
B.1 PROPERTIES OF z-TRANSFORMS 

Let Fi(S) be the Laplace transform of fi(t) and Fi(Z) be the z-transform of Ji(kT) . 

Table B.l 

Number Laplace Transform Samples z-Transform Comment 

Fi(S) fi(kT) Fi(Z) 
1 o:Fi(S) + (3F2(S) o:fr(kT)(3h(kT) o:Fl (z )(3F2(Z) The z-transform is linear 

00 t::Jj 
2 Fl(eTS )F2(S) L fr(iT)h(kT - iT) F1(z)F2(z) Discrete convolution .... 

£=-00 corresponds to product "'d 
of z-transforms ~ 

e+nTs F(s) 
"'d 

3 f(kT + nT) znF(z) Shift in time t:rJ 

4 F(s + a) e-akT f(kT) F(eaT z) Shift in frequency ~ .... 
If all poles of (z - l)F(z) are 

t:rJ 
5 lim f(kT) lim(z -- l)F(z) 00 

k--+oo z-+l 
inside the unit circle and F(z ) 0 

~ 

converges for 1 ::::; I z I N 
I 

6 F(s/wn ) f(wnkT) F(z;wnT) Time and frequency scaling t-3 
~ 

1 i d( > 
7 fr(kT)h(kT) ~ F1(()F2(Z/(), Time product Z 

00 7rJ C3 
~ 

8 F3(S) = Fl(S)F2(S) I: fr(r)h(kT - r)dr F3( Z) Continuous convolution does 0 
~ 

not correspond to product of s= 
z-transforms 00 

~ = .... 



B.2 TABLE OF z-TRANSFORMS 
F(s) is the Laplace transform of f(t) and F(z) is the z-transform of f(nT). Unless otherwise noted, f(t) = 
0, t < 0 and the region of convergence of F(z) is outside a circle r < \z\ such that all poles of F(z) are inside 

r. 

Table B.2 

Number F(s) l(nT) F(z) 

1 l,n=OjOn=l-0 1 

2 1, n = kj 0 n =I- k z-k 

3 
1 

l(nT) 
z 

s z-1 

4 
1 

nT 
Tz 

82 (z - 1)2 

5 
1 ~! (nT)2 

T Z z(z + 1) 

S3 2" (z -1)3 

1 1 T3 Z(Z2 + 4z + 1) 
6 S4 

~(nT)3 
6 (z - 1)4 3! 

7 
1 (_1)m-l om-l . (_I)m-l om-l · z 

lim __ e-anT lim . ----
8m a->O (m - I)! oam- 1 a->O (m - I)! oam~l z - e-aT 

8 
1 e-anT Z 

s+a z - e-aT 

9 
1 nTe-anT 

Tze-aT 

(8 + a)2 (z - e-aT )2 

1 1 T2 z(z + e-aT ) 
10 

(8 + a)3 
_ (nT)2e-anT _e-aT 
2 2 (z - e-aT )3 

1 (_I)m-l om-l (_I)m-l om-l Z 

11 
( -anT) 

(s + a)m (m - I)! oam-1 e (m - I)! oam- 1 Z - e-aT 

12 
a 1- e-anT 

z(l- e-aT) 

s(s + a) (z - l)(z - e- aT) 

Number F(s) l(nT) F(z) 

13 
a 1 z[(aT"": 1 + e-aT)z + (1 - e-aT - aTe-aT)] 

82(S + a) 
-(anT - 1 + e-anT ) 
a a(z - l)2(z - e-aT) 

14 
b-a (e-anT _ e-bnT ) 

(e-aT _ e-bT)z 

(s + a)(s + b) (z - e-aT)(z - e-bT ) 

15 
8 z[z - e-aT(I + aT)] 

(s + a)2 
(1 - anT)e-anT 

(z - e-aT )2 

lfl 
a2 

1 - p'-anT (1 + anT) 
z [z{l - e-aT - a~e-a~). + e-2aT - e-aT + aTe-aT] 

~ 
~ 
t.) 

> 
'tl 
'tl 
t"'.l 
Z 
t:I 
>-4 

>< 
t:xl 



v 
8+a 

9 
1 nTe-anT 

(8 + a)2 
1 1 

10 _ (nT)2 e-anT 
(8 + a)3 2 

1 (_I)m-l 8m- 1 

11 
( -anT) 

(8 + a)m (m - I)! 8am-1 e 

12 
a 1- e-anT 

8(8 + a) 

Number F(s) l(nT) 

a 1 
13 

82(8 + a) 
-(anT - 1 + e-anT ) 
a 

14 
b-a 

(8+a)(8+b) 
(e-anT _ e-bnT ) 

15 
8 

(1 - anT)e-anT 
(8 + a)2 

16 
a2 

1 - e-anT (1 + anT) 
S(8 + a)2 

17 
(b - a)8 be-bnT _ ae-anT 

(8 + a)(8 + b) 

18 
a 

sin anT 
82 +a2 

19 
8 

cos anT 
82 +a2 

20 
8+a 

e-anT cos bnT 
(s + a)2 + b2 

21 
b 

e-anT sin bnT 
(8 + a)2 + b2 

22 
a2 + b2 

1 - e-anT (cos bnT + ~ sin bnT) 
8«S + a)2 + b2) 

z - e-a~ 

Tze-aT 

(Z - e-aT )2 
T2 z(z + e-aT ) -aT -e 
2 (z - e-aT )3 
(_1)m-l 8m- 1 Z 

(m - I)! 8am- 1 z - e-aT 

z(l- e-aT) 

(z - 1)(z - e-aT ) 

F(z) 

z[(aT - 1 + e-aT)z + (1 - e-aT - aTe-aT)] 

a(z - 1)2(z - e-aT ) 
(e-aT _ e-bT)z 

(z - e-aT)(z - e-bT ) 
z[z - e-aT (1 + aT)] 

(z - e-aT )2 
z[z(1 - e-aT - aTe"-aT) + e-2aT - e-aT + aTe-aT] 

(z - 1)(z - e-aT )2 
z[z(b - a) - (be-aT - ae-bT )] 

(z - e-aT)(z - e-bT ) 
zsinaT 

z2 - (2cosaT)z + 1 
z(z - cos aT) 

z2 - (2 cos aT)z + 1 
z(z - e-aT cos bT) 

Z2 - 2e-aT(cosbT)z + e-2aT 

ze-aTsinbT 

Z2 - 2e-aT(cos bT)z + e-2aT 

z(Az + B) 
(z -1)(z2 - 2e-aT(cosbT)z + e-2aT ) 

A = 1- e-aTcosbT - ~ e-aTsinbT 
b a 

B = e-2aT + - e-aT sin bT - e-aT cos bT 
b . 

t:C 
b) 

~ 
t:C 
~ 
l"j 

o 
"'.j 

~ 
~ 
::t' 
> 
Z 
00 
"'.j 
o 
::t' 
~ 
00 

-'f = ~ 

j 



APPENDIXC 

A Few Results from Matrix Analysis 

Although we assume the reader has some acquaintance with linear equations 
and determinants, there are a few results of a more advanced character that 
even elementary control-system theory requires, and these are collected here 
for reference in the text. For further study, a good choice is Strang (1976). 

C.l DETERMINANTS AND THE MATRIX 
INVERSE 

The determinant of a product of two square matrices is the product of their 
determinants: 

det AB = det A det B. (C.1) 

If a matrix is diagonal, then the determinant is the product of the ele­
ments on the diagonaL 

If the matrix is partitioned with square elements on the main diagonal, 
then an extension of this result applies, namely, 

det [~ ~] = det A det C if A and C are square matrices. (C. 2) 

Suppose A is a matrix of dimensions m x nand B is of dimension n x m. 
Let 1m and In be the identity matrices of size m x m and n x n, respectively. 
Then 

det [In + BA] = det [1m + AB] . (C.3) 
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To show this result, we consider the determinant of the matrix product 

det 
[B
Im InO] [I_mB A] d [1m A] d [I BAl In = et ° In + BA = et n + . 

But this is also equal to 

and therefore these two determinants are equal to each other, which is (C.3). 
If the determinant of a matrix A is not zero, then we can define a related 

matrix A -1, called "A inverse," which has the property that 

AA-1 = A-1A = I. (C.4) 

According to property (C.1) we have 

det AA -1 = det A . det A-I = 1, 

or 

-1 1 
detA = detA' 

It can be shown that there is an n x n matrix called the adjugate of A with 
elements composed of sums of products of the elements of A l and having 
the property that 

A . adj A = det A . I. 

Thus, if the determinant of A is not zero, the inverse of A is given by 

A-I = adjA. 
detA 

(C.5) 

A famous and useful formula for the inverse of a combination of matrices 
has come to be called the matrix inversion lemma in the control literature. 
It arises in the development of recursive algorithms for estimation, as found 

lIf Aij is the n - 1 x n -1 matrix (minor) found by deleting row i and column j 
from A, then the entry in row i and column j of the adj A is (-1 )i+j det Aji. 
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in Chapter 8. The formula is as follows: If det A, det C, and det (A+BCD) 
are different from zero, then we have the matrix inversion lemma: 

(A + BCD)-1 = A-I - A -IB(C-1 + DA -IB)-IDA -1. (C.6) 

The truth of (C.6) is readily confirmed ifv:re multiply both sides by A+BCD 
to obtain 

I = I + BCDA -1 - B(C-1 + DA -IB)-IDA-1 

- BCDA -IB(C-1 + DA -IB)-IDA-1 

= 1+ BCDA -1 - [B + BCDA -IB][C-1 + DA -IB)-IDA -1. 

If we subtract I from both sides and factor BC from the left on the third 
term, we find 

0= BCDA -1 - BC[C-1 + DA -IB][C-1 + DA -IBtIDA -1, 

which is 

0=0 which was to be demonstrated. 

C.2 EIGENVALUES AND EIGENVECTORS 

We consider the discrete dy~amic system 

(C.7) 

where, for purposes of illustration, we will let 

~ = [i 
1 

-~] o . (C.8) 

If we assume that it is possible for this system to have a motion given by a 
geometric series such as zk, we can assume that there is a vector v so that 
Xk can be written 

(C.g) 

Substituting (C.g) into (C.7), we must find the vector v and the number z 
such that 
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or, multiplying by z-k yields 

vz = ~v. (C.10) 

If we collect both the terms of (C.10) on the left, we find 

(zI - t»)v = o. (C.11) 

These linear equations have a solution for a nontrivial v if and only if the 
determinant of the coefficient matrix is zero. This determinant is a poly­
nomial of degree n in z (t» is an n x n matrix) called the characteristic 
polynomial of ~, and values of z for which the characteristic polynomial is. 
zero are roots of the characteristic equation and are called eigenvalues of t». 
For example, for the matrix given in (C.8) the characteristic polynomial is 

{[
z 0] [Q _l]} 

det 0 z - i 06 
. 

Adding the two matrices, we find 

det { z -=-1 ~ +1} 
z ' 

which can be evaluated to give 

z(z - ~) + 1 = (z - ~)(z - i)· (C.12) 

Thus the characteristic roots of this ~ are ~ and i. Associated with these 
characteristic roots are solutions to (C.11) for vectors v , called the charac­
teristic or eigenvectors. If we let z = ~, then (C.11) requires 

(C.13) 

Adding the matrices, we find that these equations become 

[-l 
-1 

1] [vu] = [0] 
~ V21 0 

(C.14) 

Equations (C.14) are satisfied by any Vu and V21 such that 
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from which we conclude that the eigenvector corresponding to ZI = ! is 
given by 

(C.15) 

We can arbitrarily select the scale factor a in (C.15). Some prefer to make the 
length2 of eigenvectors equal to one. Here we make the largest component 
of v have unit magnitude. Thus the scaled VI is 

(C.16) 

In similar fashion, the eigenvector v 2 associated with Z2 = i can be com­
puted to be 

Note that even if all elements of ~ are real, it is possible for characteristic 
values and characteristic vectors to be complex. 

C.3 SIMILARITY TRANSFORMATIONS 

If we make a change of variables in (C.7) according to x = T{, where T is 
an n x n matrix, then we start with the equations 

and, substituting for x, we have 

Then, if we multiply on the left by T-1 , we get the equation in {, 

(C.17) 

2Usually we define the length of a vector as the square root of the sum of squares 
of its components or, if IIvll is the symbol for length, then IIvll2 = vTv. If v is 
complex, as will happen if Zi is complex, then we must take a conjugate, and we 
define IIvll 2 = (v*)Tv, where v· is the complex conjugate of v. 
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If we define the new system matrix as, 'lit, then the new states satisfy the 
equations 

where 

(C.l8) 

If we now seek the characteristic polynomial of 'lit, we find 

det [zI - 'lit] = det [zI - T-l~T]. 

Because T-1T = I, we can write this polynomial as 

and the T-1 and T can be factored out on the left and right to give 

det [T-1[zI - 'I>]T]. 

Now, using property (C.l) for the determinant, we compute 

det T-1 . det [zI - '1>] . det T, 

which, by the equation following (C.4), gives us the final result 

det [zI - 'lit] = det [zI - ~]. (C.l9) 

From (C.l9) we see that 'lit and ~ have the same characteristic polyno­
mials. The matrices are said to be "similar," and the transformation (C.l8) 
is a similarity transformation. 

A case of a similarity transformation of particular interest is one for 
which the resulting matrix 'lit is diagonal. As an attempt to find such a 
matrix, suppose we assume that'lltis diagonal and write the transformation 
T in terms of its columns, ti' Then (C.l8) can be expressed as 

T'IIT = ~T, 

[tl t2 ... tn]'IIT = ~[tl t2 ... t n] 

= ['I>tl 'l>t2 ... ~tn]' (C.20) 
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If we assume that '11 is diagonal with elements AI, A2, ... , An, then (C.20) 
can be written as 

Al 
o 
o 

o 
o 

Multiplying the matrices on the left, we find 

(C.2l) 

Because the two sides of (C.2l) are equal, they must match up column by 
column, and we can write the equation for column j as 

(C.22) 

Comparing (C.22) with (C.lO), we see that tj is an eigenvector of <P and 
Aj is an eigenvalue. We conclude that if the transformation T converts <P 
into a diagonal matrix '11, then the columns of T must be eigenvectors of <P 
and the diagonal elements of '11 are the eigenvalues of <P [which are also the 
eigenvalues of '11, by (C.19)]. It turns out that if the eigenvalues of <P are 
distinct, then there are exactly n eigenvectors and they are independent; that 
is, we can construct a nonsingular transformation T from the n eigenvectors. 

In the example given above, we would have 

T = [i t] , 
for which 

T- 1 = [ 6 
-6 

-2] 
3 ' 
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and the new diagonal system matrix is 

as advertised! 

T-l~T=[_~ -~][i -g][t i] 
=[-~ -~][t !] 
= [~ i] 

If the elements of ~ are real and an eigenvalue is complex, say .\1 = 
a + j{3, then the conjugate, .\i = a - j{3, is also an eigenvalue because the 
characteristic polynomial has real coefficients. In such a case, the respective 
eigenvectors will be conjugate. If Vi = r + ji, then V2 - vi = r - ji, where 
rand i are matrices of real elements representing the real and imaginary 
parts of the eigenvectors. In such cases, it is common practice to use the 
real matrices rand -i as columns of the transformation matrix T rather 
than go through the complex arithmetic required to deal directly with Vi 

and vi. The resulting transformed equations are not diagonal, but rather 
the corresponding variables appear in the coupled equations 

iJ = art - {3v, v = {3rt + av. (C.23) 

C.4 THE CALEY-HAMILTON THEOREM 

A very useful property of a matrix ~ follows from consideration of the inverse 
of zI - ~. As we saw in (C.5), we can write 

(zI -~) adj (zI -~) = Idet (zI - ~). (C.24) 

The coefficient of I on the right-hand side of (C.24) is the characteristic 
polynomial of~, which we can write as 

The adjugate of zI - ~, on the other hand, is a matrix of polynomials in 
z, found from the determinants of the minors of zI - ~. If we collect the 
constant matrix coefficients of the powers of z, it is clear that we can write 
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and (C.24) becomes a polynomial equation with matrix coefficients. Written 
out, it is 

If we now multiply the two matrices on the left and equate coefficients of 
equal powers of z, we find . 

BI = I, 

B2 = ~BI + all = ~ + all, 

B3 = ~B2 + a2I = ~2 + al ~ + a2I, 

Bn = ~Bn-l + an-II = ~n-l + al ~n-2 + ... + an-II, 

o = ~Bn + anI = ~n + al ~n-l + a2~n-1 + ... + anI. (C.26) 

Equation (C.26) is a statement that the matrix obtained when matrix ~ is 
substituted for z in the characteristic polynomial, a(z), is exactly zero! In 
other words, we have the Cayley-Hamilton theorem according to which 

a(~) = o. (C.27) 
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