Design of
PID Controllers

4.1 INTRODUCTION

is chapter describes some methods for determining the parameters of a
D controller. The properties of the design methods will be illustrated
ng a fourth-order process model. The methods differ with respect to the
>wledge of the process dynamics they require..A Pl controller is described
two parameters (K and 7;) and a PID regulator by three or four param-
ts (K, T;, T;and N). In the classical Ziegler-Nichols methods, the dynam-
are characterized by two parameters. In the step response method, they
taken from the step response. In the Ziegler-Nichols frequency response
thod, the parameters are the frequency where the open-loop dynamics
7e a phase shift of 180° and the gain at that frequency. An obvious
ension of the frequency response method is to develop methods that are
ied on knowledge of the open-loop transfer function at two frequencies,
, four parameters. @’rlgthem.@y to obtain a characterization of process
1amics with few parameters is, of course, to use low-order dynamic mod-
with few parameters, Design methods based on dynamic models of first
1 second order are discussed. A corresponding treatment of discrete time
dels is also given. The discrete time models have the advantage that they
1 describe time delays using finite dimensional models. Many of the
ign methods described give good responses to load disturbances. The
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response to command signals will, however, often show a significant over-

shoot. The nature of this problem is discussed, and it is shown that the

difficulty is due to a deficiency of the conventional PID structure. A simple

way to alleviate this problem is suggested. The different design methods are

compared, and some insight into the sensitivity problem and the differences
J between PI and PID control are also given.

4.2 ZIEGLER-NICHOLS METHODS

il Two classical methods were presented by Ziegler and Nichols in 1942. These
' methods are still widely used, either in their original form or in some
! v modification.

| : : Ziegler-Nichols Step Response Method

The first design method presented by Ziegler and Nichols is based on a
| registration of the open-loop step response of the system, which is charatter-
ized by two parameters (see Figure 4.1). The point where the slope of the
step response has its maximum is first determined, and the tangent at this
point is drawn. The intersections between this tangent and the coordinate
axes give the two parameters ¢ and L. In Chapter 3, a model of the process
to be controlled was derived from these parameters. Ziegler and Nichols
have given PID parameters directly as functions of @ and L. These are given
in Table 4.1. An estimate of the period T,, of the dominant dynamics of the
closed-loop system is also given in the table.

Example 4.1—The Ziegler-Nichols step response method will be applied to
the process

. 1 .
(1 +5)(1+0.25)(1 + 0.055)(1 + 0.01s)

G,(s) = 4.1
This process model is used as a test example throughout the chapter.
Measurements on the step response give the parameters a = 0.11 and
L =0.16. The controller parameters can now be determined from Table 4,1,
It follows that a PI controller should have the parameters K = 8.2 and
T; = 0.48. The parameters of a PID controller are K = 10.9, T; = 0.32, and
T,=0.08. Figure 4.2 shows the response of the closed-loop systems to a step

‘IJ command and a load disturbance.
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Table 4.1
Recommended PID Parameters According to
Ziegler-Nichols Step Response Method

Zontroller K T, Ty T
> l/a 4L
7 0.9/a 3L 5.7L
’ID 1.2/a 2L L/2 3.4L

Notice that the response of the PI controller is poorly damped but that
response of the PID controller is better. The overshoot in the response
‘he command signal is, however, excessive even for the PID controller.

Figure 4.1
Characterization of a Step Response
Used in the Ziegler-Nichols Step Response Method
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Figure 4.2

Step and Load Disturbance Response of the Process (Equation 4.1)
Controlled by a PI Controller (thin lines) a PID Controller (thick lines)
Tuned by the Ziegler-Nichols Step Response Method

Ziegler-Nichols Frequency Response Method

This method is also based on a very simple characterization of the proc-
ess dynamics. The design is based on knowledge of the point on the Nyquist
curve of the process transfer function G where the Nyquist curve intersects
the negative real axis. For historical reasons this point is characterized by
the parameters k, and ¢,, which are called the witimate gain and the ultimate
period. Section 3.2 described a method to obtain parameters k, and ¢, by
increasing the gain in a proportional controller until the stability boundary
is reached. The parameters can also be obtained using the relay feedback
experiment presented in the same section. The Ziegler-Nichols design
method gives simple formulas for the parameters of the controller in terms

A ———
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1€ ultimate gain and the ultimate period (see Table 4.2). An estimate of
seriod (7,,) of the dominant dynamics of the closed-loop system is also
n in the table.

Recommended PID Parameters According to

E

!

|
Table 4.2 i
Ziegler-Nichols Frequency Response Method

»ntroller K T; Ty T
0.5k, te |
0.4k, 0.8 t, 14t

(D 0.6 k, 0.5¢t, 0.12 ¢, 0.85t,

Process output and set point

e o=

Controfl signal i

Figure 4.3

Step and Load Disturbance Response When the Process

(Equation 4.1) is Controlled by a PI Controller (thin lines) and a PID
troller (thick lines) Tuned by Ziegler-Nichols Frequency Response Method
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Example 4.2—The process of Equation 4.1 has the ultimate gain k, =~ 25
and the ultimate period ¢, =~ 0.63. Table 4.2 gives the parameters K = 10 and
T;=0.50 for a PI controller and K = 15, T;= 0.31, and T, = 0.08 for a PID
controller. Figure 4.3 shows the closed-loop step and load disturbance
responses when the controllers are applied to the Equation 4.1 process. The
parameters and the performance of the controllers obtained with the fre-
quency response method are quite close to those obtained by the step
response method.

The Ziegler-Nichols tuning rules were originally designed to give systems
with good responses to load disturbances. They were obtained by extensive
simulations of many different systems. The design criterion was quarter
amplitude damping. In Section 3.2, the relation between the damping (d)
and the relative damping ({) is given as:

1
V1 + (2m/log(d))? !

Quarter amplitude damping, d = 1/4, gives the relative damping { = 0.22,
which is often considered too small. This is clearly seen in the examples
above. The performance can be improved by the modification discussed
below. In control loops where the major design objective is to quickly
compensate for load disturbances, the high gain provided by the Ziegler-
Nichols method is good. In these cases, large overshoots and oscillations
during set point changes can be avoided by ramping the set point or per- ’
forming the set point shift in several steps. In Section 2.4, another method to
avoid large overshoots caused by set point changes was described.

Relations Between the Ziegler-Nichols Methods

The relations between the two methods can be seen by considering con- \
trol of an integrator with a delay. Such a process has the transfer function |

b i
= = =T
G = e eq L3-0) !
The step response parameters are L = T'and a = bT. The PID parameters
obtained by the step response methods therefore become (7a<de .1
1

2
K_ﬁ I =2T T, = —

)
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Re Gliw)

Figure 4.4

A Given Point on the Nyquist Curve May Be Moved to an Arbitrary
Position in the G-plane by PI, PD, or PID Control. (Point A may be
moved in the directions G(iw), G(iw)/iw, and iwG(iw) by changing
the proportional, integral, and derivative gain, respectively)

e ultimate period of the system is 7, = 47, and the ultimate gain is &, =
T. The PID parameters obtained by the frequency response methods
herefore,

. T
e T = 2T T,= 5

An Interpretation of the
Ziegler-Nichols Frequency Domain Method

e Ziegler-Nichols frequency domain method will be interpreted in
of moving points in the Nyquist diagram. The method starts with
nination of the point (-1/k,,0) where the Nyquist curve of the open-
system intersects the negative real axis. With PI or PID control, it is
>le to move a given point on the Nyquist curve to an arbitrary position
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in the complex plane, as indicated in Figure 4.4, By changing the gain, it is
possible to move the Nyquist curve in the direction of G(iw), i.¢., radially
from the origin. Point A may be moved in the orthogonal direction by
changing integral or derivative gain. It is thus possible to move a specified
point to an arbitrary position, an idea that can be used to obtain design
methods.

Let w be the frequency that corresponds to 4. The frequency response of
the regulator at w is

; | o
Grliw) = k [ 1+ m,- +iwT; ] = rge'®r
with positive regulator parameters the angle ¢y is thus restricted to the
range -m/2 < ¢g < /2 where ¢ = —-mw/2 corresponds to pure integral
control and ¢p = /2 to pure derivative control.

Pure derivative control cannot be implemented (compare with Equation
2.7). The range of ¢ is therefore —m/2 < ¢ = ¢, where ¢ is about 7/3 or
60°.

With the Ziegler-Nichols frequency response method it follows that

y . 1
GR(le) = 0.6kc [ 1+ (wﬂ:, = ’aﬁ‘)]
{27 1 y
= 0.6k, [ 1+ (? — 7)] = k(0.6 + 0.28i)

The Ziegler-Nichols frequency response method can thus be interpreted
as finding regulator parameters so that the point where the Nyquist curve
intersects the negative real axis is moved to —0.6 — 0.28i. This corresponds to
a phase advance of 25° at w,.

A Modified Ziegler-Nichols Method

With the given interpretation, it is straightforward to generalize the
Ziegler-Nichols frequéncy domain method. Other points of the Nyquist
curve can be selected. They can also be moved to other positions. In this way
it is possible to obtain design methods where the specifications are given in
terms of amplitude margins or phase margins.

A general formulation is to start with a given point of the Nyquist curve
of the process

1 = i(m+e,)
G(iw) = r,e"™%
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| a regulator so that this point is moved to

)

litude margin design corresponds to ¢, = 0 and r, = 1/ A, where
mplitude margin; a phase margin design corresponds to r, = | and
here ¢, is the specified phase margin; and the Ziegler-Nichols

domain method corresponds to r, = 0.66 and ¢, = 0.44.
the frequency response of the controller as

. ol
RE TR

rere[("ﬂﬂp“PR)

ller should thus be chosen so that

e (pir

sulations give

(o9,)

p

= tan(e,-,)

1k is uniquely given. However, only one equation determines the
s T and T,. An additional condition must thus be introduced to
these parameters uniquely. A common method is to specify a
slation between T and T, ie.,

ten is chosen as a = 0.25. Straightforward calculations now give
sters T; and T,

~tan(e,~¢,) + Vdattan¥(e,-¢,)
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For systems where the amplitude and the phase of the transfer function
i decreases monotonously, the choice r, = 0.5 and ¢, = m/4 guarantees an
| amplitude margin of at least 2 and a phase margin of at least 45°.

| Assuming that a Ziegler-Nichols experiment is used to determine a suita-
l ble point, we have r, = 1/ k, and ¢, = 0. The controller parameters are then
given by k=035 k, 7,=0.77 T, and T, = 0.197_. This can be compared

with the values given by the Ziegler-Nichols frequency response method.
| The Ziegler-Nichols frequency response method and the modified Ziegler-
ll Nichols method are based on the idea of moving one point on the Nyquist
curve to a desired position. The terms phase margin and amplitude margin

i sl
RNV L
s
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Figure 4.5
L Nyquist Curves of Systems with Equal Amplitude Margin
and Their Corresponding Closed-Loop Step Responses
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o define one point on the Nyquist curve. In most cases these simple design
les are sufficient, but there are exceptions. Figure 4.5 shows the Nyquist
rves of three systems having the same amplitude margin, 4,, = 2. This
:ans that all Nyquist curves pass through the point z = -0.5. Figure 4.6
ows the Nyquist curves of three systems having the same phase margin,
, = 45°. This means that all Nyquist curves pass through the point z =
.707 - 0.707i. The corresponding step responses clearly demonstrate that
> transient behavior of the control loop is also influenced by other points

the Nyquist curve. Design methods where several points on the Nyquist
rve are determined are described below.

G‘ s
il = -~
G |

. Figure 4.6
Nyquist Curves of Systems with Equal Phase Margin
and Their Corresponding Closed-Loop Step Responses
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4.3 DOMINANT POLE DESIGN

The Ziegler-Nichols methods discussed in the previous section were based

on the knowledge of only one point on the Nyquist curve of the open-loop
process dynamics. This section presents a design method that uses two
poims.on—th&N.ym __uuLe_,;Tﬁé-method is based on a simple method of - |
/ estimating the dominant poles of the closed-loop system from the open-loop ¢

| transfer function. "The notion of dominant poles is first discussed. The
design method is then developed.

Dominant poles

Consider a closed-loop system obtained by negative feedback around a
linear system with the transfer function G(s) (see Figure 4.7). The transfer
function of the closed-loop system from the command signal to the output is |
given by

G(s)

G.(s) = T CE)

Many properties of the closed-loop system can be deduced from the poles
and the zeros of G(s), which are the same as the zeros of G(s) (i.e., the zeros
of the plant and the controller). The closed-loop poles are the roots of the
equation

1+ G@) =

The pole-zero configurations of closed-loop systems may vary considera-
bly. Many simple feedback loops will, however, have a configuration of the
type shown in Figure 4.8 where the principal characteristics of the response
are given by a complex pair of poles, p, and p,, called the dominant poles.
The response is also somewhat influenced by real poles and zeros p, and z,,
respectively. The position of z; and p, may be reserved. There may also be
more poles and zeros far from the origin. Poles and zeros whose real parts
are much smaller than the real part of the dominant poles have little influ-
ence on the transient response. Classical control was very much concerned
with closed-loop systems having the pole-zero configuration shown in Fig-
ure 4.8.

Even if many closed-loop systems have a pole-zero configuration similar
to the one shown in Figure 4.8, there are, however, exceptions. For instance,
systems with mechanical resonances, which may have poles and zeros close
to the imaginary axis, are generic examples of systems that do not fit the
pole-zero pattern of the figure. Such systems are not treated in this section.
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Figure 4.7
Block Diagram of a Simple Feedback System

b 3 fIrnz

Z Rez

Figure 4.8
Pole-Zero Configuration of a Simple Feedback System

PI Control

: dominant pole design method will first be applied to PI control. Two

-loop poles can be specified, since a PI controller has two adjustable
ieters. Let the PI controller be parameterized as

:k+£
.S
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where k is the proportional gain and k; is the integral gain. The parameters &
and k;, will be determined so that the closed-loop system has poles at s = p,
and s = p,, where

Py = ~Lwy + iwgV -{?= —0+iw
py = Lwy — iwg/ 1 -0%= -0 - iw

This implies

(4.2)

L+ [k+ —kl]Gp(Pl) =0
Py

1 [k+ )G, (p = 0
Dy

where G = GxGp, and G, is the transfer function of the process. The above
equation is linear in k and k,. It has a solution if | G(p,) | # 0. The solution
is

V¥ | -2 A(wy) + {B(w,)
VI =0 [A(wg)? + {B(wy)?]

) wyBlw)
V=02 [A(wg)? + Blw)?]

where A(wy) = Re Gu(p,) and B(wy) = Im Gp(p,)).

The parameter w, can be viewed as a design parameter that determines
the response speed. Small values of w, give a slow system, and large values
give a fast system. If the process dynamics are of first order, the closed-loop
system only has two poles: p, and p,. The design parameter w;, can then be
chosen arbitrarily, For higher-order dynamics, the closed-loop system will,
however, have more poles. For stable systems with poles on the real axis,
these poles will have real parts that are greater than -{w, for large w;. The
condition that the poles p, and p, are dominating will thus give an admissi-
ble range of the design parameter w,,. The upper bound of w, can be deter-
mined from the condition that the largest pole on the real axis is at § = ~«aw,,.
For stable processes G, the function A(w) is positive and B(w) is small
for small w,,. It then follows that the proportional gain k (w,)) is negative for
small . Since it is normally desirable to have positive controller gains, a
lower bound for the design parameter is given by the condition k() = 0.
The value w, corresponds to pure integral control. Analogously, the value
wgp corresponds to pure proportional control. An alternative to choosing

k(wgy) =

4.3)

ki(wy) =
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,» based on pole dominance, is to select an w, that gives the largest value of
s integral gain. This gives values that are very close to those obtained from
e condition of pole dominance. A physical interpretation of the condition
1l be given later in connection with the discussion of PID control.

PD Control

The dominant pole design can also be applied to PD control. Let the PD
ntroller be parameterized as

:(8) = k+kys

id require that the closed-loop system has poles at p, and p, given by
juation 4.2. Calculations analogous to those for the PI controller give

-V 1 -1 A(w) + {B(w)
V102 [A(wg)? + Blwg)?]

B(wg)
wy V1 -2 [A(wy)? + B(wy)?]

here A(wg) = Re Gp(p,) and B(w,) = Im Gp(p,). Notice that PI and PD
mtrol are complementary since Equation 4.4 gives k ,(w,) <0 for w <w,
id (4.3) gives k(w;) < 0 for @ > w,, The design parameter w, is thus
ways larger for PD control than for PI control as can be expected. An
yper bound for the design parameter for PD control is given by the condi-
n k(wyp) = 0, where parameter w,,;, corresponds to pure derivative con-
ol. A reasonable choice of the design parameter is the value that corres-
»nds to the largest value of the proportional gain. Another alternative is to
1alyze the conditions for pole dominance.

wy) =

4.4

.(wo) =

PID Control

‘ith PID control, it is possible to position three closed-loop poles. Let the™
ansfer function of the PID regulator be parameterized as \

e \

’

k
W) = K+ L+ ks

here k' is the proportional gain, k] the integral gain, and k[ the derivative
iin. Two closed-loop poles will first be positioned according to Equation
2, as was done for PI control. Assume that the PI design problem is
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already solved, i.e., that the functions k(w,) and k,(w,) given by Equation
4.3 are known. The value of the regulator transfer function G’z at p; = -0 +

iw is
kf
Gh(-otiw) = k' + L+ k(-0 + iw)
R( ) o a(
ok; I ok}
= k- — —oky+ t[———z' + wk;

' Requiring that this transfer function has the same value as the transfer
function for PI control gives

J ok ok
| k' - '—ak;:k——z’
wp wp
wk! wk;
- twky = - —5
wp wh
Hence,

k'(wg) = k(wg) + 20k = k(wg) + 2Lwek)

Kifwg) = kifg) + Bk =

Thus, there is a two-parameter (w,k7) family of gains for a PID regulator,
which gives a closed-loop system with poles at s = p, and s = p,. The
parameter &/, will now be determined so that the closed-loop system also has
a pole at s = —w,,.

Hence,

- k'
l + k, - L. - k&wo] GP(—wo) = 0
L W,

Inserting the expressions in Equation 4.5 for k" and & gives

) k. _
L+ | k- w—’+ 20k, - 2w0k{’i] Gp(-wy) = 0
L 0

If Gp(-w,) # 0, this equation can be solved with respect to k/;. The solution
is

1+ [k(wp) — ki(wg)] wo] Gp(-wy)

4.6
2w¢(1 - £)Gp(-wy) “.6)

ky(wo) =

|
8
|
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ations 4.5 and 4.6 define a one-parameter (wg) family of controller
s, which gives a closed-loop system with poles at ~Lw; & iw, \/1 - {2

~ty. [The parametcr w, may be viewed as a design parameter. Small -

2s of wy, give a slow system, and large values a [ast system. If thereare
onstraints on the signs of the regulator gains and the system dynamics
»f second order, arbitrary values of design parameter w, can bé speci-
since the closed-loop system has only three poles. For systems with
er-order dynamics, the condition that the chosen poles are dominating
give constraints on the design parameter.

nple 4.3—The properties of the dominant pole design method will now
lustrated. Consider a process with the transfer function given in Equa-
4.1. A PI regulator that gives closed-loop poles with relative damping
.707 will first be designed. The smallest value of the design parameter
gives a nonnegative proportional gain is w; = 0.62. This corresponds to
integral control, i.e., k = 0 and k; = 0.394. For w, = 2.23, the closed-loop
m has poles at —1.58 £ 1.584, -2.24, -20.6, and -100. The controller
s are k = 1.62 and T; = 0.70. A comparison with Example 4.1 and
nple 4.2 shows that the parameters obtained by the dominant pole
m are significantly different from those obtained by the Ziegler-Nichols
10ds. For larger values of w, the pole at -2.24 will move towards the
and become dommaung For sufficiently large w,-gain k, becomes
tive, Controller gains for some different values of , are shown in Table
The mtegral gain (k) has its largest value for w, = 2.45. The parameters
¢ = 1.73 and T, = 0.74, which are close to the values obtained for pole
inance. The integral gain becomes zero for w, = 3.72. PD control can be
for larger values of wu.;V’he controller parameters for PD control are
shown in Table 4.3. The propomondl gdm has its largest value for w, =

. and becomes zera_for w, = 16.65. /With PID control, the design /

meter can be increased 51gn1ﬁcantly compared with PI control. Table
hows the parameters obtained for different w;. The closed-loop system
aave a double pole at s = -w, for w, = 7.16. The regulator parameters are
k=119, T;= 0.45, and T, = 0.115. To assess the different designs, first
rve that the time to the peak of a step response is approximately 4.5/ w,,.
value of w, can thus be used to determine the response time. The value
i integral gain (k;) is also useful to assess the response to load distur-
es. Consider a step in load disturbances. The control law is given by

{
= ke(t) + k; fe(s)ds +k, %

4T = cmmeesw —wo-
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| Table 4.3
1| PI and PD Regulators for Different Values of Design Parameter w,
i\
' w k k; T, ky T
0.62 0 0.394
1.00 0.51 0.887 0.574
| 2.00 1.48 2.16 0.684
u ( 2.20 1.60 2.29 0.700
! 2.30 1.66 2.33 0.713
2.40 1.71 2.35 0.728
2.45 1.73 2.35 0.738
2.50 1.76 2.35 0.748
2.60 1.80 2.32 0.774
3.00 1.90 1.96 0.972
3.72 1.88 0 o 0 0
4.00 2.24 0.080 0.036
6.00 5.09 0.598 0.118
8.00 7.73 1.02 0.132
10.0 9.43 1.33 0.141
11.0 9.72 1.45 0.150
12.0 9.52 1.55 0.163
14.0 7.36 1.67 0.226
16.0 233 1.68 0.322
16.65 0 1.66 0
i
Table 4.4
PID Regulators for Different Values of Design Parameter w,
wg k k; T, k4 T4
2.00 1.15 1.70 -0.114
2.24 1.62 2.31 0 0.704 0
3.00 3.32 4.98 0.336 0.668 0.101
| 4.00 5.78 10.0 0.705 0.587 0.122
5.00 8.20 16.1 0.996 0.510 0.121
| 6.00 10.3 22.1 1.2]1 0.466 0.118
| 7.00 11.8 26.2 1.35 0.500 0.115
7.16 11.9 26.5 137 0.452 0.115
7.50 12.2 26.8 1.40 0.454 0.115
8.00 12.3 26.1 1.42 0.473 0.115
l

SR ————
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\ssume that the system is initially at rest. With a controller having
gral action, the error and its derivative are then zero. Let the system be
ject to a load disturbance. For systems with constant static gain, the load
urbance must be compensated with a change of the control signal Aw.
s change is then given by

= k; f:e (s)ds

“he error integral due to a load disturbance is then

A
e(s)ds = Tu

“or a given load disturbance, the error integral is thus inversely propor-
wal to k;.
(he properties of the different control laws can now be assessed. With
e integral control, design parameter w, is 0.62 and k; is 0.39. The peak
¢ is then approximately 7.2s. With PI control, the design parameter can
*hosen in the range 0.62 < w; < 2.5. This means that the response time
be increased by a factor of 4 compared to pure integral control. The
.gral gain k; can also be increased from 0.39 to 2.35, which means that the
or integral for load disturbances can be reduced by a factor of 6 com-
ed to pure integral control. Notice that the largest value of k; is obtained
w, = 2.45.
With PD control, the design parameter can be chosen in the range 3.7 <
< 11, with proportional gains in the range 1.9 < k < 9.7. The largest
1e of the loop gain with PD control is 9.7, which means that PD control
only be used if the largest steady-state error is less than 10%.
With PID control the design parameter w can be chosen in the range 0.6
3y = 7.5. The value w, = 7.5 gives a threefold increase of response time
apared to PI control. The integral gain k; can be increased from 2.35 for
control to 26.8, which corresponds to an error integral for load distur-
ices that is more than 11 times smaller.
Responses to step changes in the set point and load are shown in Figure
The simulations support the results of the analysis.

Fhe domiinant pole design is useful since it gives predictable results. It

, however, the drawback that the transfer function must be known in the
iplex plane, Approximate methods, which require only the values of the
juist curve, are, therefore, developed below.
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Procass output and set point
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Figure 4.9
Step and Load Disturbance Responses of the Closed-Loop System in
Example 4.3 Obtained with the Dominant Pole Design with w, = 7.16

Approximate Determination
of the Dominant Poles

The following is a simple method for estimating the dominant poles from
knowledge of the Nyquist curve of the open-loop system. The closed-loop
poles are given by the characteristic equation

G®+1=0

A Taylor series expansion around s = iw gives
0 =1+ G(-otimw) = 1 + G(iw) + ioG' (iw) + ...
where

(i) = 490
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leglecting terms of second and higher orders in o, we find

G(iw) + ioG'(iw) = 0

1ce,

Lt Oli), 4.7
G’ (iw)

both ¢ and w of the dominant poles are determined. Notice that w must
‘hosen so that o becomes real. This analytic derivation shows that Equa-
+4.7 will give good results for small o, i.e., when the dominant poles are
e to the imaginary axis. The approximation will not hold if the function
) has singularities inside a circle with the center in iw and radius w. This
ins that o must be smaller than .

f the derivative is approximated by a difference between two close points
the Nyquist curve, the following expression for determining o is
iined:

wy) - G(iw)) - il+G(iw2)
w, - o, o

4.8)

Jy introducing a controller in the loop, the dominant poles may be
red to the desired new positions. The corresponding design problem may
1 be expressed in terms of the frequency (w) and the relative damping ({)
he dominant poles.

‘o perform the design, it is assumed that the values of the open-loop
sfer function at two neighboring frequencies, w , and w,, are known, i.c.,

"wl) = al + ib‘
iw,) = a,+ ib,
t is also assumed that frequencies w; and w, are close to the crossover
uency. The design is not restricted to any particular controller structure,

almost any controller with at least two adjustable parameters may be
. A PID controller of the form

1
5) = K[1+E+SY‘}]

10sen as an illustration. Furthermore, it is assumed that there is a given
tion between the integration time (7;) and the derivative time (T),).

: o, (4.9)




=
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! Hence,
1
GR(S) =K|1l+ TS‘_T +saT

This regulator has two adjustable parameters: gain K, which moves the
, Nyquist curve radially from the origin, and time constant T, which twists the
. curve.
[k The design problem is then to determine a controller so that the transfer
function of the compensated system has desired values at the two frequen-
1! cies, i.e.,
| G(iw)) = G,(iw)) Grliwy) = ¢, +id, (4.10)
G(iw,) = G (iw,y) Ggliwg) = ¢, + id,

In the sequel, it is assumed that the desired frequency (w) of the dominant
poles is equal to w,. The following relation is then obtained from Equation
4.8:

i Glwy)+1 .
The relative damping ({) is introduced by

lw,
N=a
These twa equations now give
Gliw) - Gliw) _ VI-T  ilwy-w) A,
| G(iw,) + 1 L W,
! It follows from Equation 4.10 that

a:

] c,-¢c,+i(d,-d) = e
¢yt 1+1id,
This gives
i cp—c tkdy =0 4.11)
| [@-4-4%+n:o 4.12)

' These conditions determine parameters K and T of the PID regulator.
] Equation 4.11 gives a second-order equation for 7, from which T'is solved.
‘ Gain K is then obtained from Equation 4.12.

|
R
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:ample 4.4—Consider the system given by Equation 4.1. Two points on
: Nyquist curve that are used for the design are given by

7(8i) = — 0.0593 - i-0.0135
3(10+) = - 0.0396

Using these two values of G(iw), the design method presented above can
applied. The following set of PID parameters is obtained for o = 0.25, w,
0, and = 0.4:

=142 T, =0407 T, =0.102

:p and load disturbance responses of the closed-loop system are given in
zure 4.10.

5 _ Procass output snd set point

Control signal

Figure 4.10
Step and Load Disturbance Responses of the Closed-Loop System in
Example 4.4 Obtained with the Approximate Dominant Pole Design
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A comparison of Figures 4.2 and 4.3 with Figure 4.10 shows that the
responses obtained with the approximate dominant pole design are consid-
erably better than those obtained by the Ziegler-Nichols methods. The price
to be paid for the improved performance is that it is necessary to determine
two points on the Nyquist curve of the open-loop system instead of one for
the Ziegler-Nichols methods.

The parameters obtained by the approximate dominant pole design are
quite similar to those obtained by the Ziegler-Nichols method. In the exam-

| ple, the gain is K = 14.2 versus 15 for the Ziegler-Nichols frequency response

{| method. The other parameters are 7; = 0.41 (0.31) and 7}, = 0.10 (0.08). The

'{‘ fact that the responses are different indicates that the parameter adjustment
may be critical. This will be discussed further in Section 4.7.

Also notice that the design method is based on specification of only two
parameters, o and w, the dominant poles. This implies that the gains of a P1
or PD regulator are uniquely given. One extra condition has to be intro-
duced to specify the three parameters of a PID controller, this condition
being arbitrarily chosen as Equation 4.9.

4.4 FREQUENCY DOMAIN DESIGN

If several points on the Nyquist curve are known, many different design
methods can be used. A common frequency domain approach attempts to
find a compensator such that the magnitude of the closed-loop frequency
response has unit gain at low frequencies and a resonance peak, M, which
is less than a prescribed value. Such a design method is presented below.

Mp Values

Let G = ’GRGP be the loop transfer function, ie., the product of the
transfer function of the controller and the process. The closed-loop transfer
function is

G
%=1i¢

The curves in the G-plane where G, has constant magnitude are given by

1 { — 4.13)

3

o TS




75

Design of PID Controllers "

ese are circles in the complex G-plane, called “M-circles”. A few of the
zles are shown in Figure 4.11.

Figure 4.11
Complex G-plane with M-circles

P e
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The M), value of a system is the largest value of M on its Nyquist curve.
Notice that the Nyquist curve of a system is tangential to the M-circle, which
corresponds to M = M,. The M, value can be related to other system
characteristics and can be approximately computed from the relative damp-
ing ({) of the dominant poles in the following way:

1
M, = ————— €_<_ l/\/ 2
P/

{ is related to the full period damping as

2m¢

d=e VI-0

Related values of M, {, and d are shown in Table 4.5, which also shows
the radius (r) and the center (/) of the M-circles, given by
M M?

r= —m— =

2_1 U Ve

Table 4.5.
Corresponding Values of Mp, Relative Damping ({),
Absolute Damping (d), Radius (r) and Center (f) of the M-Circles.

Mp L d r f

1.1 0.54 0.018 5.24 5.76
1.2 0.47 0.034 2.72 3.27
1.3 0.42 0.052 1.88 2.45
1.4 0.39 0.071 1.46 2.04
1.5 0.36 0.091 1.20 1.80

Design Method

In the M-circle design method, the performance is specified by the M,
value, which is typically chosen in the range M, = 1.1-1.5. The design rule is
that the Nyquist curve of the compensated open-loop transfer function
should avoid the interior of the circle associated with the specified M, value
and, instead, be tangent to it (see Figure 4.12).
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M- circle | Im Gliw)

/z Gliw)

Figure 4.12
Graphical Hlustration of the Design Procedure

The procedure can be described in some detail as follows. Let Gp(iw) and
g(iw) denote the transfer functions of the process and the controller.
ssume that the open-loop frequency response of the process is measured at
zquency w, i.e.,
pliw) = a+b

Also assume that the derivative of G is measured at the same frequency.
his can be done by measuring G, at two neighboring frequencies. Hence,

Wiw) = ¢+ id

The transfer function of a PID controller is

o) = K [1 + i(wTd— a—)l—T)]
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Let the point where the compensated Nyquist curve touches the M, circle
be specified by angle ¢ (see Figure 4.12). This point is then given by the
complex number:

A = —f+rcos ¢ —irsin ¢

‘ The open-loop transfer function of the compensated system is

| 6 = Gy,

| |

i! b Requiring that the compensated Nyquist curve goes through A gives

| { Gp(iw) Grliw) = ~f + r cos(e) ~ ir sin(e) (4.14)
|

Separating the real and imaginary parts of this equation gives

o ofer )]

|
||
5 K[ a(wd wT)]
|

~f+rcos @

-r sin ¢
I

i The condition that the compensated Nyquist curve is a tangent to the M),
\ circle at A can be expressed as
|

I‘ arg G’ = arg(GpGg + GpGy) = . (4.15)

This equation implies that

| 1
i,: ‘ C—d(m]}—ﬁ)—b(]ﬂd‘f;ﬁ)

{

1
i d+c(w7;,——l—)+b(]:,+—)

wT w?T,

{ i

| We thus obtain three conditions: two for positioning the point and one
for the slope. Since point 4 can be positioned anywhere on the chosen M
l circle, one extra degree of freedom can be chosen as angle ¢ in Figure 4.12,
1 thus obtaining three conditions to determine four parameters (K, T;, T, and
©). An auxiliary condition is obtained from

oT, = (4.16)

where « is a number in the range 3-6. This requirement implies that the
integral action acts at a time scale that is compatible with the bandwidth (w).
With this additional requirement, the design procedure gives unique values
of the PID parameters.
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Validation

It is important to test the validity of a design based on simplified assump-
ions. First notice that the given procedure is based on local properties of the
Nyquist curve; hence, there is no guarantee that the Nyquist curve will
emain outside the M, disc globally.

Although it is not possible to guarantee the properties of a design without
wccess to detailed models or experiments, several quantities can be com-
yuted to obtain indications of the validity of a design.

The dimensionless quantity wT, can be interpreted as the normalized
»rediction horizon. This quantity should be small for the prediction to be
yood. To obtain a number, we can observe that a straight line prediction of
1 sinusoid can be made with a precision of 10% if

T, <08 (4.17)

Another quantity of importance is the ratio T;/ 7,. The numerator of the
‘egulator transfer function has zeros at

§i= L[—l TV AT T, ]
2T, :

If T,/ T, is too small, the zeros will have poor damping. Since the closed-
.oop poles will migrate towards the zeros, we will thus require that 7; > T,.
This condition is automatically guaranteed by Equations 4.16 and 4.17.

A third condition is that the quantity

I

y arctan( wl) T, )
‘which represents the phase shift in the controller) is of reasonable magni-
tude, say less than 7r/3. This condition is also guaranteed by Equations 4.16
and 4.17.

It can thus be concluded that it is practical to impose the conditions of
Equations 4.16 and 4.17 since this will automatically guarantee that other
important conditions hold.

Design Variables

The design variables are the frequency (w) and the M), value. Although
M, values close to one will give systems with good damping, there are
several drawbacks in choosing too small a value, because the associated M
circle will then have a large radius, and it is then a greater risk that the

|
I
|
l
|
|
|
|
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! Nyquist curve will enter it at some other frequency. With a large radius of
J the M circle, the design will also be more sensitive. Reasonable values are
therefore in the range of 1.3 to 1.5. According to Table 4.5, this corresponds
| to a relative damping around 0.4.

The frequency (w) is also a critical variable. Experience has indicated that
it is sensible to choose a frequency where the Nyquist curve of the process is
| in the third quadrant.

Process output and set point

15 Control signal

Figure 4.13
1l Step and Load Responses for the PID Controllers Obtained by the
| M circle Design Method. (The design parameters are Mp = 1.3
l and wT, = 3. The responses for o = 4, 5, and 6 rad/s are shown.)
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xample 4.5—The design procedure described above can be illustrated
iing the process model (Equation 4.1). The design parameters are chosen

Mp =13 and wT; = 3. Solving the design equations, the following con-
oller parameters for w = 4, 5, 6, and 7 are obtained:

w K T i ol /T,
4 6.3 0.75 0.07 0.27 11.0
5 10.0 0.60 0.10 0.52 5.8
6 13.5 0.50 0.12 0.72 4.2
7 15.6 0.43 0.13 0.92 3.2

The PID controller obtained for w = 4 has phase lag. The value of T is
little too high for w = 7. This indicates that PID control can be used for
indwidths up to 6 rad/s but not higher with the chosen M, value. Figure
13 shows the responses of the regulators obtained for w =4, 5, and 6 rad/s.
the M, value is increased to 1.5, a valid design can be obtained for w = 7
d/s. The parameters are K= 14.8, T,=0.43 and T, =0.105. For this design,
T,=0.74. A comparison with the previous results shows that the main
fect of increasing M, is that the derivation time decreases.

4.5 POLE PLACEMENT

ae design methods presented previously in this chapter are all based on a
nited knowledge of the process transfer function. Since the PID controller
1s only three design parameters, it cannot arbitrarily compensate more
implicated process transfer functions. However, if the process is described
7 a low-order transfer function, a complete pole placement design can be
rformed, as described below.

PI Control of a First-Order System

Suppose that the process can be described by the following first-order
odel:

P (4.18)

=T

T
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which has only two parameters, the process gain (kp) and the time constant
(7). By controlling this process with the PI controller,

[
G, = K — 4.19
e k|10 o] @19

a second-order closed-loop system is obtained:
- GpGy
. 1+ GpGp

The two closed-loop poles can be chosen arbitrarily by a suitable choice
of the gain (K) and the integral time (7;) of the controller. This is seen as
follows. The poles are given by the characteristic equation, i.e., the equation

L+ GpGy = 0

(4.20)

The characteristic equation becomes
1 s k,K ) N k,K

s2+s(_ P
LT,

=0 421
T T (4.21)

Now suppose that the desired closed-loop poles are characterized by their
relative damping () and their frequency (w). The desired characteristic
equation then becomes

$2+ 2ws + w?2 = 0 4.22) !

Making the coefficients of these two characteristic equations equal gives two
equations for determining K and T;:

k K
2 =
R
(4.23)
1+ |
2w = k,K
1 |
Hence, the following PI parameters are obtained:
|
K= 2T -1
kp
4.24
_ 2T -1 (4.24)
i sz}
>

| i ___—__..__—.—-————ﬂ
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otice that in order to have positive controller gains it is necessary that
‘hosen bandwidth (w) be larger than 1/(2{T)). Also notice that if w is
the integration time T is given by

2

w

is thus independent of the process dynamics for large w. There is no
ial upper bound to the bandwidth. However, a simplified model like
aition 4.18 will not hold for large frequencies. The upper bound on the
Iwidth is therefore determined by the validity of the model.

PID Control of Second-Order Systems

uppose that the process is characterized by the second-order model

k
m (4.25)

his model has three parameters. By using a PID controller, which also
hree parameters, it is possible to arbitrarily place the three poles of the
:d-loop system. The transfer function of the PID controller can be
en as

_ K(1+ 5T+ 2T,
: 0

'he characteristic equation of the closed-loop system becomes
1 1 kKTd] [ kPK ] N k,K
T 5 T, 05 ITh

§2

=0

. suitable closed-loop characteristic equation of a third-order system is

aw)(s? + 2lws + w?) = 0 (4.26)

:h contains two dominant poles with relative damping ({) and frcquency
and a real pole located in -aw. Identifying the coefficients in these two
-acteristic equations gives
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rL+L+ kPK]Zf =

= +2
TG RE et
| kK
+_P = w(l +2 4,27
T 1T w?( {o) 4.27)
KK
TIT,

These three equations determine the PID parameters K, T;, and T,. The
solution is

I Tw*(l + 2la) - |

K =
3
2 _
T = T, Thw*(1 +2§]a) I (4.28)
1) e
T, = T;Tiw(a-'- 20 - TI_T:?
| W1+ 20) - 1

Notice that pure PI control is obtained for
L+ T,
W, = —_—-—
*” @ 2005

Notice also that the choice of w may be critical. The derivation time is
negative for w < w,. The frequency (w,) thus gives a lower bound to the
bandwidth. Also notice that the gain increases rapidly with w. The upper
bound to the bandwidth is given by the validity of the simplified model
(Equation 4.25).

Example 4.6—In this example, the model (Equation 4.1) is approximated
with the second-order model

1
(1 + (1 +0.26s)

Gp(s) =

Here, the longest time constant of the model is kept, and the three
shortest time constants are approximated with their sum. If {=0.5and a = 1
are chosen, the design calculation gives the following PID parameters:
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1= 05202-1

. 0.52w2 - 1
! 0.26w3

. 052w - 1.26
47 0.52w? - 1

In this case, pure PI control is obtained for w = 2.4. The derivative gain
omes negative for lower bandwidths. The approximation neglects the
id time constant 0.05. If the neglected dynamics are required to give a
ase error of, at most, 0.3 rad (17 deg) at the bandwidth, w < 6 rad/s can
obtained. In Figure 4.14, the behavior of the control is demonstrated for
=4, 5, and 6. It is straightforward to apply the direct design approach
sed on the simplified process models. The specification of the desired

Process output and set point

20 _ Control signal

Figure 4.14

Step and Load Disturbance Responses of the Process

(Equation 4.1) Controlled by a PID Controller Tuned According
to Example 4.6 (The responses for o = 4, 5, and 6 are shown.)
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closed-loop bandwidth is, however, crucial since the controller gain will
{4 increase rapidly with the specified bandwidth. It is crucial to know the
| frequency range where the model is valid. Alternatively, an upper bound to
| the controller gain can be used to limit the bandwidth. Notice the effect of
| changing the design frequency (w). The system with w = 6 responds faster
| and has a smaller error when subjected to load disturbances. Simulations
indicate that the design will not work well when w is increased above 8.

Cancellation of Process Poles

A particular class of design methods is based on the idea of choosing the
parameters of the controller so that the dominant process poles are can-
celed. These methods are quite popular because they are very simple and
give a good response to set point changes. They will, however, often give
poor response to load disturbances.

To explain the methods, consider the transfer functions of a PI controller:

1 ] _ k(1 +5T)
—

Grlo) = k| 1+ T

and an ideal PID controller with error feedback:

| 1 _ k[l +sT; + $2T,T)]
GR(s)—k-l+ﬁ+sZ,]~ 5T

1

One process pole can be canceled by a PI controller, and two process
poles can be canceled by a PID controller. The response to load disturban-
ces is poor for the designs based on cancellation because the dynamics
corresponding to the canceled poles will appear in the response to the load
disturbance. These modes will then recover in the same way as for the
open-loop system. The same phenomena occur if the cancellation is not
exact.

Example 4.7—PID design based on cancellation of process poles

Consider the system given by Equation 4.1. The system has the poles pl =
-1, p2=-1/0.2=-5, p3=-1/0.05 = -20, and p4 = -1/0.01 = -100. Two of
these poles can be canceled with a PID controller. Choosing the parameters
T; and T so that the slowest poles are canceled,

1+sT+ 52T, = (1+s)(1+0.2s) = 1+1.25 +0.252
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This gives 7; = 1.2 and T} = 0.167. To find a suitable value of the con-
roller gain, proceed as in the direct pole placement method in Example 4.6.
“he compensated transfer function becomes

k _ k
sT(1 + 0.05s)(1 + 0.0Ls)  sT(1 + 0.06s)

TR(9)Gp(s) =

The characteristic equation of the closed-loop system 1is, therefore,

(1 + 0.06s) + % =0

i}

T

16.7k
2+167s+ —— =0
R

i

Identifying this with the characteristic equation

2+ 2lws + w2 =0

rives
42T, 5.0
g s

Choosing a relative damping { = 0.7, then k& = 10 and w = 11.7. Figure 4.15
hows the response of the closed-loop system obtained with these controller
rarameters. For comparison, the following results are obtained with a pole
)lacement controller without cancellation. This controller has the parame-
ers k=12, 1;=0.37, T;= 0.11, N = 10 and b = 0.35. Notice the fast response
o command signals and the poor response to load disturbances. Also notice
he “spike” in the control signal, which depends on the fact that the deriva-
ive acts on the reference signal. The error due to a load disturbance decays
vith a time constant of Ls, which corresponds to the cancelled mode p1 = -1
»f the open-loop system. Because of the cancellation, the controller will not
ittempt to control this mode. This is clearly seen in the fact that the control
ignal settles much faster than the error at the load disturbance.

Although the designs based on cancellation of process poles are simple,
hey will not be discussed further because of their poor performance when
iubjected to load disturbances.

g et~

P —
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Process output and set point

/\/\

T T = -
0 4 6 a
10 . Control signal
: ﬁ
0
=5 T T T 3
0 2 4 ] 8
Figure 4.15

Simulation of PID Controller Based on Cancellation of Process Poles
(For comparison, see the results of an equivalent design without
cancellation shown by the thin lines.)

4.6 DISCRETE TIME POLE PLACEMENT

The examples have shown that PID controllers can be used for pole place-
ment design when the process model is of low order. In the examples,
continuous time models of the controller and the process have been used. It
is also possible to'use discrete time controllers for the pole placement design
of discrete time process models, as shown below.

In Section 3.4, a discrete time process model was introduced using the
z-transform instead of the Laplace transform used in continuous time mod-
els. Let the process be described by the transfer function

. B@
T A@)

H,(2) (4.29)
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Let U(z) and E(z) denote the z-transforms of the control signal, u(¢), and
he error signal, e(f). A general description of the controller is then

R(U(z) = S(2)E(2)

The transfer function of the controller can be written as

U@ _ S
: =t o —5 4.30
%0 " 5o T ko 0
The closed-loop transfer function is given by
H
9.z = pHr_ 4.31)
|+ HHpy

ind the characteristic equation therefore becomes

+ HpHpg = 0

Using Equations 4.29 and 4.30, the characteristic equation can also be
vritten as

4(2)R(2) + B(2)S(z) = 0 (4.32)

Now suppose that the process is of second order with the following
ransfer function polynomials:

4(z) = 22+ a;z + a,
B(z) = biz+ b,

This structure of the process model captures many processes common in
‘he process controller and is, for example, obtained by sampling the contin-
1ous time model (Equation 4.25) in the previous section. To ensure that the
sontroller has integral action, the R-polynomial must be of the form

R@) = (DR,(2)
The controller polynomials are given on the general forms
S(z) = sygz2+ sz + 5,
RG) = - D +r)
Thus, the characteristic equation is obtained:
Z2razzta))z-1)z+r)+(bz+by)spz2+sz+5,) =0 (4.33)

which is of fourth order. Assume that the desired closed-loop characteristic
polynomial is given by

| 1
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P(2) = (z - e *n)2(z2 + p,z + p,) (4.34)
where
P, = -2 etoh cos(why/ T- 1)

P2 e -2lwh

This corresponds to a fourth-order system having two dominant poles
with relative damping ({) and frequency (w), and two real poles located in
—ow.

The controller parameters can now be determined from the two descrip-
tions of the characteristic equation, Equations 4.33 and 4.34. By comparing
terms of equal power of z, parameters r, sy, 5;, and s, can be determined, as
illustrated in the following example. A detailed presentation of the discrete
time design method is given in the book by Astréom and Wittenmark (1984).

Example 4.8—In Example 4.6, the fourth-order model (Equation 4.1) was
approximated by the second-order model:

1

Gr) = T+ 0269

If this model is sampled with the sampling period % = 0.1s, the following
discrete time model is obtained:
0.0164z + 0.0140
z% - 1.583z + 0.616

Hp(z) =

If the design parameters are { = 0.5, w = 4, and « = 1, the desired
characteristic polynomial becomes

(z - 0.670)2(z2 - 1.54z + 0.670

Comparing this characteristic polynomial with the one obtained accord-
ing to Equation 4.33, the following set of controller parameters is obtained:

r; = -0.407
5y = 6.74
s = -9.89
s, = 3.61
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5 Process output and set point

Contrel signal

Figure 4.16
=p and Load Disturbance Responses of the Process (Equation 4.1) Controlled
by a PID Controller Tuned According to Example 4.8

In Figure 4.16, the behavior of the control is demonstrated. Although the

in is fairly high (see the control signal), the response to the load distur-
ince is quite slow because of the low value of w.

A drawback with direct digital design is that it is normally difficult to
anslate the controller to PID structure. The structure of the controller
ed in this section is such a case. On the other hand, this general form is
ieful when trying to cope with problems that are hard to solve with the
andard PID controller. Such an example is dead time compensation,
here a suitable controller can be derived just by introducing the dead time

the process model Hp(z).
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4.7 IMPROVEMENT OF SET POINT CONTROL

The controllers simulated in this chapter have responses to set point changes
with excessive overshoot. Typical examples are given in Figures 4.2, 4.8 and
4.16. The reason for this is that the standard form of the PID controller with
error feedback is used. The transfer function between the set point and the
control signal of a PID controller is

L+ sT,
sT.

{}

Gpp(s) = K

The derivative part does not occur, since the derivation is performed on
the process output only. The controller introduces a closed-loop zero at

(4.35)

l
§=-=
T’f

The influence of this zero was discussed in Section 2.4, where it was
proposed to use a modified PID controller where only a fraction (b) of the

reference signal is introduced in the proportional part. Such a controller is
described by Equation 2.9, i.e.,

| de
3= K[ e+ T fo e(s)ds + T, 7:’ (4.36)

where the error in the proportional part is
& = br -y
and the error in the derivative part is
e; = -y
and the error in the integral part is
e=r-y
The modified controller has a zero at

1
§ = - —

bT,

which can be positioned properly by choosing the parameter b suitably. An
estimate of the dominant closed-loop poles is necessary to do this. To avoid
an excessive overshoot, parameter b should be chosen so that the zero is two
to three times larger than the magnitude of the dominant poles. Estimates of
the dominant poles are available for many of the design methods.

|

j

R ——
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The Ziegler-Nichols Method

the Ziegler-Nichols method, estimates of the dominant poles are
1ed from the estimate of the closed-loop dominant period. This is listed
in Tables 4.1 and 4.2. The design rule given above then gives b = 0.2 ‘
Figure 4.17 shows simulations with the modified controller with b =0, | ¢
.3, and 1.0. The figure shows clearly that the overshoot is reduced
ically when the modified algorithm is used. It also indicates that the
1 rule gives a reasonable value of b.

Proceas output snd set point |
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Figure 4.17 |

The Effect of Parameter b on the Step Response of a Closed-Loop |
System (The PID parameters are the same as in Figure 4.2.) |
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Direct and Dominant Pole Designs

In direct and dominant pole design methods, it is very easy to find good
values for parameter b since these design methods deal directly with the
dominant poles. Consider, for example, the direct design method used in
Example 4.6 with w = 6 rad/s, which gives T; = 0.32. The ordinary PID
controller gives a zero at s = 3.1 rad/s, which is smaller than w. To have the
zero at s = —12, parameter b should be smaller than 0.26. To have the zero at
s = -18, b = 0.18 should be chosen. Figure 4.18 shows a simulation of the
modified PID controller. The figure shows clearly that the overshoot is
reduced drastically when the modified algorithm is used. It also indicates
that the rules for choosing parameter b are reasonable.

Process output and set point

20 _ Control signal

——
4 o 8

Figure 4.18

The Effect of Parameter b on the Step Response of a Closed-Loop
System (The PID parameters are the same as in Figure 4.12 for w = 6 rad/s)
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Even in the case of direct digital design it is possible to improve the
ponses to set point changes. In Section 4.6 the controller structure was
en as

2)U(z) = S(2)E(2)
, error feedback was used. If the extended structure
U@ = -S(@Y(2) + T(2) Yi(2)

used, the response to set point changes can be modeled by choosing
lynomial 7'(z) appropriately.

Conclusions

The results show conclusively that the responses to command signals are
iproved drastically by modifying the PID algorithm, as was discussed in
«ction 2.4,

¥ 4.8 COMPARISONS OF DESIGN METHODS

though several methods have been given for designing PID controllers, all
proaches have by no means been covered. There are many variations on
> methods discussed herein, as well as a host of other techniques available
the literature. Instead of going on to describe more methods, it is a good
:a to provide some perspective on the different methods. Before going into
: details of the design methods, it can first be observed that control system
sign involves many different aspects, such as process dynamics, load dis-
rbances, measurement noise, nonlinearities, and sensitivity. In this investi-
tion, the focus has been on dynamics and set point changes, which is often
equate for the design of simple controllers.

Overview of the Approaches

The Ziegler Nichols Methods

These are simple approaches based on information on two parameters
ily, either L and a (which characterize the step response) or K, and 7,
thich characterize the frequency response).
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The analysis leading to the dominant pole design indicates that it is not
possible to give estimates of the closed-loop dominant poles from the
knowledge of one point on the frequency response only. It can thus be
concluded thdl[::erc will always be a large uncertainty with design methods
like the Ziegler-Nichols, which are based only on this information. All the \
other design methods discussed in this chapter use more information.

The Dominant Pole Design

The method is based on positioning two or three domiﬁdﬁt“ﬁﬂéﬁ‘l;\

" method is based on knowledge of the plant transfer function at the domi-

nant poles. Approximate methods based on knowledge of the frequency
curves are also given. The dominant pole design method has one design

" parameter, namely the distance of the poles from the origin.

An interesting feature of the dominant pole design is that it gives ranges
of the design parameter that are achievable with different controller-types.
This can be used to choose P, PI, PD, or PID control _We illustrate this
point by an example,

Example 4.9—PI and PD Control of (s+1)-3.
Consider a plant with the transfer function

1
Gy = ——=
SRR VR
Since the plant is of third order, it is clear that exact pole placement
cannot be obtained with PI, PD, or PID control. First, consider PI control.

Using the equation for the approximate dominant pole design, the following
parameters are obtained:

o(dw*+20w?) + 3wt + 202 - 1
w?+ 1202+ 60 + 1

P w8+ 20 + 3w? - [20(0*-w?)
. w?+ 1202 + 60 + |

k =

where k; = k/ T;. PD control gives instead
- 20w* + 3w? + 160w? + 202 — 60 — 1
w? + 602+ 60+ 1

w*+ 12002 - 202 - 120 - 3

1=

k =

w2+ 602+ 60+ 1
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where k, = k T,. The controllers will have positive gains only if the specifica-
tions on the dominant poles are restricted to certain values. Figure 4.19
shows the combinations of o and w that give positive gains for the PI and
the PD controllers, respectively. The border lines are given by the pure P, 1,
and D controllers. Notice that the approximative formulas are only valid if
o < w. From this figure it is seen that the bandwidth w cannot be chosen too
high if only a PI controller is used.

UA

Figure 4.19
Regimes of Positive Gains for PI and PD Controllers
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Simplified Frequency Domain Methods

/ This method is also based on knowledge of two properly chosen values of
“the open-loop frequency response of the system. The design method
attempts to shape the closed-loop gain locally at the chosen frequencies.
Il \ When using the simplified frequency domain designs, it is clear that there
are limitations on the shaping that can be done with a PID controller. It is
thus necessary that the crossover frequency be chosen properly so that the
loop can be shaped with a PID controller. It is also clear that the loop gain
may behave badly at frequencies away from the chosen frequencies. This
| indicates that there will be problems with systems with resonances where the
] !\ Nyquist curve twists and bends.

Pole Placement Methods

In the direct design methods, the dynamics are approximated by simpli-

fied models of first or second order, and the PID parameters are calculated

. from specifications on the desired closed-loop poles. The methods
k rely on making appropriate approximations and on the specifications being

in harmony with these approximations.
e

Insight into the Problem

The direct design methods indicate superficially that any specification
can be achieved. A closer inspection reveals, however, strict limitations. To
obtain positive controller gains, it is necessary to choose the frequency (w)
sufficiently small (see Section 4.5). The formula for the controller gain also
indicates that the gain will increase very rapidly with the chosen frequency.
The frequency must also be chosen so low that the simplified model is valid
well over w. Experiments with continuous time and discrete time designs
indicate that there is no large difference for small sampling periods. For
longer sampling periods, the response to load disturbances will, however, be
poorer for the discrete time algorithms because there will always be a time
delay before the disturbance is captured.
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Detailed Comparison

Table 4.6

Controller Parameters Obtained by the Different Design Methods
Aethod K T, Ty
"iegler-Nichols step 10.9 0.32 0.08
“iegler-Nichols frequency 15.0 0.31 0.08
Jominant pole design,

w=53 11.9 0.45 0.12

approximate method 14.2 0.41 0.10
V circle design

w=4 6.3 0.75 0.07

w=5 10.0 0.60 0.10

w=6 13.5 0.50 0.12
Direct pole placement

w=4 7.3 0.44 0.11

w=5 12.0 0.37 0.11

w = 17.7 0.32 0.10

Direct pole placement
with cancellation

w=117 10.0 1.20 0.17

Table 4.6 shows the parameters obtained when the different design
thods are applied to the same problem. Several observations can be made
'm the table. First, with exception of the method based on cancellation,
: controller parameters obtained by the different methods are similar. For
ample, the Ziegler-Nichols frequency domain method gives parameters
it are quite close to the parameters obtained by the dominant pole design
ithod. The main difference is that the gain of the Ziegler-Nichols method
:00 high and the derivation time is too low. Another interesting fact is that
s Ziegler-Nichols method estimates the dominant frequency to be 12
1/s, which is much too high. Also notice that the dominant pole design

res a value of the bandwidth (w = ‘“o\/l - (%), but that w has to be chosen
the designer for the direct pole placement.
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il ‘

Sensitivity
The comparison of the parameters obtained by the different methods indi-
cates that the design may be quite sensitive to parameter variations. To
investigate this, the parameters are perturbed in the Ziegler-Nichols frequency
” domain design. Figure 4.20 shows what happens when the derivation time is
. changed from T, = 0.08 to 0.10 and 0.12. The figure indicates clearly that
| drastic improvements in the damping can be achieved by increasing the
| derivation time by 25%. Notice that the overshoot can be reduced drasti-
[ cally, as discussed in Section 4.7. This possibility was not used herein,

because it is easier to see the improved damping with a large overshoot.

Proceas output and set point
1.5
T X7 L
0.5
0 T T T 1
0 2 4 6 ]
Control signal
10 |
/Nv
0 =
T T T L)
] 2 4 6 8

¢ Figure 4.20
Effect of Changing the Derivation Time T in the Controller
Obtained by the Ziegler-Nichols Frequency Domain Method
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“igure 4.20 indicates that the system is sensitive, the reason being that the
ied-loop bandwidth is quite high. It is a general rule that high bandwidth
.ems are sensitive. The fact that the bandwidth is high can be concluded
1 the comparison with the direct pole placement method. The analysis
formed in Section 4.5 indicated that w = 6 rad/s was on the high side and
t a more reasonable value is w = 4 rad/s. This is illustrated in Figure 4.21
| Figure 4.22, which illustrate the sensitivity of the direct designs for w = 4
/s and w = 6 rad/s to changes in the controller parameters. The deriva-
1 time (7)) is changed by the same amount in both cases. Notice the
stic influence in particular on the closed-loop period and damping in
ure 4.22. The simulations strongly support reducing sensitivity by reduc-
the bandwidth.

Process wutput and set point

-

4 s [
T T 1
) 5 0
Figure 4.21

Effect of Changing Derivation Time T, in the Controller
Obtained by the Direct Pole Placement Design Method for w = 4 rad/s
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Process output and set point

2 4 [ 8

T L T 1

o 2 . L] -]
Figure 4.22

Effect of Changing Derivation Time T in the Controller
Obtained by the Direct Pole Placement Design Method for w = 6 rad/s

Conclusions

For processes with simple dynamics, it has been demonstrated that it is
possible to find design methods that give good results. Some insight into the
properties of different design methods have been developed. In particular,
the desired closed-loop bandwidth has been found to be a crucial specifica-
tion; too high a bandwidth gives excessive gain and a sensitive system. With
a controller like the PID, which has restricted complexity, it may not be
possible to achieve the desired bandwidth. The choice of the bandwidth thus
emerges as a key issue.
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It would be highly desirable to have a procedure that would allow deter-
mination of an appropriate bandwidth automatically. The ultimate fre-
quency is a good starting value, but the analysis of the Ziegler-Nichols
tuning procedures indicates that this frequency may be too high.

Since a PID controller has a limited complexity, it is clear that arbitrarily
large values of w cannot be chosen. This is also clearly illustrated in the
examples. It is also clear that the approach will always work for open-loop
stable systems if w is chosen sufficiently low.

The dominant pole design gives a suitable value of w directly. The follow-
ing guidelines are useful for design methods where w has to be chosen. The
open-loop crossover frequency (w,) can serve as a first approximation. The
phase lead generated by a PID controller depends on the ratio a = T,/ T; and
the maximum derivative gain. With « = 0.25, the largest lead is approxi-
mately 40°. This means that a proper phase margin may be obtained with w
=w,. To obtain a good transient response it is, however, also necessary that
the slope d log| G(iw) | /d log(w) is close to —1 at the crossover. Evaluation
of the slope at the open-loop crossover frequency indicates whether the
crossover frequency can be chosen as w. There is again some margin. A PID
controller can, for example, increase the slope by at most 0.4 when a = 0.25.
If the slope conditions can not be satisfied, a lower value of @ must be
chosen.

Evaluating how rapidly the phase and the amplitude change also indi-
cates whether the system is minimum phase. For a system with pure time
delay, for example, the slope of the amplitude curve at the crossover is zero.
To obtain a proper slope of the amplitude curve, it is then necessary to
introduce PI control. The integration time should be chosen so that the
integral action dominates at crossover. This means that derivative action is’
useless and that the time delay should give a phase shift of about 90° at the
CIOSSOVer.

4.9 CONCLUSIONS

In this chapter, several approaches to design PID controllers have been
presented. The design methods are based on the different process models
given in the previous chapter. The derivation of the process model and the
design calculation are closely related. All design methods reguire a model of
the process to be controlled. As has been seen, different design procedures
are based on different process characterizations. Using a complex design
procedure such as the full pole placement design requires a transfer function
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description of the process with a high accuracy. The simple Ziegler-Nichols
methods are based on limited process knowledge. If this kind of simple
design procedure is used, there is no reason for making much effort in
creating a detailed process model. Several design methods have been omit-
ted in order to focus on those methods commonly used in the automatic
tuning procedures. The process models described in Chapter 3 and the
design methods presented in this chapter form the basis for the autotuning
methods to be discussed in Chapter 5.






