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and the covariance matrix, 

Like the scalar normal density, the multivariable law is described entirely 
by the two parameters p and R, the difference being that the multivariable 
case is described by matrix parameters rather than scalar parameters. In 
(D.19) we require the inverse of Rx and have thus implicitly assumed that 
this covariance matrix is nonsingular. [See Parzen (1962) for a discussion of 
the case when Rx is singular.] 

D.4 STOCHASTIC PROCESSES 

In a study of dynamic systems, it is natural to have random variables that 
evolve in time much as the states and control inputs evolve. However, with 
random time variables it is not possible to compute z-transforms in the 
usual way; and furthermore, because specific values of the variables have 
little value, we need formulas to describe how the means and covariances 
evolve in time. A random variable that evolves in time is called a stochastic 
process, and here we consider only discrete time. 

Suppose we deal first with a stochastic process w(n), where w is a scalar 
distributed according to the density fw(~; N). Note that the density function 
depends on the time of occurrence of the random variable. If a variable has 
statistical properties (such as jw) that are independent of the origin of time, 
then we say the process is stationary. Considering values of the process 
at distinct times, we have separate random variables, and we define the 
covariance of the process w as 

Rw(j, k) = e(w(j) - w(j))(w(k) - w(k)). (D.20) 

If the process is stationary, then the covariance in (D.20) depends only on the 
magnitude of the difference in observation times, k- j, and we often will write 
Rw(j, k) = Rw(k - j) and drop the second argument. Because a stochastic 
process is both random and time dependent, we can imagine averages that 
are computed over the time variable as well as by the expectation. For 
example, for a stationary process w(n) we can define the mean as 

iiJ(k) = lim 
N-too 

1 N 

2N + 1 L w(n + k), 
n=-N 

(D.21) 
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and the second-order mean or autocorrelation 

(w(j) - w)(w(k) - w(k)) 
. N 

= lim 1 L {(w(n + j) - w(j))(w(n + k - w(k)))}. 
N-+oo 2N + 1 n=-N (D.22) 

For a stationary process, the time average in (D.21) is usually equal to the 
distribution average, and likewise the second-order average in (D.22) is the 
same as the covariance in (D.20). Processes for which time averages give the 
same limits as distribution averages are called ergodic. 

A very useful aid to understanding the properties of stationary stochastic 
processes is found by considering the response of a linear stationary system 
to a stationary input process. Suppose we let the input be w, a stationary 
scalar process with zero mean and covariance Rw(j), and suppose we take 
the output to be y(k). We let the unit-pulse response from w to y be h(j). 
Thus from standard analysis (see Chapter 2), we have 

00 

y(j) = L h(k)w(j - k), (D.23) 
k=-oo 

and the covariance of y(j) with y(j + f.) is 

Ry(f.) = ey(j + f.)y(j) 

=e{ f: h(k)W(j+f.-k)} { f: h(n)W(j-n)}. 
k=-oo n=-oo (D.24) 

Because the system unit-pulse response, h(k), is not random, both h(k) and 
h( n) can be removed from the integral implied by the e operation, with the 
result 

00 00 

Ry(f.) = L h(k) L h(n)ew(j + f. - k)w(j - n). (D.25) 
k=-oo n=-oo 

The expectation in (D.25) is now recognized as Rw(f. - k + n), and substi-
tuting this expression in (D.25), we find . 

00 00 

Ry(f.) = L h(k) L h(n)Rw(f. - k + n). (D.26) 
k=-oo n=-oo 
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