the same fre
quency to the complete response. We will show how to compute this best-fit 
sinusoidal response analytically and experimentally and thus have a good 
approximation for a transfer function. For those familiar with the idea, our 
approach is equivalent to the use of the "describing function" that is used to 
approximate a transfer function for simple nonlinear systems. This concept 
will be studied in Chapter 11. 

Once the operations of sampling and holding are understood, we will 
show that we can always represent the relationship between the samples of 
the input and the samples of the output of a linear constant system by a 
discrete transfer function. Thus if we are willing to focus on the samples 
only, the entire power of linear, constant system theory is available to us. In 
fact, the analysis of discrete linear systems is in many ways simpler than the 
analysis of continuous linear systems in the way that subtraction is simpler 
than differentiation. We will see this when in the next chapter we use the 
z-transform to analyze difference equations; however, in the digital control 
of continuous dynamical systems we must understand the transitions from 
continuous to discrete and back again from discrete to continuous signals 
from the start. This is what we do in this chapter for the most elementary 
operations: sampling and holding. 

3.2 ANALYSIS OF THE SAMPLE AND HOLD 

To get samples of a physical signal such as a position or a velocity into digital 
form, we typically have a sensor that produces a voltage proportional to the 
physical variable and an analog-to-digital converter, commonly called an 
AjD converter or ADC, that transforms the voltage into a digital number. 
The physical conversion always takes a finite time, and in many instances 
this time is significant with respect to the sample time of the controls and 
with respect to the rate of change of the signal being sampled. In order 
to give the computer an accurate representation of the signal exactly at 
the sampling instants kT, the AjD converter is often preceded by a circuit 
called the Sample-and-Hold Circuit or SHC. A simple electronic schematic 
is sketched in Fig. 3.1, where the switch, 5, is an electronic device driven by 
simple logic from a clock. Its operation is described below. 

With the switch, 5, in position 1, the amplifier output Vout(t) follows or 
tracks the input voltage Vin (t) through the transfer function 1 j (RC s+ 1). The 
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Figure 3.1 Analog-to-digital converter with SalIlJlI(~ alld hold . 

circuit bandwidth of the SHC, 1/ RG, is selected to bc high compan~d to the 
input signal bandwidth. Typical val lies are R = 1000 ohms, C = 30 x 1O-l2 

farads for a bandwidth of f = 1/27rRG = 5.3 MHz. During this "tl'<-1ckiIlg 
timc," the ADC is turned off and ignores Vout. When a sample is to be taken 
at t = kT the switch 5 is set to position 2 and the capacitor C holds the 
output o[ the operational amplifier frozen from that time at Vout (kT). The 
ADC is now signaled to begin conversion and has the constant input. frottl 
the SHe to work on, so the resulting digital number is a true rc~prcscn1.at.i()1l 
of the input voltage at the saruple time. vVhen the conversion is completed, 
the digital number is presented to the digital computer at which tillle the 
calculations based on this sample value can begin . The SHC switch is now 
moved to position I, and the circuit is again tracking, waiting for the next 
command to freeze a sample. For example, the conversion time of the Burr
I3rown ADC803 is l.5 microseconds for 12 bits of accuracy. The SHC needs 
only to hold the voltage [or this short time in order for the cOtlversion to 
be completed before it is started tracking again. The vall10 taken is held 
inside the computer for the entire sampling period of the system, so the 
combination of the electronic SHC plus the ADC operate as a s<tmplc-and-



104 CHAPTER 3 SAMPLED-DATA SYSTEMS 

00 

/ r'(!) = L r(t)o(! - k l ) 

--~ T --- k=-oo 

rU) 

Figure 3.2 The sampler. 

hold for the sampling period, T seconds, which may be many milliseconds 

long. 
For the purpose of the analysis we separate the sample and hold into 

two mathematical operations: a sampling operation represented as impulse 
modulation and a hold operation represented as a linear filter. The symbol 
or schematic of the ideal sampler is shown in Fig. 3.2; its role is to give a 
mathematical representation of the process of taking periodic samples from 
r(t) to produce r(kT) and to do this in such a way that we can include 
the sampled signals in the analysis of continuous signals using the Laplace 
transform. 1 The technique is to use impulse modulation as the mathematical 
representation of sampling. Thus, from Fig. 3.2, we picture the output of 
the sampler as a string of impulses, 

00 

r*(t) = L r(t)o(t - kT) . (3 .1) 

k=-oo 

The impulse can be visualized as the limit of a pulse of unit area that has 
growing amplitude and shrinking duration. The essential property of the 
impulse is the sifting property that 

i: f(t)o(t - a)dt = f(a) (3 .2) 

for all functions f that are continuous at a. The integral of the impulse is 

the unit step 
• [00 o(T)dT = l(t), (3.3) 

and the Laplace transform of the unit impulse is one, because 

(3 .4) 

1 We assume that the reader has some familiarity with Fourier and Laplace trans
form analysis. For a general reference, see Bracewell (1978) . 
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Using these properties we can see that T*(t), defined in (3.1), depends only 
on the discrete sample values T(kT). The Laplace transform of 1'*(1;) can be 
computed as follows: 

If we substitute (3.1) for T*(t), we get 

and !lOW. exchanging integration and summation and llsing (3.2) , we Iiavc 

(X) 

R*(s) = L T(kT)e- skT . (3.5 ) 
k= - (X) 

The llotation [{*(s) is LIsed to symbolize the (Laplace) transform of r*(t), 
t1w sampled or impulse-Illodulated r(t) .2 

Having a model of the sampling operation as impulse modulation, to 
cOlIlplete the description of the physical sample-and-hold we need to model 

2a will be necessary, from time to time, to consider sampling a signal that is not 
continuo LIS. The ollly case we will consider will be equivalent to applying a step 
fUllctioll, l(t), Lo it sampler. For the purposes of this book we will define the unit 
step to be continuous from the right and assume that the impulse, 8(t), picks up 
tlw full value of unity. By this convention and (3.1) we compute 

00 

1 *(t) = L 8(t - kT), (it) 
k = O 

auu, llsillg (3 .2) , we obtain 

L{1*(t)} = 1/(1- e-Ts ). (b) 

The reader should be warned that the Fourier integral converges to the avemgc value 
of a function at a discontinuity and not the value approached from the right as we 
assume. Because our lise of the transform theory is elemenLary and the convenience 
of equation (b) a bove is substantial, we have selected the continuous-frorn-the
right conventiOll. In case of doubt, the discontinuous term should be separated and 
treated by special analysis, perhaps in the time domain. 
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the hold operation, which will take the impulses that are produced by the 
mathematical sampler and produce the piecewise constant output of the de
vice. Typical signals are sketched on Fig. 3.3. Once the samples are taken, as 
represented by r*(t) in (3.1), the hold is defined as the means whereby these 
impulses are extrapolated to the piecewise constant signal rh, defined as 

kT :s; t < kT + T. (3.6) 

Because rh is composed of zero-order polynomials passed through the sam
ples of r(kT), this hold operation is called the zero-order hold or ZOR and 
has the transfer function ZOH(8) . We can compute ZOH(s) by determining 
its impulse response. The hold filter will receive one unit-size impulse if the 
input signal is zero at every sample time except t = 0 and is equal to one 
there. In that case, r*(t) = b(t) and rh(t), which is now the impulse response 
of ZOH, is a pulse of height 1 and duration T seconds. The mathematical 
representation of the impulse response is, using the unit step function, 

p(t) = l(t) - l(t - T). 
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Figure 3.3 The sample and hold, showing typical signals. (a) Input signal 7'; (b) 
sampled signal 7'*; (c) output signal 1',,; (el) sample and hold. 
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The required transfer function is the Laplace transform of p(t) as 

ZOH(s) = £{p(t)} 

= 10
00 

[1(l) - l(t - T)]e - stdt 

= (1 - e-ST)ls. (3.7) 

Thus the linear behavior of an AID converter with sample and hold can be 
modeled by Fig. 3.3. We must. emphasize that the impulsive signal r*(t) in 
Fig. 3.3 is not expected to n~present a physicaJ signal in the AID converter 
circuit; rather it is a hypothetical signal introduced to allow us to obtain a 
transfer-function model of the hold operation and to give an input-output 
model of the sample-and-hold suitable for transform and other linear systems 
analysis. 

3.3 SPECTRUM OF A SAMPLED SIGNAL 
AND ALIASING 

We can get further il1::>ight iIlto the process of sampiing by an alternative 
representation of the transform of r* (t), using Fourier analysis. From (3.1) 
we see that r*(t) is a product of r(t) and the train of impulses , E8(t - kT). 
The latter series, being periodic, can be represented by a Fourier series, 

00 00 

L 8(t-kT)= L Cnej (27rn/T)t, 
k=- oo n=-oo 

where the Fourier coefficients, Cn, are given by the integral over one period 
as 

T/2 00 

Cn = ~ J L 8(t - kT)e- jn(27rt/T)dt. 
T -T/2 k= - oo 

The only term in the sum of impulses that is in the range of the integral 
is the one at the origin o(t), so the integral reduces to 

1 JT
/

2 
Cn = - 8(t)e- jn (27rt/T)dt; 

T -T/2 
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but the sifting property from (3.2) makes this easy to integrate, with the 

result 

1 
Cn = - . 

T 

Thus we have derived the representation for the sum of impulses as a Fourier 
series: 

f 8 (t - kT) = ~ t ej (2rrn/T)t . 
k=-oo n=-oo 

(3.8) 

We define Ws = 27r /T as the radian sampling frequency and now sub
stitute (3.8) into (3.1) using ws , and we take the Laplace transform of the 
output of the mathematical sampler, 

we integrate the sum, term by term 

1 00 Joo R*(s) = T L _ r(t)ejnwste-stdt; 
n=-oo 00 

and if we combine the exponentials, 

1 00 Joo = T L _ r(t)e-(il-jnws)tdt . 
n=-oo 00 

The integral here is the Laplace transform of r(t) with only a change of 
variable where the frequency goes. The result can therefore be written as 

# 
1 00 

R*(s) = T L R(s - jnw il ), 
n=-oo 

(3.9) 

where R(s) is the transform of r(t). In communication or radio engineering 
terms, (3.8) expresses the fact that the impulse train corresponds to an 
infinite sequence of carrier frequencies at integral values of 27r/T, and (3.9) 
shows that when r(t) modulates all these carriers, it produces a never-ending 
train of sidebands. A sketch of the elements in the sum given in (3.9) is shown 
in Fig. 3.4. 
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Figure 3.4 (a) SkeLch of it s[wctrum alllplit.ude and (b) the cOlIlponents of the 
spectrum afLer sampling, showillg aliasing. 

An important feature of sampling, shown in Fig. 3.4, is illustrated at the 
frequency marked Wl. Two curves are drawn comprising two of the elements 
of the sum at Wl. One of these, the larger amplitude in the figure located at 
the frequency Wl, is the value of R(jwd. The smaller component at WI comes 
from the spectrum centered at 27rIT and is R(jwo), where wo is such that 
Wo = WI - 27r IT. This frequency, Wo, which shows up at WI after sampling, 
is called in the trade an "alias" of WI; the phenomenon is called aliasing. 

The phenomenon of aliasing has a clear meaning in time. Two contin
UUWi sinLlsoids of different frequencies appear at the same frequency when 
sampled. We cannot, therefore, distinguish between them based on their 
samples alone. Fig. 3.5 shows a plot of a sinusoid at ~ Hz and of a sinusoid 
at ~ Hz. If we sample these waves at 1 Hz, as indicated by the dots, then 
we get the same sample values from both signals and would continue to get 
the same sample values for all time. Note that the sampling frequency is 1, 
and, if h = ~, then 

I 7 
10 = 8- 1 =-8' 
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Figure 3.5 Plot of two sinusoids that have identical values at unit sampling 
intervals-an example of aliasing. 

The significance of the negative frequency is that the ~-Hz sinusoid in Fig. 
3.5 is a negative sine function. 

Thus, as a direct result of the sampling operation, w hen data are sampled 
at frequency 27r IT the total harmonic content that shows up at a given 
frequency WI is to be found not only from the original signal at WI but 
also from all those frequencies that are aliases of WI, namely, components 
from all frequencies WI + n27r IT = WI + nws as shown in the formula of 
(3.9) and sketched in Fig. 3.4. The errors caused by this aliasing can be 
very severe, especially if a substantial ~mplitude of high-frequency noise is 
present with the signal to be sampled. To minimize the error caused by this 
effect, it is standard practice to precede the sampling operation (such as the 
sample-and-hold circuit discussed earlier) by a low-pass antialias filter that 
will remove (almost) all spectral content above the half-sampling frequency, 
i.e., above 1fIT. A sketch of the result is drawn in Fig. 3.6. 

If all spectral content above the frequency 1f IT is removed, then no alias
ing is introduced by sampling and the signal spectrum is undistorted, even 
though it is repeated endlessly, centered at n21f IT. The critical frequency, 
1f IT, was first reported by H. Nyquist, and is called the Nyquist frequency. 
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Band-limited signals that have no components above the Nyquist frequency 
are represented unambiguously by their samples. 

A corollary to the aliasing issue is the salIlpling theorem. We have seen 
that if R(jw) has componcnts above thc Nyquist frequency Ws 12 or 7r IT, then 
overlap and aliasing will occur. Conversc!y, we noticed that if R(jw) is zero 
for Iwl 2: 7r IT, then sampling at intervals of T sec will produce no aliasing 
and the original spectrum can be recovered exactly from R*, the spectrum 
of the samples. Once the spectrum is recovered, by iIlverse transform we can 
calculate the original signal itself. This is the sampling theorem: One can 
recover a signal from its samples, if the sampling frequency (w s = 27r IT) 
is at least twice the highest frequency (7r IT) in the signal. Notice that the 
sampling theorem requires that R(jw) is exactly zero for all frequencies 
above 7rIT. 

A phenomenon somewhat related to aliasing is that of hidden oscilla
tions. If signal frequencies only up to 7r IT can be sampled without confusion, 
there is the possibility that a signal could contain some frequencies that the 
samples do not show at all. Such signals, when they occur in a digital control, 
are called "hidden oscillations," an example of which is shown in Fig. 5.29. 
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3.4 DATA EXTRAPOLATION AND 

IMPOSTORS 
The sampling theorem states that under the right conditions, it is possible 
to recover a signal from its samples; we now consider a formula for doing 
so. From Fig. 3.6 we can see that the spectrum of R(jw) is contained in 
the low-frequency part of R* (jw). Therefore, to recover R(jw) we need only 
process R* (jw) through a low-pass filter and multiply by T to regain R. As 
a matter of fact, if R(jw) has zero energy for frequencies in the bands above 
7f IT (such an R is said to be band-limited), then an ideal low-pass filter with 
gain T for -7f IT ::; w ::; 7f IT and zero elsewhere would recover R(jw) from 
R* (jw) exactly. Suppose we define this ideal low-pass filter characteristic as 
L(jw). Then we have the result 

R(jw) = L(jw)R*(jw). (3.10) 

The signal r(t) is the inverse transform of R(jw) , and because by (3.10) 
R(jw) is the product of two transforms, its inverse transform r( t) must be 
the convolution of the time functions £( t) and r* (t). The form of the filter 
impulse response can be computed by using the definition of L(jw) from 
which the inverse transform gives3 

1 J7r/T . I!(t) = - TeJwtdw 
27f -7r/T 

= ~ e jwt I 7r/T 

27f jt -7r/T 

= ~(ej(7rt/T) _ e-j(rrt/T)) 

27fjt 

1 . 7ft 
= --SlIl-

7ftiT T, 
. 7ft 

= SlIlC T. (3 .11) 

Using (3.1) for r*(t) and (3.11) for I!(t), we find that their convolution is 

Joo ~ . 7f(t-T) 
r(t) = -00 r(r) k~OO 8(T - kT)SlIlC T dT. 

3 "Sine" is the name given to the function defined by sinc( B) = sin( B) / B. 
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Figure 3.7 Plot of the impulse response of the ideal low-pass filter. 

Using the sifting property of the impulse, we have 

~ 7f(t - kT) 
r(t) = ~ r(kT)sinc T . 

k=-= 

(3.12) 

Equation (3.12) is a constructive statement of the sampling theorem: It 
shows explicitly how to construct the (by assumption) band-limited function 
r(t) from its samples. The sinc functions are the interpolators that fill in the 
time gaps between samples with a wave that has no frequencies above 7f IT. 
A plot of the impulse response of this "ideal" hold filter is drawn in Fig. 3.7 
from the formula of (3.11). 

There is one serious drawback to the extrapolating signal given by (3.11). 
Because f( t) is the impulse response of the ideal low-pass filter L(jw), it 
follows that this filter is noncausal because f( t) is nonzero for t < O. f( t) 
starts at t = -00 when the impulse that triggers it does not occur until 
t = O! In many communications problems the interpolated signal is not 
needed until well after the samples are acquired, and the noncausality can 
be overcome by adding a phase lag, e- jw\ to L(jw) , which adds a delay 
to the filter and to the signals processed through it. In feedback control 
systems, a large delay is usually disastrous for stability, so we avoid such 
approximations to this function and use something else, like the polynomial 

S 
t 
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holds, of which the zero-order hold already mentioned in connection with 
the ADC is the most elementary. 

In Section 3.2 we introduced the zero-order hold as a model for the 
storage register in an A/D converter that maintains a constant signal value 
between samples. We showed in (3 .7) that it has the transfer function 

1 -jwT 
ZOH(jw) = - e 

JW 
(3.13) 

We can discover the frequency properties of ZOH by expressing (3.13) 
in magnitude and phase form. To do this, we factor out e- jwT/2 and multiply 
and divide by 2j to write the transfer function in the form 

ZOH(jw) = e-JwT/2 . -. . . {ejWT/2 _ e-jWT/2 } 2j 

2J JW 

The term in brackets is recognized as the sine, so this can be written 

ZOH(jw) = Te-jWT/2sin(wT/2) 
wT/2 

and, using the definition of the sinc function, 

ZOH(jw) = e-jwT/2Tsinc(wT/2). (3.14) 

Thus the effect of the zero-order hold is to introduce a phase shift of wT /2, 
corresponding to a time delay of T /2 seconds, and to multiply the gain by 
a function with the magnitude of sinc(wT /2). A plot of the magnitude is 
shown in Fig. 3.8, which illustrates the fact that although the zero-order 
hold is a low-pass filter, it has a cut-off frequency well beyond the Nyquist 
frequency. The magnitude function is , 

. I' WTI IZOH(Jw)1 = T smc 2 ' (3.15) 

which slowly gets smaller as w gets larger until it is zero for the first time 
at w = Ws = 27f)T. The phase is 

-wT 
LZOH(jw) = -2-' 

plus the 1800 shifts where the sinc function changes sign. 

(3.16) 
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Figure 3.8 (a) Magnitude and (b) phase of polynomial hold filters . 

We can now give a complete analysis of th~ sample-and-hold circuit 
of Fig. 3.3 for a sinusoidal input r(t) in both the time and the frequency 
domains. We consider first the time domain, which is simpler, being just 
an exercise in construction. For purposes of illustration, we will use r( t) = 

3sin(50t + 7f/6) as plotted in Fig. 3.9. 
If we sample r(t) at the instants kT where the sampling frequency is 

W g = 27f /T = 2007f and T = 0.01, then the plot of the resulting r,JkT) is 
as shown in Fig. 3.9. Notice that although the input is a single sinusoid, the 
output is clearly not sinusoidal. Thus it is not possible to describe this system 
by a transfer function, because the fundamental property of linear, constant 
systems is that a sinusoid input produces an output that is a sinusoid of the 
same frequency, and the complex ratio of the amplitudes and phases is the 
transfer function. The sample-and-hold system is linear but time varying. 
In the frequency domain, it is clear that the output rh( t) contains more 
than one frequency, and a complete analysis requires that we compute the 
amplitudes and phases of them all. However, in the application to control 
systems, the output of the hold will typically be applied to a dynamical 
system that is of low-pass character; thus the most important component in 
rh(t) is the fundamental harmonic, at Wo = 50 rad/sec in this case. Also, in 
the important field of digital filtering, one is usually using the digital filter to 
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Figure 3.9 Plot of 3sin(50t+1r /3) and the output of a sample-and-hold with sample 
period T = 0.01. 

replace an analog filter, and it is the fundamental that represents the signal 
component in the output. The other harmonics that appear in the output 
are impostors, posing as signal when they are really unwanted consequences 
of the sample-and-hold process. In any event, we can proceed to analyze 
Th(t) for all its harmonics and select out the fundamental component when 
it makes sense, either by analysis or, in the implementation, by a low-pass 
anti-impostor filter. 

First, we need the spectrum of r(t). Because a sinusoid can be de
composed into two exponentials, we consider the Fourier transform of 
v(t) = ejwot+jrP. For this we have , 

(3.17) 

This integral does not converge in any obvious way, but we can approach it 
from the back door, as it were. Consider again the impulse, 8(t). The direct 
transform of this object is easy, considering the sifting property, as follows: 
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Now the general form of the inverse Fourier transform is given by the ex
pression 

f(t) = - F(jw)eJwtdw. 1 ]00 . 
27r -00 

If we apply the inverse transform integral to the impulse and its trans
form, we take f(t) = 8 and F(jw) = 1 with the result 

8(t) = - ejwtdw. 1 ]00 
27r -00 

However, except for notation and a simple change of variables, this is exactly 
the integral we needed to evaluate the spectrum of the single exponential. 
If we exchange t with w the integral reads 

8(w) = - ejwtdt. 1 ]00 
27r -00 

Equation 3.17 is of this form 

V(jw) = i: e(jwot+jl/J)e - jwtdt 

= ejI/J i: ejt(wo-w)dt 

= 27rejI/J8(w - wo)· (3.18) 

At the last step in this development, the sign of the argument in the delta 
function was changed, because 8 is an even function and the order is more 
natural as (w - wo ) rather than the opposite. We can now express the spec
trum of r( t) = A cos( wot + c/» in terms of impulse functions. It is 

and consists of two impulses at Wo and -Wo of intensity 7r A and phase c/> and 
-c/>, respectively. A sketch of this spectrum is shown in Fig 3.10(a) for A = 
1/7r. We represent the impulses by arrows whose heights are proportional to 
the intensities of the impulses. 

After sampling, as we saw in (3.9), the spectrum of R* is directly derived 
from that of R as the sum of multiple copies of that of R shifted by n27r IT 
for all integers n and multiplied by liT. A plot of the result is shown in Fig. 
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Figure 3.10 Plot of the spectra of (a)R, (b)R*, and (C)Rh . 

3.10(b) normalized by T. Finally, to find the spectrum of Rh, we need only 
multiply the spectrum of R* by the transfer function of the ZOH, which is 

ZOH(jw) = Te- jwT/ 2sinc(wT/2). 

Thus the spectrum of Rh is also a sum of an infinite number of terms, but 
now with intensities modified by the sinc function and phases shifted by the 
delay function wT/2. These intensities are plotted in Fig. 3.10(c). Naturally, 
when all the harmonics included in Rh are converted to their time functions 
and added, they sum to the piecewise, constant, staircase function plotted 
earlier in Fig. 3.9. 

If we want a best approximation tcf Th using only one sinusoid, we need 
only take out the first or fundamental harmonic from the components of R*. 
This component has phase shift ¢ and amplitude A sinc(wT /2). In the time 
domain, the corresponding sinusoid is given by 

Vl(t) = A[sinc(wT/2)]sin[wo(t - ~)]. 

A plot of this approximation for the signal from Fig 3.9 is given in Fig. 3.11 
along with both the original input and the sampled-and-held output to show 
the nature of the approximation. 
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Figure 3.11 Plot of the output of the sample and hold and the first harmonic 
approximation. 

In control design, we can frequently achieve a satisfactory design for a 
sampled-data system by approximating the sample and hold with a con
tinuous transfer function corresponding to the delay of T /2. The controller 
design is then done in the continuous domain but is implemented by com
puting a discrete equivalent. More discussion of this technique; sometimes 
called emulation, will be given in Chapter 5, where some examples illustrate 
the results. 

First-Order Hold. A more complex circuit that might be preferred to 
the zero-order hold is the first-order hold, which, as suggested by its name, 
extrapolates data between sampling periods by a first-order polynomial, 
a straight line. We can, as with the zero-order hold, compute the transfer 
function of the filter that, acting with impulse sampling, produces the action 
of a first-order hold. A sketch of the response to a unit pulse will be helpful 
and is shown in Fig. 3.12. The first line, rising from 1 to 2 over the period 
from t = 0 to t = T, is an extrapolation of the line between the points 
at t = -T (where the sample was, by assumption, equal to zero) and at 
t = 0, where the sample was unity. Likewise, the line going in the negative 
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direction from 0 at t = T to -1 at t = 2T is the extrapolation of the line 
between the points at t = 0 and t = T. The Laplace transform of this h(t) 

1S 

1 - e ., 
( -'1'. ) 2 

FOH(s) = T T 's (Ts + 1). (3.19) 

The magnitude and phase of FOH(jw) were plotted in Fig. 3.8 to permit 
comparison with the characteristics of ZOH. Note that for low frequencies 
(below 7r /2T) the first-order hold has significantly less phase lag than does 
the zero-order hold. However, the FOH has much more amplitude distortion 
than the ZOH does. No clear guidelines seem to exist indicating that one 
is preferred to the other from the standpoint of an ideal control-system 
response; however , the increased hardware complexity of the FOH imple
mentation almost always dictates that the ZOH be used. In some cases 
(e.g., hydraulic systems), the steps from the ZOH have been found to be 
detrimental to the control actuator, and the solution has been to simply 
add a low-pass filter to the ZOH output with a time constant on the order 
of the sample period. Following our earlier definition, this would be called 
an anti-imposter filter; some prefer the term "smoothing filter." The filter 
is to be considered part of the plant, and its effects are taken into account 
in the design. 
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I I I 
I I I 

2 ---- ----+ - - --+----
I I I 
I I I 

1 --- ~---J----~----
I I I 
I I I 

o ==~===-i~~~ 
I 

I I 
1 I 

o 

Figure 3.12 Impulse response of first-order-hold filter. 
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Obviously many other, more sophisticated, data extrapolators can and 
will be designed. However, rarely is additional complexity justified in terms 
of improved performance in feedback control. 

3.5 BLOCK-DIAGRAM ANALYSIS 

We have thus far talked mainly about discrete, continuous, and sampled 
signals. To analyze a feedback system that contains a digital computer, we 
need to be able to compute the transforms of output signals of systems that 
contain sampling operations in various places, including feedback loops, in 
the block diagram. The technique for doing this is a simple extension of 
the ideas of block-diagram analysis of systems that are all continuous or all 
discrete, but one or two rules need to be carefully observed to assure success. 
First, we should review the facts of sampled-signal analysis. 

We represent the process of sampling a continuous signal and holding 
it by impulse modulation followed by low-pass filtering. For example, the 
system of Fig. 3.13 leads to 

E(s) = R*(s)H(s), 

U(s) = E*(s)G(s). (3.20) 

The result of impulse modulation of continuous-time signals like e(t) and 
u(t) is to produce a series of sidebands as given in (3.9) and plotted in Fig. 
3.4, which result in periodic functions of frequency. If the transform of the 
signal to be sampled is a product of a transform that is already periodic of 
period 27r/T, and one that is not, as in U(s) = E*(s)G(s), where E*(s) is 
periodic and G(s) is not, we can show that E*(s) comes out as a factor ofthe 
result. This is the most important relation for the block-diagram analysis of 
sampled-data systems, namely,4 

U*(s) = (E*(s)G(s))* = E*(s)G*(s) . (3.21) 

We can prove (3.21) either in the frequency domain, using (3.9), or in the 
time domain, using (3.1) and convolution. We will use (3.9) here. If U(s) = 

4We of course assume the existence of U*(s), which is assured if G(s) tends to zero 
as s tends to infinity at least as fast as 1/ s. We must be careful to avoid impulse 
modulation of impulses, for 8(t)8(t) is undefined. 
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Figure 3.13 A cascade of samplers and filters. 

E*(s)G(s), then by definition we have 

1 00 
U*(s) = T L E*(s - jnws )G(8 - jnws ); (3.22) 

n=-oo 

but E*(s) is 

E*(s) = ~ f E(s - jkws), 
k=-oo 

so that 

(3.23) 

Now in (3.23) we can let k = f - n to get 

E*(s - jnws) = ~ f E(s - jfws) 
£=-00 

= E*(s). (3.24) 

In other words, because E* is already periodic, shifting it an integral number 
of periods leaves it unchanged. Substitutfng (3.24) into (3.22) yields 

U*(s) = E*(s) ~ f G(s - jnws) 
-00 

= E*(s)G*(s). QED (3.25) 

Note especially what is not true. If U(s) = E(s)G(s), then U*(s) =I
E*(s)G*(s) but rather U*(s) = (EG)*(s). The periodic character of E* in 
(3.21) is crucial. 
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Figure 3.14 Block diagram of digital control as a sampled-data system. 

The final result we require is that, given a sampled-signal transform 
such as U*(s), we can find the corresponding z-transform simply by letting 
esT = z or 

(3.26) 

There is an important time-domain reflection of (3.26). The inverse Laplace 
transform of U*( s) is the sequence of impulses with intensities given by 
u(kT)j the inverse z-transform of U(z) is the sequence of values u(kT). 
Conceptually, sequences of values and the corresponding z-transforms are 
easy to think about as being processed by a computer program, whereas the 
model of sampling as a sequence of impulses is what allows us to analyze 
a discrete system embedded in a continuous world. Of course, the impulse 
modulator must always be followed by a low-pass circuit (hold circuit) in 
the physical world. Note that (3.26) can also be used in the other direction 
to obtain U*(s), the Laplace transform of the train of impulses, from a given 
U(z). 

These rules of analysis can be illustrated by example. Consider the block 
diagram given in Fig. 3.14 taken from Fig. 1.1. In Fig. 3.14 we have modeled 
the AID converter plus computer program plus D I A converter as an impulse 
modulator [which takes the samples from e(t)], a computer program that 
processes these samples, and a zero-order hold that constructs the piecewise, 
constant output ofthe D I A converter from the impulses of m *. In the actual 
computer we assume that the samples of e( t) are manipulated by a difference 
equation whose input-output effect is described by the z-transform D(z). 
These operations are represented in Fig. 3.14 as if they were performed 
on impulses, and hence the transfer function is D*(s) according to (3.26). 
Finally, the manipulated impulses, m*(t), are applied to the zero-order hold 
from which the piecewise-constant-control signal u(t) comes. In reality, of 
course, the computer operates on the sample values of e(t) and the piecewise
constant output is generated via a storage register and a D I A converter. The 
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impulses provide us with a convenient, consistent, and effective model of the 
processes to which Laplace-transform methods can be applied. 

From the results given thus far, we can write relations among Laplace 
transforms as 

E(s)=R-Y, 

M*(s) = E*D*, 

U = M ' [
1 -:T'l ' 

Y= Gu. 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The usual idea is to relate the discrete output, Y*, to the discrete input, R*. 
Suppose we sample each of these equations by using the results of (3.5) to 
"star" each transform. The equations are5 

E* = R* - Y*, (3.31) 

M* = E*D*, (3.32) 

U* = M*, (3.33) 

Y* = [GU]*. (3.34) 

Now (3.34) indicates that we need U, not U*, to compute Y*, so we must 
back up to substitute (3.29) into (3.34): 

(3.35) 

Taking out the periodic parts, which are those in which s appears only as 
esT [which include M* (s)], we have 

Y* = (1- e-TS)M* (~) * (3.36) 

Substituting from (3.28) for M* gives 

Y* = (1- e-TS)E*D*(G/s)*. (3.37) 

5In sampling (3.29) we obtain (3.33) by use of the convention given in footnote 2, 
which follows (3.5) for impulse modulation of discontinuous functions. From the 
time-domain operation of the zero-order hold, it is clear that the samples of u and 
m are the same, and then from this (3.33) follows. 
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And substituting (3.31) for E'" yields 

Y'" = (1 - e-TS)D*(G/s)*[R* - Y*]. 

If we call 

(1- e-TS)D*(G/s)* = H*, 

then we can solve (3.38) for Y*, obtaining 

Y* = H* R*. 
1 +H* 

(3.38) 

(3.39) 

Example 3.1: These equations can be illustrated with a simple 
example. Suppose that our plant has the first-order transfer function 

a 
G(s) =-, 

s+a 
(3.40) 

that the computer program corresponds to a discrete integrator 

u(kT) = u(kT - T) + Koe(kT), (3.41) 

and that the computer D / A holds the output constant so that the 
zero-order hold is the correct model. Suppose we select the sampling 
period T so that e-aT = !. We wish to compute the components of 
H* given in (3.39). For the computer program we have the transfer 
function of (3.41), which in terms of z is 

D z _ U(z) _ Ko Koz 
( ) - E(z) - 1 - z-l z - 1 

Using (3.26), we get the Laplace-transform form 

K sT 
D*(s) = oe . 

esT -1 
(3.42) 
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For the plant and zero-order-hold we require6 

Using (3 .5), we have 

(1- e-T8 )(G(s)/s)* = (1- e-Ts) ( 1 _ 1 ). 1 - e-Ts 1 - c- aT - T.$ 

Because we assumed (for simplicity) that e-aT = ~, this reduces to 

(1- e- Ts)(G(s)/s)* = (1/2)e-
Ts 

1 - (1/2)e-Ts 

1/2 
- -~--

eTs - 1/2 . 
(3.43) 

Combining (3.43) and (3.42), then, in this case, we obtain 

T/ sT 
H*() no e s = 2 -( e-s=T---1-)-( e-'sT=-_-1-c/-2 r (3.44) 

Equation (3.44) can now be used in (3.39) to find the closed-loop 
transfer function from which the dynamic and static responses can 
be studied, as a function of Ko, the program gain. We note also that 
beginning with (3.27), we can readily calculate that 

Y(s) = R* D* (1 - e-
Ts

) G(s). 
1 + H* s 

(3.45) 

, 
Equation (3.45) shows how to compute the response of this system 
in between sampling instants. For a given r(i), the starred terms 
in (3.45) and the (1 - e-Ts)-term correspond to a train of impulses 
whose individual values can be computed by expanding in powers 
of e-Ts . These impulses are applied to G(s)/s, which is the step 
response of the plant. Thus, between sampling instants, we will see 
segments of the plant step response. 

6Notice the similarity with (2.39) and Example 2.8. 
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Figure 3.15 A simple system that does not have a transfer function. 

With the exception of the odd-looking forward transfer function, (3.39) 
looks like the familiar feedback formula: forward-over-one-plus-feedback. Un
fortunately, the sequence of equations by which (3.39) was computed was 
a bit haphazard, and such an effort might not always succeed. Another 
example will further illustrate the problem. 

Example 3.2: Consider the block diagram of Fig. 3.15, which has 
only one sampling operation. This situation can arise if the error 
sensor has significant dynamics that precede the sampling action of 
the AID converter. In this case H(s) represents the sensor dynamics. 
Again, we write the equations (all symbols are Laplace transforms): 

and again we sample 

E = R- Y, 

U=HE, 

Y=U*Gj 

E* = R* - Y*, 

U* = (HE)*, 

Y* = U*G*. 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

How do we solve? In (3.50) we need E, not E*. So we must go back 
to (3.46): 

U* = (H(R - Y))* 

= (HR)* - (HY)*. 

Using (3.48) for Y, we have 

U* = (HR)* - (HU*G)*. 
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Taking out the periodic U* in the second term on the right gives 

U* = (HR)* - U*(HG)*. 

Solving, we get 

U* = (HR)* 
1 + (HG)* 

From (3.45), we can solve for Y*: 

Y* = (HR)* G*. 
1 + (HG)* 

(3.52) 

(3.53) 

Equation (3.53) displays a curious fact. The transform of the input is 
bound up with H (s) and cannot be divided out to give a transfer function! 
This system displays an important fact that all our facile manipulations 
of samples, and so on, might cause us to neglect: A sampled-data system 
is time varying. The response depends on the time relative to the sampling 
instant at which the signal is applied. Only when the input samples alone are 
required to generate the output samples can we obtain a discrete transfer 
function. The time variation occurs on the taking of samples. In general, 
as in Fig. 3.15, the entire input signal r(t) is involved in the system re
sponse, and the transfer-function concept fails. Even in the absence of a 
transfer function, however, the techniques developed here permit study of 
stability and response to specific inputs such as step, ramp, or sinusoidal 
signals. 

We need to know the general rules of block-diagram analysis. In solving 
Fig. 3.15 we found ourselves working with U, the signal that was sampled. 
This is in fact the key to the problem. Given a block diagram with several 
samplers, always select the variables at the inputs to the samplers as the 
unknowns. Being sampled, these variables have periodic transforms and will 
always "come free" after the equation sampling process and give a set of 
starred variables for which we can solve. 

Example 3.3: Consider as a final example the block diagram 
drawn in Fig. 3.16. We select E and M as independent variables 
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y 

Figure 3.16 A final example for transfer-function analysis of sampled-data sys
tems. 

and write 

E(s) = R - M*G2 , 

M(s) = E*HG1. 

(3.54) 

(3.55) 

Next we sample these signals, and use the "if periodic, then out" 
rule from (3.21): 

E* = R* - M*G2 , (3.56) 

(3.57) 

We solve these equations by substituting for M* in (3.56) from 
(3.57): 

E* = R* - E*(HG1)*G; 

R* 

To obtain Y we use the equation 

Y=E*H 

R*H 

and 

(3.58) 

(3.59) 

(3.60) 

In this case we have a transfer function. Why? Because only the 
samples of the external input are used to cause the output. To obtain 
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the z-transform of the samples of'the output, we would let esT = z 
in (3.60). From (3.59) we can solve for the continuous output, which 
consists of impulses applied to H( s) in this case. 

3.6 SUMMARY 
In this chapter we have considered the analysis of mixed systems that are 
partly discrete and partly continuous, taking the continuous point of view. 
We used impulse modulation to represent the sampling process, and we 
derived the transfer functions of filters that would represent zero-order and 
first-order hold action. We showed that the transform of a sampled signal is 
periodic and that sampling introduces aliasing, which may be interpreted in 
both the frequency and the time domains. From the condition of no aliasing 
we derived the sampling theorem. 

Finally, we presented the block-diagram analysis of sampled-data sys-
tems, showing that proper techniques, including the treatment of the sam
pler inputs as unknowns , would lead to solution for the output transforms. 
However, we also found that not every sampled-data system has a transfer 

function. 

PROBLEMS AND EXERCISES 

3.1 Derive (3.45). 

3.2 Sketch a signal that shows hidden oscillations. 

3.3 Consider the circuit of Fig. 3.17. By plotting the response to a signal that is 
zero for all sample instants except t = ° and that is 1.0 at t = 0, show that this 
circuit implements a first-order hold. 

3.4 Sketch the step response y(t) of the'system shown in Fig. 3.18 for k = ~, 1, 

and 2. 

Figure 3.17 Block diagram of a first-order hold. 
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Figure 3.18 A sampled-data system. 

Figure 3.19 A general hold circuit. 

3.5 Sketch the response of a second-order hold circuit to a step unit. What might 
be the major disadvantage of this data extrapolator? See Fig. 3.19. 

3.6 Find the transform of the output Y(s) and its samples Y*(s) for the block 
diagrams shown in Fig. 3.20. Indicate whether a transfer function exists in each 
case. 

3.7 Assume the following transfer functions are preceded by a zero-order hold and 
compute the resulting discrete transfer functions. 

a) G1 (s) = l/s 2 

b) G 2 (s) = e-1. 5s /(s + 1) 

(a) 

(b) 

T 

y* 
----<l 

y* 
~ 

Figure 3.20 Block diagrams of sampled data systems. (a) Single loop; (b) multiple 
loop. 
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Figure 3.21 Block diagrams showing the modified z-transform. 

c) 0:\(8) = 1/8(8 + 1) 
d) 0 4(8) = e- 1 '-"/8(8 -I- 1) 
e) 0,,(8) = 1/(82 - 1) 

3.8 One technique for examining the response of a sampled-data system between 
sampling instants is to shift the response a fraction of a sample period to the left 
and sample the result. The effect is as shown in the block diagram of Fig. 3.21 and 
is described by the equation 

y' (5, m) = R'(5)Z{0(s) e'IlT'}. 

The function Z{0(5)C IlIT'} is called the modified z-lmn5foT-m of 0(5). Let 

G(s) = _1_. , T = 1, R(8) = ~. 
s + 1 5 

a) Compute y( t) by constructing the samples y(kT) from Y* (s) and ob
serving that with this plant, y(t) is an exponential decay with unit time 
constant over the intersample interval. Sketch the response for five sample 
intervals. 

b) Let m = ~ and compute the samples corresponding to Y*(8;m) [or 
Y( z; m)] . Plot these OIl the same sketch as the samples of part (a) and 
verify that the midway points have been found. 

3.9 Show how to construct a signal of "hidden oscillations," even one that grows 
in an unstable fashion but whose sample values are zero. Where in the 8-plane are 
the poles of the transforms of your signal(s)? 

, 




