B.1 PROPERTIES OF -TRANSFORMS
Let F;(s) be the Laplace transform of f;(t) and F;(z) be the z-transform of f;(kT).

Table B.1
Number Laplace Transform = Samples z-Transform Comment
- Fi(s) fi(kT) Fi(2)
1 aFi(s) + BFa(s) afi(kT)Bf2(kT) aFy(z)BFs(2) The z-transform is linear
2 F1(eT®)Fa(s) S AUET)f2(kT —£T) Fi(2)Fa(2) Discrete convolution E’
{=—o0 corresponds to product g
of z-transforms g
=
3 et Te F(s) f(KT 4+ nT) 2"F(z) Shift in time g
F(s+a) e~k F(ETY F(eT2) Shift in frequency 5
— lim f(kT) lim(z - 1)F(z) If all poles of (z — 1)F(2) are 72
e at inside the unit circle and F(z) 2
converges for 1 < |z| N
6 F(s/wn) fwakT) F(z;w,T) Time and frequency scaling g
1 d >
7 — f1(kT) f2(kT) —}{ Fl(()Fz(z/C)—C Time product Z
o 2Tr] C3 C %
8 Fs(s) = Fi(s)Fa(s) / fi(r) f2(kT — 7)dr  F3(2) Continuous convolution does g
l 60 not correspond to product of E

z-transforms
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B.2 TABLE OF 2-TRANSFORMS

F(s) is the Laplace transform of f(t) and F(z) is the z-transform of f(nT
0, t < 0 and the region of convergence of F(2) is outside a circle r < |z| suc

). Unless otherwise noted, f(t) =
h that all poles of F'(z) are inside

s
Table B.2
Number F(3) f(nT) F(z)
1 — 1,n=0;0n#0 1
2 — 1,n=k On#k Pa
3 = 1(nT) £
s]. " z —1‘1
z
4 — —
52 nT (z—1)2
1 1 TZ 2(z + 1)
= —(nT)? et o, R
5 ) 21" 2 (z—1?°
1 1 y T3 2(22 + 4z + 1)
0 st ﬁ(nT) 6 (z—1)*
1 . (_l)m—l am—l o i (_l)m—l am—l -z
! sm ili% (m —1)! Gam1 ;1—% (m —1)! da™-1z —e~oT
1 —anT Z
i s+a ¢ z— e'“TT
1 —anT Tze
’ (s+a)? nte (2 —eoT)?
1 1 —_—— T2 _ 5 2(z+e°T)
= (s+a)? 2 (nT)"e 2°  (z—eoT)y
1 (_1)m—1 am-l e (_1)m—1 am—l 2
11 (e
(s+a)™ (m —1)! dam~1 (m —1)! 8am-1 z —eoT
—e—0oT)
12 2 1-eonT 3~
s(s+a) (z—1)(z — e~*T)
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Number F(s) f(nT) F(z)
a 1 B Z[(aT — 1+ e *T)z + (1 — e~ T — aTe 7))
13 e —(anT — 1+ e~onT
s2(s+a) a(an Ak ) a(z — 1)%(z — e—oT)
14 _ b-a (e~onT — g=bnT) (g —g )y
(s +a)(s+b) (2 —e7oT)(z — e~*T)
s z[z — e T (1 + aT))
1 - —anT
5 Gral? (1-anT)e Gy
2 —aT —aT —2aT —aT —aT
a . z[z(1 — e —aTe™ ") + e —e %" +ale %]
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a . zsinaT
e 82 + a? s o 22 — (2cosaT)z +1
s 2(z — cosaT)
- s2 + a? SR 22— (2cosaT)z +1
s+a z(z — e T'cos bT)
2 —anT
. (s+a)?+b? 3 w 22 — 2e=9T (cos bT')z + e~20T
b ze~*TsinbT
21 T — e —anT g3 T
(s+a)? + b2 € — 22 — 2e~9T (cos bT)z + e—2eT
a® + b? — a . 2(Az+ B)
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a
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APPENDIX C :

A Few Results from Matrix Analysis

Although we assume the reader has some acquaintance with linear equations
and determinants, there are a few results of a more advanced character that
even elementary control-system theory requires, and these are collected here
for reference in the text. For further study, a good choice is Strang (1976).

C.1 DETERMINANTS AND THE MATRIX
INVERSE

The determinant of a product of two square matrices is the product of their
determinants: ]

det AB = det A det B. (€.1) 1

If a matrix is diagonal, then the determinant is the product of the ele-
ments on the diagonal.

If the matrix is partitioned with square elements on the main diagonal,
then an extension of this result applies, namely,

A 0

det [B C

] =det Adet C if A and C are square matrices. (C.2)

Suppose A is a matrix of dimensions m x n and B is of dimension n x m. ]
Let I,, and I,, be the identity matrices of size m x m and n X n, respectively. ]
Then

det [I, + BA] = det [I,,, + AB]. (C.3) i
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C.1 DETERMINANTS AND THE MATRIX INVERSE 797

To show this result, we consider the determinant of the matrix product

Im 0 Im A _ Im A .

But this is also equal to

det [ S ] [_B InJ = det [ s In] = det[L, + AB,

and therefore these two determinants are equal to each other, which is (C.3).
If the determinant of a matrix A is not zero, then we can define a related
matrix A1, called “A inverse,” which has the property that

AA'=ATA=1L (C.4)
According to property (C.1) we have
det AA™' =det A-det A7l =1,

or

1
A _1 _— —
e det A’

It can be shown that there is an n X n matrix called the adjugate of A with
elements composed of sums of products of the elements of A' and having
the property that

A -adjA =detA-L (C.5)
Thus, if the determinant of A is not zero, the inverse of A is given by

-, ade
B = det A’

A famous and useful formula for the inverse of a combination of matrices
has come to be called the matriz inversion lemma in the control literature.
It arises in the development of recursive algorithms for estimation, as found

f A% is the n — 1 x n — 1 matrix (minor) found by deleting row i and column j
from A, then the entry in row 4 and column j of the adj A is (—1)t7det A7,
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in Chapter 8. The formula is as follows: If det A, det C, and det (A+BCD)
are different from zero, then we have the matrix inversion lemma;:

(A+BCD)'=A"1-A'B(C!+DA!B)"'DA L. (C.6)

The truth of (C.6) is readily confirmed if we multiply both sides by A+BCD
to obtain

I=1+BCDA!-B(C!+DA!B)'DA!
—~BCDA!'B(C!+DA'B)'DA!
=I1+BCDA™! - [B+BCDA'B][C"!+DA"!B)"'DA L,

If we subtract I from both sides and factor BC from the left on the third
term, we find

0=BCDA ! -BC[C™! + DA !B][C! + DA !B|"'DA ],
which is

0 = 0 which was to be demonstrated.

C.2 EIGENVALUES AND EIGENVECTORS

We consider the discrete dynamic system
X1 = X, (C.7)

where, for purposes of illustration, we will let

@:[% ‘0%}. (C.8)

If we assume that it is possible for this system to have a motion given by a
geometric series such as 2¥, we can assume that there is a vector v so that
X can be written

x; = vzt (C.9)

Substituting (C.9) into (C.7), we must find the vector v and the number z
such that

vkt = vk,

or, n

If we
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C.2 EIGENVALUES AND EIGENVECTORS 799

or, multiplying by z~* yields
vz = Pv. (C.10)
If we collect both the terms of (C.10) on the left, we find
(21— ®)v = 0. (C.11)

These linear equations have a solution for a nontrivial v if and only if the
determinant of the coefficient matrix is zero. This determinant is a poly-
nomial of degree n in z (® is an n X n matrix) called the characteristic
polynomial of ®, and values of 2z for which the characteristic polynomial is.
zero are roots of the characteristic equation and are called eigenvalues of ®.
For example, for the matrix given in (C.8) the characteristic polynomial is

a{f3 2] -[F 311}
Adding the two matrices, we find
det {Z__l% +z% },
which can be evaluated to give
z2(z — -g—)‘+ % =(z—3)(z— %). (C.12)
Thus the characteristic roots of this ® are % and % Associated with these

characteristic roots are solutions to (C.11) for vectors v, called the charac-
teristic or eigenvectors. If we let z = %, then (C.11) requires

1l 9 5 _1 v 0
2 |6 6 1] _
(5 3-18 ¢hlm]-]  cn
Adding the matrices, we find that these equations become
11
3 g || _ [0 |
[—1 %] ['U21] [0] s
Equations (C.14) are satisfied by any v1; and vg; such that

v91 = 2013,
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from which we conclude that the eigenvector corresponding to z; = 1 g
given by

vi = [2aa] . (C.15)

We can arbitrarily select the scale factor a in (C.15). Some prefer to make the
length? of eigenvectors equal to one. Here we make the largest component
of v have unit magnitude. Thus the scaled v; is

vy = [%] . (C.16)

In similar fashion, the eigenvector v2

puted to be

associated with z9 = % can be com-

1
=13].
v [1]
Note that even if all elements of ® are real, it is possible for characteristic
values and characteristic vectors to be complex.

C.3 SIMILARITY TRANSFORMATIONS

If we make a change of variables in (C.7) according to x = T§, where T is
an n X n matrix, then we start with the equations

Xg41 = Pxg,
and, substituting for x, we have
Ty = PTE;.
Then, if we multiply on the left by T~!, we get the equation in £,

i1 = T ®TE. (C.17)

2Usually we define the length of a vector as the square root of the sum of squares
of its components or, if ||v|| is the symbol for length, then ||v||? = vTv. If v is
complex, as will happen if z; is complex, then we must take a conjugate, and we
define ||v||? = (v*)Tv, where v* is the complex conjugate of v.

If
ec

If
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If we define the new system matrix as ¥, then the new states satisfy the
equations

Eev1 = W,
where
¥ =T 1®T. (C.18)
If we now seek the characteristic polynomial of ¥, we find
det [2I — ¥] = det [2I — T~ ®T).
Because T~!T = I, we can write this polynomial as |
det [zT71T — T71&T],
and the T~! and T can be factored out on the left and right to give
det [T1[2I — ®]T).
Now, using property (C.1) for the determinant, we compute
det T~ . det [2I — ®] - det T,
which, by the equation following (C.4), gives us the final result
det [2I — ¥] = det [2I — P]. (C.19)

From (C.19) we see that ¥ and ® have the same characteristic polyno-
mials. The matrices are said to be “similar,” and the transformation (C.18)
is a similarity transformation.

A case of a similarity transformation of particular interest is one for
which the resulting matrix ¥ is diagonal. As an attempt to find such a
matrix, suppose we assume that ¥ is diagonal and write the transformation
T in terms of its columns, t;. Then (C.18) can be expressed as

TE = T,

[tl ta.. .tn]\I’ = q’[tl ta... tn]
— [Bt; Bty... Bty (C.20)
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If we assume that ¥ is diagonal with elements A, Ag, ..., A, then (0.20)
can be written as

(A O 07
0 A 0
0
[tl ta ... tn] ' = [@tl Pty ... ‘I’tn].
L A

Multiplying the matrices on the left, we find
[A1tiAate .. ./\ntn] = [Pty ... @tn]. (C.21)

Because the two sides of (C.21) are equal, they must match up column by
column, and we can write the equation for column j as

At; = Bt (C.22
J J

Comparing (C.22) with (C.10), we see that t; is an eigenvector of ® and
)j is an eigenvalue. We conclude that if the transformation T converts ®
into a diagonal matrix ¥, then the columns of T must be eigenvectors of ®
and the diagonal elements of ¥ are the eigenvalues of ® [which are also the
eigenvalues of ¥, by (C.19)]. It turns out that if the eigenvalues of ® are
distinct, then there are exactly n eigenvectors and they are independent; that
is, we can construct a nonsingular transformation T from the n eigenvectors.
In the example given above, we would have

[} {]

— Nl
= o=

for which

=- 57

-6 3

al




- =

C.4 THE CALEY-HAMILTON THEOREM 803

and the new diagonal system matrix is

rar( ¢ 3114l
-6 3]11 o0J|1 1
_ 3-1][% %]
-2 1)1 1
_%OJ
={3 i

as advertised!

If the elements of ® are real and an eigenvalue is complex, say A\; =
a + jf, then the conjugate, A} = a — jf3, is also an eigenvalue because the
characteristic polynomial has real coefficients. In such a case, the respective
eigenvectors will be conjugate. If vi = r 4 ji, then vo — vi =r — ji, where
r and i are matrices of real elements representing the real and imaginary
parts of the eigenvectors. In such cases, it is common practice to use the
real matrices r and —i as columns of the transformation matrix T rather
than go through the complex arithmetic required to deal directly with v;
and vj. The resulting transformed equations are not diagonal, but rather
the corresponding variables appear in the coupled equations

n=an—Pv, v=p0n+av. (C.23)

C.4 THE CALEY-HAMILTON THEOREM

A very useful property of a matrix ® follows from consideration of the inverse
of zI — ®. As we saw in (C.5), we can write

(21 — ®) adj (21 — @) = Idet (21 — ®). (C.24)

The coefficient of I on the right-hand side of (C.24) is the characteristic
polynomial of ®, which we can write as

a(z) =2"+a1z2" 1 +a2" 2+ 4 a,.
The adjugate of z2I — ®, on the other hand, is a matriz of polynomials in
z, found from the determinants of the minors of zI — ®. If we collect the

constant matrix coefficients of the powers of z, it is clear that we can write

adJ (ZI - <I’) = Blzn—l -+ Bzzn—z + - Bn’
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and (C.24) becomes a polynomial equation with matrix coefficients. Written
out, it is

[21 = ®][B1z" 1 + Bgz" 2+ +B,] = 2"+ 112" 1+ .- 4 q,L (C.25)

If we now multiply the two matrices on the left and equate coefficients of
equal powers of z, we find

B =1,
By = ®B; +a;1=® +a1],
B3 = By + asl = % + a1 P + asl,

B,=®B, 1 +a, 1 I=®"1+a;®" *+ - +ap1l,
0=®B, +a,l=8"+a;®" ! +a,®" ' +.-- +4a,I. (C.26)
Equation (C.26) is a statement that the matrix obtained when matrix ® is

substituted for z in the characteristic polynomial, a(z), is exactly zero! In
other words, we have the Cayley-Hamilton theorem according to which

a(®) = 0. (C.27)
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