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Chapter 1

Preface

Introductory textbook for Kalman filters and Bayesian filters. All code is written in Python,
and the book itself is written in Ipython Notebook so that you can run and modify the code
in the book in place, seeing the results inside the book. What better way to learn?

Reading Online

You may access this book via nbviewer at any time by using this address: Read Online Now
The quickest way to read the book is to read it online using the link above. The

book is written as a collection of IPython Notebooks, an interactive, browser based sys-
tem that allows you to combine text, Python, and math into your brower. The website
http://nbviewer.org provides an IPython Notebook server that renders notebooks stored at
github (or elsewhere). The rendering is done in real time when you load the book. If you
read my book today, and then I make a change tomorrow, when you go back tomorrow you
will see that change. Perhaps more importantly, the book uses animations to demonstrate
how the algorithms perform over time. The PDF version of the book, discussed in the next
paragraph, cannot show the animations.

If you click on the link above it will take you to a table of contents which links you to
this Preface as well as all of the chapters of the book. The top of each page also gives you
links that show you where you are in the directory structure - clicking on the title of the
book will take you to the top directory, which contains a subdirectory for each chapter. That
is not nearly as nice as using the table of contents, but it does allow you to see all of the
supporting material for the book as well.

PDF Version

I periodically generate a PDF of the book from the Notebooks. I do not do this for every
check in, so the PDF will usually lag the content in github and on nbviewer.org. However, I
do generate it whenever I make a substantial change.

PDF Version of the book
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Downloading the book

However, this book is intended to be interactive and I recommend using it in that form.
If you install IPython on your computer and then clone this book you will be able to run
all of the code in the book yourself. You can perform experiments, see how filters react to
different data, see how different filters react to the same data, and so on. I find this sort of
immediate feedback both vital and invigorating. You do not have to wonder “what happens
if”. Try it and see!

The github pages for this project are at https://github.com/rlabbe/Kalman-and-
Bayesian-Filters-in-Python You can clone it to your hard drive with the command

git clone https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python.git

Navigate to the directory it was installed into, and run IPython notebook with the
command

ipython notebook

If you need more instructions they are available in the static version of the book. Follow
the link above, and read the installation appendix.

Version 0.0

Not ready for public consumption. In development.

author’s note: The chapter on g-h filters is fairly complete as far as planned
content goes. The content for the discrete Bayesian chapter, chapter 2, is also
fairly complete. After that I have questions in my mind as to the best way to
present the statistics needed to understand the filters. I try to avoid the ‘dump
a sememster of math into 4 pages’ approash of most textbooks, but then again
perhaps I put things off a bit too long. In any case, the subsequent chapters are
due a strong editting cycle where I decide how to best develop these concepts.
Otherwise I am pretty happy with the content for the one dimensional and mul-
tidimensional Kalman filter chapters. I know the code works, I am using it in
real world projects at work, but there are areas where the content about the
covariance matrices is pretty bad. The implementation is fine, the description is
poor. Sorry. It will be corrected.

Beyond that the chapters are much more in a state of flux. Reader beware. My
writing methodology is to just vomit out whatever is in my head, just to get
material, and then go back and think through presentation, test code, refine, and
so on. Whatever is checked in in these later chapters may be wrong and not
ready for your use.

Finally, nothing has been spell checked or proof read yet. I with IPython Note-
book had spell check, but it doesn’t seem to.
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1.1 Motivation

This is a book for programmers that have a need or interest in Kalman filtering. The mo-
tivation for this book came out of my desire for a gentle introduction to Kalman filtering.
I’m a software engineer that spent almost two decades in the avionics field, and so I have
always been ‘bumping elbows’ with the Kalman filter, but never implemented one myself.
They always has a fearsome reputation for difficulty, and I did not have the requisite educa-
tion. Everyone I met that did implement them had multiple graduate courses on the topic
and extensive industrial experience with them. As I moved into solving tracking problems
with computer vision the need to implement them myself became urgent. There are classic
textbooks in the field, such as Grewal and Andrew’s excellent Kalman Filtering. But sitting
down and trying to read many of these books is a dismal and trying experience if you do not
have the background. Typically the first few chapters fly through several years of undergrad-
uate math, blithely referring you to textbooks on, for example, Itō calculus, and presenting
an entire semester’s worth of statistics in a few brief paragraphs. These books are good
textbooks for an upper undergraduate course, and an invaluable reference to researchers
and professionals, but the going is truly difficult for the more casual reader. Symbology is
introduced without explanation, different texts use different words and variables names for
the same concept, and the books are almost devoid of examples or worked problems. I often
found myself able to parse the words and comprehend the mathematics of a definition, but
had no idea as to what real world phenomena these words and math were attempting to
describe. “But what does that mean?” was my repeated thought.

However, as I began to finally understand the Kalman filter I realized the underlying
concepts are quite straightforward. A few simple probability rules, some intuition about
how we integrate disparate knowledge to explain events in our everyday life and the core
concepts of the Kalman filter are accessible. Kalman filters have a reputation for difficulty,
but shorn of much of the formal terminology the beauty of the subject and of their math
became clear to me, and I fell in love with the topic.

As I began to understand the math and theory more difficulties itself. A book or paper’s
author makes some statement of fact and presents a graph as proof. Unfortunately, why the
statement is true is not clear to me, nor is the method by which you might make that plot
obvious. Or maybe I wonder “is this true if R=0?” Or the author provides pseudocode - at
such a high level that the implementation is not obvious. Some books offer Matlab code, but
I do not have a license to that expensive package. Finally, many books end each chapter with
many useful exercises. Exercises which you need to understand if you want to implement
Kalman filters for yourself, but exercises with no answers. If you are using the book in a
classroom, perhaps this is okay, but it is terrible for the independent reader. I loathe that
an author withholds information from me, presumably to avoid ‘cheating’ by the student in
the classroom.

None of this necessary, from my point of view. Certainly if you are designing a Kalman
filter for a aircraft or missile you must thoroughly master of all of the mathematics and
topics in a typical Kalman filter textbook. I just want to track an image on a screen, or
write some code for my Arduino project. I want to know how the plots in the book are
made, and chose different parameters than the author chose. I want to run simulations. I
want to inject more noise in the signal and see how a filter performs. There are thousands of
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opportunities for using Kalman filters in everyday code, and yet this fairly straightforward
topic is the provenance of rocket scientists and academics.

I wrote this book to address all of those needs. This is not the book for you if you
program avionics for Boeing or design radars for Ratheon. Go get a degree at Georgia Tech,
UW, or the like, because you’ll need it. This book is for the hobbyist, the curious, and the
working engineer that needs to filter or smooth data.

This book is interactive. While you can read it online as static content, I urge you to
use it as intended. It is written using IPython Notebook, which allows me to combine text,
python, and python output in one place. Every plot, every piece of data in this book is
generated from Python that is available to you right inside the notebook. Want to double
the value of a parameter? Click on the Python cell, change the parameter’s value, and click
‘Run’. A new plot or printed output will appear in the book.

This book has exercises, but it also has the answers. I trust you. If you just need an
answer, go ahead and read the answer. If you want to internalize this knowledge, try to
implement the exercise before you read the answer.

This book has supporting libraries for computing statistics, plotting various things related
to filters, and for the various filters that we cover. This does require a strong caveat; most
of the code is written for didactic purposes. It is rare that I chose the most efficient solution
(which often obscures the intent of the code), and in the first parts of the book I did
not concern myself with numerical stability. This is important to understand - Kalman
filters in aircraft are carefully designed and implemented to be numerically stable; the naive
implementation is not stable in many cases. If you are serious about Kalman filters this
book will not be the last book you need. My intention is to introduce you to the concepts
and mathematics, and to get you to the point where the textbooks are approachable.

Finally, this book is free. The cost for the books required to learn Kalman filtering is
somewhat prohibitive even for a Silicon Valley engineer like myself; I cannot believe the are
within the reach of someone in a depressed economy, or a financially struggling student. I
have gained so much from free software like Python, and free books like those from Allen B.
Downey here [1]. It’s time to repay that. So, the book is free, it is hosted on free servers,
and it uses only free and open software such as IPython and mathjax to create the book.

1.2 Reading the book on NBViewer

If you are reading this by using NBViewer, for the most part navigation should be clear.
The link ”

1.3 Installation and Software Requirements

If you want to run the notebook on your computer, which is what I recommend, then you
will have to have IPython installed. I do not cover how to do that in this book; requirements
change based on what other python installations you may have, whether you use a third
party package like Anaconda Python, what operating system you are using, and so on.

To use all features you will have to have IPython 2.0 installed, which is released and
stable as of April 2014. Most of the book does not require that, but I do make use of the
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interactive plotting widgets introduced in this release. A few cells will not run if you have
an older version installed.

You will need Python 2.7 or later installed. Almost all of my work is done in Python
3.4, but I periodically test on 2.y. I do not promise any specific check in will work in 2.7,
however. I do use Python’s “from future import . . . ” statement to help with compatibility.
For example, all prints need to use parenthesis. If you try to add, say, “print 3.14” into the
book your script will fail; you must write “print (3.4)” as in Python 3.X.

You will need a recent version of NumPy, SciPy, and Matplotlib installed. I don’t really
know what the minimal version requirement might be.

I have numpy 1.71, SciPy 0.13.0, and Matplotlib 1.4.0 installed on my machines.
Personally, I use the Anaconda Python distribution in all of my work, available here [3]. I

am not selecting them out of favoritism, I am merely documenting my environment. Should
you have trouble running any of the code, perhaps knowing this will help you.

1.4 Provided Libraries

update: I have created the filterpy project, into which I am slowly moving a lot
of this code. Some of the chapters use this project, some do not (yet). It is at
https://github.com/rlabbe/filterpy For the time being this book is it’s documentation; I
cannot spend a lot of time working on the documentation for that library when I am writing
this book.

I’ve not structured anything nicely yet. For now just look for any .py files in the base
directory. As I pull everything together I will turn this into a python library, and probably
create a separate git project just for the python code.

There are python files with a name like xxx internal.py. I use these to store functions
that are useful for the book, but not of general interest. Often the Python is the point and
focus of what I am talking about, but sometimes I just want to display a chart. IPython
Notebook does not allow you to collapse the python code, and so it sometimes gets in the
way. Some IPython books just incorporate .png files for the image, but I want to ensure
that everything is open - if you want to look at the code you can.

Some chapters introduce functions that are useful for the rest of the book. Those functions
are initially defined within the Notebook itself, but the code is also stored in a Python file
that is imported if needed in later chapters. I do document when I do this where the function
is first defined. But this is still a work in progress.

1.5 License

Kalman Filters and Random Signals in Python by Roger Labbe is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Based on a work at https://github.com/rlabbe/Kalman-Filters-and-Random-Signals-in-
Python.
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1.6 Contact

rlabbejr@gmail.com

1.7 Resources

• [1] http://www.greenteapress.com/

• [2] http://ipython.org/ipython-doc/rel-1.0.0/interactive/nbconvert.html

• [3] https://store.continuum.io/cshop/anaconda/
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Chapter 2

The g-h Filter

2.1 Building Intuition via Thought Experiments

Imagine that we live in a world without scales - the devices you stand on to weigh yourself.
One day at work a coworker comes running up to you and announces her invention of a ‘scale’
to you. After she explains, you eagerly stand on it and announce the results: “172 lbs”. You
are ecstatic - for the first time in your life you know what you weigh. More importantly,
dollar signs dance in your eyes as you imagine selling this device to weight loss clinics across
the world! This is fantastic!

Another coworker hears the commotion and comes over to find out what has you so
excited. You explain the invention and once again step onto the scale, and proudly proclaim
the result: “161 lbs.” And then you hesitate, confused.

“It read 172 lbs just a few seconds ago” you complain to your coworker.
“I never said it was accurate,” she replies.
Sensors are inaccurate. This is the motivation behind a huge body of work in filtering,

and solving this problem is the topic of this book. I could just provide the solutions that
have been developed over the last half century, but these solutions developed by asking very
basic, fundamental questions into the nature of what we know and how we know it. Before
we attempt the math, let’s follow that journey of discovery, and see if it does not inform our
intuition about filtering.

Try Another Scale Is there any way we can improve upon this result? The obvious, first
thing to try is get a better sensor. Unfortunately, your co-worker informs you that she has
built 10 scales, and they all operate with about the same accuracy. You have her bring out
another scale, and you weigh yourself on one, and then on the other. The first scale (A)
reads “160 lbs”, and the second (B) reads “170 lbs”. What can we conclude about your
weight?

Well, what are our choices?

• We could choose to only believe A, and assign 160lbs to our weight estimate.

• we could choose to only believe B, and assign 170lbs to our weight.

• We could choose a number less than either A or B

• We could choose a number greater than either A or B
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• We could choose a number between A and B

The first two choices are plausible, but we have no reason to favor one scale over the
other. Why would we choose to believe A more than B? We have no reason for such a belief.
The third and fourth choices are irrational. The scales are admittedly not very accurate,
but there is no reason at all to choose a number outside of the range of what they measure.
The final choice is the only reasonable one. If both scales are inaccurate, and as likely to
give a result above my actual weight as below it, more often than not probably the answer
is somewhere between A and B.

In mathematics this concept is formalized as expected value, and we will cover it in depth
later. For now ask yourself what would be the ‘usual’ thing to happen if we made one million
separate readings. Some of the times both scales will read too low, sometimes that will both
read too high, and the rest of the time they will straddle the actual weight. If they straddle
the actual weight then certainly we should choose a number between A and B. If they don’t
straddle then we don’t know if they are both too high or low, but by choosing a number
between A and B we at least mitigate the effect of the worst measurement. For example,
suppose our actual weight is 180 lbs. 160 lbs is a big error. But if we choose a weight between
160 lbs and 170 lbs our estimate will be better than 160 lbs. The same argument holds if
both scales returned a value greater than the actual weight.

We will deal with this more formally later, but for now I hope it is clear that our best
estimate is just the average of A and B. 160+170

2
= 165.

Let’s play ‘what if’ some more. What if we are now told that A is three times more
accurate than B? Consider the 5 options we listed above. It still makes no sense to choose a
number outside the range of A and B, so we will not consider those. It perhaps seems more
compelling to choose A as our estimate - after all, we know it is more accurate, why not just
use it instead of B? Can B possibly improve our knowledge over A alone?

The answer, perhaps counter intuitively, is yes, it can. Consider this case. We know scale
A is accurate to 1 lb. In other words, if we weight 170 lbs, it could report 169, 170, or 171
lbs. We know that scale B is accurate to 9 lbs. We do a reading, and A=160, and B=170.
What should we estimate our weight to be?

Well, if we say 160 lbs we would be wrong, because B can only be 9 pounds off, and 170
lbs - 160 lbs is 10 lbs. 160 is not a possible measurement for B. In fact, the only number
that satisfies all of the constraints is 161 lbs. That is 1 lb within the reading of A, and 9 lbs
within the reading of B.

This is an important result. With two relatively inaccurate sensors we were able to
deduce an extremely accurate result. Now sure, that was a specially constructed case, but
it generalizes. What if A is accurate to 3 lbs, B is accurate to 11 lbs, and we get the
measurements of A=160 lbs and B=170 lbs? The result can only be from 159 lbs to 163 lbs,
which is better than the range of 157 lbs to 163 lbs that is the range of values that A alone
allows.

So two sensors, even if one is less accurate than the other, is better than one.

However, we have strayed from our problem. No customer is going to want to buy
multiple scales, and besides, we initially started with an assumption that all scales were
equally (in)accurate.
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So, what if I have one scale, but I weigh myself many times? We concluded that if we
had two scales of equal accuracy we should average the results of their measurements. What
if I weigh myself 1,000,000 times with one scale? We have already stated that the scale is
equally likely to return a number too large as it is to return one that is too small. I will
not prove it, but it can be proved that the average of a large number of weighings will be
extremely close to my actual weight. Consider a simple case - the scale is accurate to within
1 lb. If I weigh 170, it will return one of either 169, 170, or 171. The average of a bunch of
170 is 170, so we can exclude those. What is left is measurements of 169 and 171. But we
know there will be as many 169s as there are 171s. The average of those will also be 170,
and so the average of all must be 170, my true weight. It’s not that hard to extend this to
any arbitrary accuracy.

Okay, great, we have an answer! But it is not a very good answer. No one has the
patience to weigh themselves a million, or even a hundred times.

So, let’s play ‘what if’ again. What if you measured your weight once a day, and got the
readings 170, 161, and then 169. Did you gain weight, lose weight, or is this all just noisy
measurements?

We really can’t say. The first measurement was 170, and the last was 169, implying
a 1 lb loss. But if the scale is only accurate to 10 lbs, that is explainable by noise - bad
measurements. I could have actually gained weight; maybe my weight on day one was 165
lbs, and on day three it was 172. It is possible to get those weight readings with that weight
gain. My scale tells me I am losing weight, and I am actually gaining weight!

Shall we give up? No, let’s play ‘what if’. Suppose I take a different scale, and I get the
following measurements: 169, 170, 169, 171, 170, 171, 169, 170, 169, 170. What does your
intuition tell you? It is possible, for example, that you gained 1 lb each day, and the noisy
measurements just happens to look like you stayed the same weight. Equally, you could have
lost 1 lb a day and gotten the same readings. But is that likely? How likely is it to flip a
coin and get 10 heads in a row? Not very likely. We can’t prove it, but it seems pretty likely
that my weight held steady.

Another what if: what if the readings were 158.0, 164.2, 160.3, 159.9, 162.1, 164.6, 169.6,
167.4, 166.4, 171.0? Let’s look at a chart of that and then answer some questions.

In [2]: weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6,

169.6, 167.4, 166.4, 171.0, 171.2, 172.6]

plt.plot(weights)

plt.xlabel(’day’)

plt.ylabel(’weight (lbs)’)

plt.show()
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Does it ‘seem’ likely that I lost weight and this is just really noisy data? Not really.
Does it seem likely that I held the same weight? Again, no. This data trends upwards over
time; not evenly, but definitely upwards. Lets look at that in a chart. We can’t be sure,
but that surely looks like a weight gain, and a significant weight gain at that. Let’s test
this assumption with some more plots. It is often easier to ‘eyeball’ data in a chart versus a
table.

So let’s look at two hypotheses. First, let’s assume our weight did not change. To get
that number we agreed that we should just average all the measurements. Let’s look at that.

In [3]: import numpy as np

ave = np.sum(weights) / len(weights)

plt.plot(weights,label=’weights’)

plt.plot([0,12], [ave,ave], c=’r’, label=’hypothesis’)

plt.xlabel(’day’)

plt.ylabel(’weight (lbs)’)

plt.legend(loc=’best’)

plt.show()
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That doesn’t look very convincing.
Now, let’s assume we we gained weight. How much? I don’t know, but numpy does!

We just want to draw a line through the measurements that looks ‘about’ right. numpy
has functions that will do this according to a rule called “least squares fit”. Let’s not worry
about the details of that computation, or why we are writing our own filter if numpy provides
one, and just plot the results.

In [4]: xs = range(len(weights))

line = np.poly1d(np.polyfit(xs, weights, 1))

plt.plot(weights, label=’weights’)

plt.plot (xs, line(xs), c=’r’, label=’hypothesis’)

plt.xlabel(’day’)

plt.ylabel(’weight (lbs)’)

plt.legend(loc=’best’)

plt.show()
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This looks much better, at least to my eyes. It seems far more likely to be true that I
gained weight than I didn’t gain any weight. Did I actually gain 13 lbs? Who can say? That
seems impossible to answer.

“But is it impossible?” pipes up a coworker.
Let’s try something crazy. Let’s just assume that I know I am gaining about one lb a

day. It doesn’t matter how I know that right now, just assume I know it somehow. Maybe
I am eating a 6000 calorie a day diet, which would result in such a weight gain. Or maybe
there is another way to estimate the weight gain. Let’s just see if we can make use of such
information if it was available.

The first measurement was 158. We have no way of knowing any different, so let’s just
accept that as our estimate. If our weight today is 158, what will it be tomorrow? Well, we
think we are gaining weight at 1 lb/day, so our prediction is 159, like so:

In [5]: # a lot of the plotting code is not particularly useful to read, so for each chapter

# I have placed the uninteresting code in a file named xxx_internal. I import this

# file and call whatever function I need.

import gh_internal

gh_internal.plot_estimate_chart_1()
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Okay, but what good is this? Sure, we could just assume the 1 lb/day is accurate, and
just predict our weight for 10 days, but then why use a scale at all if we don’t incorporate its
readings? So let’s look at the next measurement. We step on the scale again and it displays
164.2 lbs.

In [6]: gh_internal.plot_estimate_chart_2()

Here the measurement is in blue, the previous estimate (output of the filter) is black, and
the estimate is red. So we have a problem. Our prediction doesn’t match our measurement.
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But, that is what we expected, right?. If the prediction was always exactly the same as the
measurement, it would not be capable of adding any information to the filter.

The key insight to this entire book follows. Read it carefully!

So what do we do? If we only take data from the measurement than the prediction will
not affect the result. If we only take data from the prediction then the measurement will
be ignored. If this is to work we need to take some kind of blend of the prediction and
measurement.

Blending two values - this sounds a lot like the two scale problem earlier. Using the same
reasoning as before we can see that the only thing that makes sense is to choose a number
between the prediction and the measurement. For example, an estimate of 165 makes no
sense, nor does 157. Our estimates should like between 159 (the prediction) and 164.2 (the
measurement).

Should it be half way? Maybe, but in general it seems like we might know that our
prediction is more or less accurate compared to the measurements. Probably the accuracy of
our prediction differs from the accuracy of the scale. Recall what we did when A was much
more accurate than B - we scaled the answer to be closer to A than B. Let’s look at that in
a chart.

In [7]: gh_internal.plot_estimate_chart_3()

Now let’s try a randomly chosen number: 4
10

. Our estimate will be four tenths the
measurement and the rest will be from the prediction. In other words, we are expressing
a belief here, a belief that the prediction is somewhat more likely to be correct than the
measurement. We compute that as
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new estimate = prediction +
4

10
(measurement− prediction)

The difference between the measurement and prediction is called the residual, which is
depicted by the black vertical line in the plot above. This will become an important value
to use later on, as it is an exact computation of the difference between measurements and
the filter’s output. Smaller residuals imply better performance.

Let’s just code that up and see the result when we test it against the series of weights from
above.. We have to take into account one other factor. Weight gain has units of lbs/time,
so to be general we will need to add a time step t, which we will set to 1 (day).

In [8]: weights = [158.0, 164.2, 160.3, 159.9, 162.1, 164.6,

169.6, 167.4, 166.4, 171.0, 171.2, 172.6]

time_step = 1 # day

scale_factor = 4/10

def predict_using_gain_guess(weight, gain_rate):

# store the filtered results

estimates = []

# most filter literature uses ’z’ for measurements

for z in weights:

# predict new position

prediction = weight + gain_rate * time_step

# update filter

weight = prediction + scale_factor * (z - prediction)

# save for plotting

estimates.append(weight)

# plot results

n = len(weights)

plt.xlim([1, n])

plt.plot (range(1, n+1), estimates, ’--’, label=’filter’)

plt.plot(range(1, n+1), weights, c=’r’, label=’measurements’)

plt.plot([1, n],[160, 160+n],c=’g’, label=’actual’)

plt.legend(loc=2)

plt.xlabel(’day’)

plt.ylabel(’weight (lbs)’)

plt.show()

predict_using_gain_guess (weight=160, gain_rate=1)
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That is pretty good! The blue dots, showing our estimates, are not a straight line, but
they are straighter than the measurements and somewhat close to the trend line we created.
Also, it seems to get better over time.

This may strike you as quite silly; of course the data will look good if we assume the
conclusion, that our weight gain is around 1 lb/day! Let’s see what the filter does if our
initial guess is bad. Let’s see what happens if I predict that there is no weight gain.

In [9]: predict_using_gain_guess (weight=160, gain_rate=0)
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Clearly a filter that requires us to correctly guess a rate of change is not very useful.
Even if our initial guess was useful, the filter will fail as soon as that rate of change changes.
If I stop overeating the filter will have extremely difficulty in adjusting to that change.

But, ‘what if’? What if instead of just leaving the weight gain at the initial guess of 1
lb (or whatever), we compute it from the existing measurements and estimates. On day one
our estimate for the weight is:

(160 + 1) +
4

10
(158− 161) = 159.8

On the next day we measure 164.2, which implies a weight gain of 4.4 lbs (since 164.2 -
159.8 = 4.4), not 1. Can we use this information somehow? It seems plausible. After all,
the weight measurement itself is based on a real world measurement of our weight, so there
is useful information. Our estimate of our weight gain may not be perfect, but it is surely
better than just guessing our gain is 1 lb. Data is better than a guess, even if it is noisy.

So, should we just set the new gain/day to 4.4 lbs? Hmm, sounds like our same problem
again. Yesterday we though the weight gain was 1 lb, today we think it is 4.4 lbs. We have
two numbers, and want to combine them somehow. Let’s use our same tool, and the only
tool we have so far - pick a value part way between the two. This time I will use another
arbitrarily chosen number, 1

3
. The equation is identical as for the weight estimate except we

have to incorporate time because this is a rate (gain/day):

new gain = old gain +
1

3

measurement− predicted weight
1 day

In [10]: weight = 160 # initial guess

gain_rate = 1.0 # initial guess

time_step = 1

weight_scale = 4/10

gain_scale = 1/3

estimates = []

for z in weights:

# prediction step

weight = weight + gain_rate*time_step

gain_rate = gain_rate

# update step

residual = z - weight

gain_rate = gain_rate + gain_scale * (residual/time_step)

weight = weight + weight_scale * residual

estimates.append(weight)

# plot results

22



n = len(weights)

plt.xlim([1, n])

plt.plot (range(1, n+1), estimates, ’--’, label=’filter’)

plt.plot(range(1, n+1), weights, label=’measurements’)

plt.plot([1 ,n], [160,160+n], label=’actual’)

plt.legend(loc=2)

plt.xlabel(’day’)

plt.ylabel(’weight (lbs)’)

plt.show()

I think this is starting to look really good. We used no methodology for choosing our
scaling factors of 4

10
and 1

3
(actually, they are poor choices for this problem), and we ‘luckily’

choose 1 lb/day as our initial guess for the weight gain, but otherwise all of the reasoning
followed from very reasonable assumptions.

One final point before we go on. In the prediction step I wrote the line

gain_rate = gain_rate

This obviously has no effect, and can be removed. I wrote this to emphasize that in the
prediction step you need to predict next value for all variables, both weight and gain rate.
In this case we are assuming that the the gain does not vary, but when we generalize this
algorithm we will remove that assumption.

23



2.2 The g-h Filter

This algorithm is known as the g-h filter. g and h refer to the two scaling factors that we
used in our example. g is the scaling we used for the measurement (weight in our example),
and h is the scaling for the change in measurement over time (lbs/day in our example).

This filter is the basis for a huge number of filters, including the Kalman filter. In other
words, the Kalman filter is a form of the g-h filter. So is the Least Squares filter, which
you may have heard of, and so is the Benedict-Bordner filter, which you probably have not.
Each filter has a different way of assigning values to g and h, but otherwise the algorithms
are identical. For example, the α-β filter just assigns a constant to g and h, constrained to
a certain range of values. Other filters will vary g and h dynamically, and filters like the
Kalman filter will vary them based on the number of dimensions in the problem.

Let me repeat the key insights as they are so important. If you do not understand
these you will not understand the rest of the book. If you do understand them, then the rest
of the book will unfold naturally for you as mathematically elaborations to various ‘what if’
questions we will ask about g and h.

• Multiple measurements are more accurate than one measurement

• Always choose a number part way between two measurements to create a more accurate
estimate

• Predict the next measurement based on the current estimate and how much we think
it will change

• The new estimate is then chosen as part way between the prediction and next mea-
surement

Let’s look at a visual depiction of the algorithm.

In [11]: gh_internal.create_predict_update_chart()
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I’ll begin to introduce the nomenclature and variable names used in the literature. Mea-
surement is typically denoted z, and that is what we will use in this book (some literature
uses y). Subscript k indicates the time step, so zk is the data for this time step. A bold
font denotes a vector. So far we have only considered having one sensor, and hence one
sensor measurement, but in general we may have n sensors and n measurements. x denotes
our data, and is bold to denote that it is a vector. For example, for our scale example, it
represents both the initial weight and initial weight gain rate, like so:

x =

[
x
ẋ

]
Finally, a hat ‘̂’ indicates an estimate. So the output of the predict step time k at is the

estimate of our state x̂k, and again this is a vector of all the state variables. So for our scale
example it contains the estimate of both the weight and the gain rate.

So, the algorithm is simple. The state is initialized with x0. We then enter a loop,
predicting the state for time k from the values from time k−1. We then get the measurement
zk and choose some intermediate point between the measurements and prediction, creating
the estimate x̂k.

25



2.3 Exercise: Write Generic Algorithm

In the example above, I explicitly coded this to solve the weighing problem that we’ve been
discussing throughout the chapter. For example, the variables are named “weight scale”,
“gain”, and so on. I did this to make the algorithm easy to follow - you can easily see that
we correctly implemented each step. But, this is specialized code. Rewrite it to work with
any data. Use this function signature:

def g_h_filter (data, x0, dx, g, h)

"""

Performs g-h filter on 1 state variable with a fixed g and h.

’data’ contains the data to be filtered.

’x0’ is the initial value for our state variable

’dx’ is the initial change rate for our state variable

’g’ is the g-h’s g scale factor

’h’ is the g-h’s h scale factor

’dt’ is the length of the time step

"""

Test it by passing in the same weight data as before, plot the results, and visually
determine that it works.

2.3.1 Solution and Discussion

In [12]: def g_h_filter (data, x0, dx, g, h, dt=1., pred=None):

"""

Performs g-h filter on 1 state variable with a fixed g and h.

’data’ contains the data to be filtered.

’x0’ is the initial value for our state variable

’dx’ is the initial change rate for our state variable

’g’ is the g-h’s g scale factor

’h’ is the g-h’s h scale factor

’dt’ is the length of the time step

’pred’ is an optional list. If provided, each prediction will

be stored in it

"""

x = x0

results = []

for z in data:

#prediction step

x_est = x + (dx*dt)

dx = dx
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if pred is not None:

pred.append(x_est)

# update step

residual = z - x_est

dx = dx + h * (residual) / dt

x = x_est + g * residual

results.append(x)

return results

def plot_g_h_results (measurements, filtered_data, title=’’):

plt.plot (filtered_data, ’--’,label=’filter’)

plt.plot(measurements,label=’measurement’)

plt.legend(loc=4)

plt.title(title)

plt.show()

plt.xlim([0,10])

plt.plot([0,9],[160,170],label=’actual’)

data = g_h_filter (data=weights, x0=160, dx=1, g=6./10, h = 2./3, dt=1.)

plot_g_h_results (weights, data)
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2.4 Choice of g and h

The g-h filter is not one filter - it is a classification for a family of filters. Eli Brookner in
Tracking and Kalman Filtering Made Easy lists 11, and I am sure there are more. Not only
that, but each type of filter has numerous subtypes. Each filter is differentiated by how g and
h are chosen. So there is no ‘one fits all’ advice that I can give here. Some filters set g and
h as constants, others vary them dynamically. The Kalman filter varies them dynamically
at each step k. Some filters allow g and h to take any value within a range, others constrain
one to be dependent on the other by some function f (̇),where g = f(h).

The topic of this book is not the entire family of g-h filters; more importantly, we are
interested in the Bayesian aspect of these filters, which I have not addressed yet. Therefore
I will not cover selection of g and h in depth. Eli Brookner’s book Tracking and Kalman
Filtering Made Easy is an excellent resource for that topic, if it interests you. If this strikes
you as an odd position for me to take, recognize that the typical formulation of the Kalman
filter does not use g and h at all; the Kalman filter is a g-h filter because it mathematically
reduces to this algorithm. When we design the Kalman filter we will be making a number of
carefully considered choices to optimize it’s performance, and those choices indirectly affect
g and h. Don’t worry if this is not too clear right now, it will be much clearer later after we
develop the Kalman filter theory.

However, it is worth seeing how varying g and h affects the results, so we will work
through some examples. This will give us strong insight into the fundamental strengths and
limitations of this type of filter, and help us understand the behavior of the rather more
sophisticated Kalman filter.

2.5 Exercise: create measurement function

Now let’s write a function that generates noisy data for us. Recall from chapter 0 that we
model a noisy signal as the signal plus white noise generated by numpy.random.randn().
We want a function that we call with the starting value, the amount of change per step, the
number of steps, and the amount of noise we want to add. It should return a list of the
data. Test it by creating 30 points, filtering it with g h filter(), and plot the results with
plot g h results().

In [13]: # your code here

2.5.1 Solution

In [14]: import numpy.random as random

def gen_data (x0, dx, count, noise_factor):

return [x0 + dx*i + random.randn()*noise_factor for i in range (count)]

measurements = gen_data (0, 1, 30, 1)

data = g_h_filter (data=measurements, x0=0, dx=1, dt=1, g=.2, h=0.02)

plot_g_h_results (measurements, data)
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2.6 Exercise: Bad Initial Conditions

Now write code that uses gen data and g h filter to filter 100 data points that starts at
5, has a derivative of 2, a noise scaling factor of 10, and uses g=0.2 and h=0.02. Set you
initial guess for x to be 100.

In [15]: # your code here

2.6.1 Solution and Discussion

In [16]: zs = gen_data (x0=5, dx=2, count=100, noise_factor=10)

data = g_h_filter (data=zs, x0=100., dx=2., dt=1.,g=0.2, h=0.01)

plot_g_h_results (measurements=zs, filtered_data=data)
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The filter starts out with estimates that are far from the measured data due to the bad
initial guess of 100. You can see that it ‘rings’ before settling in on the measured data.
‘Ringing’ means that the signal overshoots and undershoots the data in a sinusodial type
pattern. This is a very common phenomena in filters, and a lot of work in filter design is
devoted to minimizing ringing. That is a topic that we are not yet prepared to address, but
I wanted to show you the phenomenon.

2.7 Exercise: Extreme Noise

Rerun the same test, but this time use a noise factor of 100. Remove the initial condition
ringing by changing the initial condition from 100 down to 5.

In [17]: # your code here

2.7.1 Solution and Discussion

In [18]: zs = gen_data (x0=5, dx=2, count=100, noise_factor=100)

data = g_h_filter (data=zs, x0=5., dx=2., g=0.2, h=0.02)

plot_g_h_results (measurements=zs, filtered_data=data)
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This doesn’t look so wonderful to me. We can see that perhaps the filtered signal varies
less than the noisy signal, but it is far from the straight line. If we were to plot just the
filtered result no one would guess that the signal with no noise starts at 5 and increments
by 2 at each time step. And while in locations the filter does seem to reduce the noise, in
other places it seems to overshoot and undershoot.

At this point we don’t know enough to really judge this. We added a lot of noise; maybe
this is as good as filtering can get. However, the existence of the multitude of chapters
beyond this one should suggest that we can do much better than this suggests.

2.8 Exercise: The Effect of Acceleration

Write a new data generation function that adds in a constant acceleration factor to each data
point. In other words, increment dx as you compute each data point so that the velocity
(dx) is ever increasing. Set the noise to 0, g = 0.2 and h = 0.02 and plot the results. Explain
what you see.

In [19]: # your code here

2.8.1 Solution and Discussion

In [20]: def gen_data (x0, dx, count, noise_factor, accel=0):

zs = []

for i in range (count):

zs.append (x0 + dx*i + random.randn()*noise_factor)

dx += accel

return zs
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predictions = []

zs = gen_data (x0=10, dx=0, count=20, noise_factor=0, accel = 2)

data = g_h_filter (data=zs, x0=10, dx=0, g=0.2, h=0.02, pred=predictions)

plt.xlim([0,20])

plot_g_h_results (measurements=zs, filtered_data=data)

Each prediction lags behind the signal. If you think about what is happening this makes
sense. Our model assumes that velocity is constant. The g-h filter computes the first
derivative of x (we use ẋ to denote the derivative) but not the second derivative ẍ. So we
are assuming that ẍ = 0. At each prediction step we predict the new value of x as x+ ẋ ∗ t.
But because of the acceleration the prediction must necessarily fall behind the actual value.
We then try to compute a new value for ẋ, but because of the h factor we only partially
adjust ẋ to the new velocity. On the next iteration we will again fall short.

Note that there is no adjustment to g or h that we can make to correct this problem. This
is called the lag error or systemic error of the system. It is a fundamental property of g-h
filters. Perhaps your mind is already suggesting solutions or workarounds to this problem.
As you might expect, a lot of research has been devoted to this problem, and we will be
presenting various solutions to this problem in this book. > The ‘take home’ point is that
the filter is only as good as the mathematical model used to express the system.

2.9 Exercise: Varying g

Now let’s look at the effect of varying g. Before you perform this exercise, recall that g is
the scale factor for choosing between the measurement and prediction. What do you think
of a large value of g will be? A small value?

Now, let the noise factor=50 and dx=5. Plot the results of g = 0.1, 0.5, and 0.9.
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In [21]: # your code here

2.9.1 Solution and Discussion

In [22]: zs = gen_data (x0=5, dx=5, count=100, noise_factor=50)

data = g_h_filter (data=zs, x0=0., dx=5., dt=1.,g=0.1, h=0.01)

plot_g_h_results (zs, data, ’g = 0.1’)

data = g_h_filter (data=zs, x0=0., dx=5., dt=1.,g=0.5, h=0.01)

plot_g_h_results (zs, data, ’g = 0.5’)

data = g_h_filter (data=zs, x0=0., dx=5., dt=1.,g=0.9, h=0.01)

plot_g_h_results (zs, data, ’g = 0.9’)
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It is clear that as g is larger we more closely follow the measurement instead of the
prediction. When g = 0.9 we follow the signal almost exactly, and reject almost none of the
noise. One might naively conclude that g should always be very small to maximize noise
rejection. However, that means that we are mostly ignoring the measurements in favor of
our prediction. What happens when the signal changes not due to noise, but an actual state
change? Let’s look. I will create data that has ẋ = 1 for 9 steps before changing to ẋ = 0.
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In [23]: zs = [5,6,7,8,9,10,11,12,13,14]

for i in range(100):

zs.append(14)

data = g_h_filter (data=zs, x0=4., dx=1., dt=1.,g=0.1, h=0.01)

plot_g_h_results (zs, data, ’g = 0.1’)

data = g_h_filter (data=zs, x0=4., dx=1., dt=1.,g=0.5, h=0.01)

plot_g_h_results (zs, data, ’g = 0.5’)

data = g_h_filter (data=zs, x0=4., dx=1., dt=1.,g=0.9, h=0.01)

plot_g_h_results (zs, data, ’g = 0.9’)
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Here we can see the effects of ignoring the signal. We not only filter out noise, but
legitimate changes in the signal as well.

Maybe we need a ‘Godilocks’ filter, where is not too large, not too small, but just right?
Well, not exactly. As alluded to earlier, different filters choose g and h in different ways
depending on the mathematical properties of the problem. For example, the Benedict-
Bordner filter was invented to minimize the transient error in this example, where ẋ makes
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a step jump. We will not discuss this filter in this book, but here are two plots chosen with
different allowable pairs of g and h. This filter design minimizes transient errors for step
jumps in ẋ at the cost of not being optimal for other types of changes in ẋ.

In [24]: zs = [5,6,7,8,9,9,9,9,9,10,11,12,13,14,15,16,16,16,16,16,16,16,16,16,16,16]

data = g_h_filter (data=zs, x0=4., dx=1., dt=1.,g=.302, h=0.054)

plot_g_h_results (zs, data, ’g = 0.302, h = 0.054’)

data = g_h_filter (data=zs, x0=4., dx=1., dt=1.,g=.546, h=0.205)

plot_g_h_results (zs, data, ’g = 0.546, h = 0.205’)
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2.10 Varying h

Now let’s leave g unchanged and investigate the effect of modifying h. We know that h
affects how much of we favor the measurement of ẋ vs our prediction. But what does this
mean? If our signal is changing a lot (quickly relative to the time step of our filter), then a
large h will cause us to react to those transient changes rapidly. A smaller h will cause us
to react more slowly.

We will look at three examples. We have a noiseless measurement that slowly goes from
0 to 1 in 50 steps. Our first filter uses a nearly correct initial value for ẋ and a small h. You
can see from the output that the filter output is very close to the signal. The second filter
uses the very incorrect guess of ẋ = 2. Here we see the filter ‘ringing’ until it settles down
and finds the signal. The third filter uses the same conditions but it now sets h = 0.5. If you
look at the amplitude of the ringing you can see that it is much smaller than in the second
chart, but the frequency is greater. It also settles down a bit quicker than the second filter,
though not by much.

In [25]: zs = np.linspace(0,1,50)

data = g_h_filter (data=zs, x0=0, dx=0., dt=1.,g=.2, h=0.05)

plot_g_h_results (zs, data, ’dx=0, h = 0.05’)

data = g_h_filter (data=zs, x0=0, dx=2., dt=1.,g=.2, h=0.05)

plt.ylim([-1,5])

plot_g_h_results (zs, data, ’dx=2, h = 0.05’)
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data = g_h_filter (data=zs, x0=0, dx=2., dt=1.,g=.2, h=0.5)

plt.ylim([-1,5])

plot_g_h_results (zs, data, ’dx=2, h = 0.5’)
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2.11 Final Thoughts

Near the beginning of the chapter I used numpy.polyfit() to fit a straight line to the weight
measurements. It fits a n-th degree polynomial to the data using a ‘least squared fit’. How
does this differ from the g-h filter?

Well, it depends. We will eventually learn that the Kalman filter is optimal from a least
squared fit perspective. However, polyfit() fits a polynomial to the data, not an arbitrary
curve, by minimizing the value of this formula:

E =
k∑
j=0

|p(xj)− yj|2

I assumed that my weight gain was constant at 1 lb/day, and so when I tried to fit a
polynomial of n = 1, which is a line, the result very closely matched the actual weight gain.
But, of course, no one consistently only gains or loses weight. We fluctuate. Using ‘polyfit()’
for a longer series of data would yield poor results. In contrast, the g-h filter reacts to
changes in the rate - the h term controls how quickly the filter reacts to these changes. If
we gain weight, hold steady for awhile, then lose weight, the filter will track that change
automatically. ‘polyfit()’ would not be able to do that unless the gain and loss could be well
represented by a polynomial.

Another advantage of this form of filter, even if the data fits a n-degree polynomial, is
that it is recursive. That is, we can compute the estimate for this time period knowing
nothing more than the estimate and rate from the last time period. In contrast, if you dig
into the implementation for polyfit() you will see that it needs all of the data before it
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can produce an answer. Therefore algorithms like polyfit() are not well suited for real-
time data filtering. In the 60’s when the Kalman filter was developed computers were very
slow and had extremely limited memory. They were utterly unable to store, for example,
thousands of readings from an aircraft’s inertial navigation system, nor could they process all
of that data in the short period of time needed to provide accurate and up-to-date navigation
information.

Up until the mid 20th century various forms of Least Squares Estimation was used for
this type of filtering. For example, for NASA’s Apollo program had a ground network
for tracking the Command and Service Model (CSM) and the Lunar Module (LM). They
took measurements over many minutes, batched the data together, and slowly computed an
answer. In 1960 Stanley Schmidt at NASA Ames recognized the utility of Rudolf Kalman’s
seminal paper and invited him to Ames. Schmidt applied Kalman’s work to the onboard
navigation systems on the CSM and LM, and called it the “Kalman filter”.[1] Soon after,
the world moved to this faster, recursive filter.

The Kalman filter only needs to store the last estimate and a few related parameters,
and requires only a relatively small number of computations to generate the next estimate.
Today we have so much memory and processing power that this advantage is somewhat less
important, but at the time the Kalman filter was a major breakthrough not just because of
the mathematical properties, but because it could (barely) run on the hardware of the day.

This subject is much deeper than this short discussion suggests. We will consider these
topics many more times throughout the book.

2.12 Summary

I encourage you to experiment with this filter to develop your understanding of how it reacts.
It shouldn’t take too many attempts to come to the realization that ad-hoc choices for g and
h do not perform very well. A particular choice might perform well in one situation, but
very poorly in another. Even when you understand the effect of g and h it can be difficult
to choose proper values. In fact, it is extremely unlikely that you will choose values for g
and h that is optimal for any given problem. Filters are designed, not selected ad hoc.

In some ways I do not want to end the chapter here, as there is a significant amount
that we can say about selecting g and h. But the g-h filter in this form is not the purpose
of this book. Designing the Kalman filter requires you to specify a number of parameters
- indirectly they do relate to choosing g and h, but you will never refer to them direcly
when designing Kalman filters. Furthermore, g and h will vary at every time step in a very
non-obvious manner.

There is another feature of these filters we have barely touched upon - Bayesian statistics.
You will note that the term ‘Bayesian’ is in the title of this book; this is not a coincidence!
For the time being we will leave g and h behind, largely unexplored, and develop a very
powerful form of probabilistic reasoning about filtering. Yet suddenly this same g-h filter
algorithm will appear, this time with a formal mathematical edifice that allows us to create
filters from multiple sensors, to accurately estimate the amount of error in our solution, and
to control robots.
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2.13 References
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Chapter 3

Discrete Bayes Filter

The Kalman filter belongs to a family of filters called bayesian filters. Most textbook treat-
ments of the Kalman filter present the Bayesian formula, perhaps shows how it factors into
the Kalman filter equations, but mostly keeps the discussion at a very abstract level.

That approach requires a fairly sophisticated understanding of several fields of mathe-
matics, and it still leaves much of the work of understanding and forming an intuitive grasp
of the situation in the hands of the reader.

I will use a different way to develop the topic, to which I owe the work of Dieter Fox
and Sebastian Thrun a great debt. It depends on building an intuition on how Bayesian
statistics work by tracking an object through a hallwya - they use a robot, I use a dog (I like
dogs). The first published example of this that I can find weems to be Fox 1999 [1], with a
fuller example in Fox [2] 2003. Sebastian Thrun also uses this formulation in his excellent
Coursera course Artificial Intelligence for Robotics [3] In fact, if you like watching videos, I
highly recommend pausing reading this book in favor of first few lessons of that course, and
then come back to this book for a deeper dive into the topic.

Let’s now use a simple thought experiment, much like we did with the g-h filter, to see
how we might reason about the use of probabilities for filtering and tracking.

3.1 Tracking a Dog

Let us begin with a simple problem. We have a dog friendly workspace, and so people bring
their dogs to work. However, occasionally the dogs wander out of your office and down the
halls. We want to be able to track them. So during a hackathon somebody created a little
sonar sensor to attach to the dog’s collar. It emits a signal, listens for the echo, and based on
how quickly an echo comes back we can tell whether the dog is in front of an open doorway
or not. It also senses when the dog walks, and reports in which direction the dog has moved.
It connects to our network via wifi and sends an update once a second.

I want to track my dog Simon, so I attach the device to his collar and then fire up Python,
ready to try to write code to track him through the building. At first blush this may appear
impossible. If I start listening to the sensor of Simon’s collar I might read ‘door’, ‘hall’,
‘hall’, and so on. How can I use that information to determine where Simon is?

To keep the problem small, we will assume that there are only 10 positions in a single
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hallway to consider, which we will number 0 to 9, where 1 is to the right of 0, 2 is to the right
of 1, and so on. For reasons that will be clear later, we will also assume that the hallway is
circular or rectangular. If you move right from position 9, you will be at position 0.

When I begin listening to the sensor I have no reason to believe that Simon is at any
particular position in the hallway. He is equally likely to be in any position. The probability
that he is in each position is therefore 1/10.

Let us represent our belief of his position at any time in a numpy array.

In [2]: import numpy as np

pos = np.array([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])

Now let’s create a map of the hallway in another list. Suppose there are first two doors
close together, and then another door quite a bit further down the hallway. We will use 1
to denote a door, and 0 to denote a wall:

In [3]: hallway = np.array([1, 1, 0, 0, 0, 0, 0, 0, 1, 0])

So I start listening to Simon’s transmissions on the network, and the first data I get from
the sesnor is “door”. From this I conclude that he is in front of a door, but which one? I
have no idea. I have no reason to believe is in front of the first, second, or third door. But
what I can do is assign a probability to each door. All doors are equally likely, so I assign a
probability of 1/3 to each door.

In [4]: from __future__ import print_function, division

import matplotlib.pyplot as plt

import bar_plot

import numpy as np

pos = np.array([0.333, 0.333, 0., 0., 0., 0., 0., 0., 0.333, 0.])

bar_plot.plot (pos)
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We call this a multimodal distribution because we have multiple beliefs about the position
of our dog. Of course we are not saying that we think he is simultaneously in three different
locations, merely that so far we have narrowed down our knowledge in his position to these
locations.

I hand coded the pos array in the code above. How would we implement this in code?
Well, hallway represents each door as a 1, and wall as 0, so we will multiply the hallway
variable by the percentage, like so;

In [5]: pos = hallway * 0.3

print(’pos =’, pos)

pos = [ 0.3 0.3 0. 0. 0. 0. 0. 0. 0.3 0. ]

3.2 Extracting Information from Multiple Sensor

Readings

Let’s put Python aside and think about the problem a bit. Suppose we were to read the
following from Simon’s sensor:

• door

• move right

• door

Can we deduce where Simon is at the end of that sequence? Of course! Given the
hallway’s layout there is only one place where you can be in front of a door, move once to
the right, and be in front of another door, and that is at the left end. Therefore we can
confidently state that Simon is in front of the second doorway. If this is not clear, suppose
Simon had started at the second or third door. After moving to the right, his sensor would
have returned ‘wall’. Therefore the only possibility is that he is now in front of the second
door. We denote this in Python with:

In [6]: pos = np.array([0., 1., 0., 0., 0., 0., 0., 0., 0., 0.])

print(pos)

[ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

Obviously I carefully constructed the hallway layout and sensor readings to give us an
exact answer quickly. Real problems will not be so clear cut. But this should trigger your
intuition - the first sensor reading only gave us very low probabilities (0.333) for Simon’s
location, but after a position update and another sensor reading we knew much more about
where he is. You might suspect, correctly, that if you had a very long hallway with a large
number of doors that after several sensor readings and positions updates we would either be
able to know where Simon was, or have the possibilities narrowed down to a small number
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of possibilities. For example, suppose we had a long sequence of “door, right, door, right,
wall, right, wall, right, door, right, door, right, wall, right, wall, right, wall, right, wall, right,
door”. Simon could only be located where we had a sequence of [1,1,0,0,1,1,0,0,0,0,1] in the
hallway. There might be only one match for that, or at most a few. Either way we will be
far more certain about his position then when we started.

We could work through the code to implement this solution, but instead let us consider
a real world complication to the problem.

3.3 Noisy Sensors

Unfortunately I have yet to come across a perfect sensor. Perhaps the sensor would not
detect a door if Simon sat in front of it while scratching himself, or it might report there is
a door if he is facing towards the wall, not down the hallway. So in practice when I get a
report ‘door’ I cannot assign 1/3 as the probability for each door. I have to assign something
less than 1/3 to each door, and then assign a small probability to each blank wall position.
At this point it doesn’t matter exactly what numbers we assign; let us say that the probably
of ‘door’ being correct is 0.6, and the probability of being incorrect is 0.2, which is another
way of saying it is about 3 times more likely to be right than wrong. How would we do this?

At first this may seem like an insurmountable problem. If the sensor is noisy it casts
doubt on every piece of data. How can we conclude anything if we are always unsure?

The key, as with the problem above, is probabilities. We are already comfortable with
assigning a probabilistic belief about the location of the dog; now we just have to incorporate
the additional uncertainty caused by the sensor noise. Say we think there is a 50% chance
that our dog is in front of a specific door and we get a reading of ‘door’. Well, we think
that is only likely to be true 0.6 of the time, so we multiply: 0.5 ∗ 0.6 = 0.3. Likewise, if
we think the chances that our dog is in front of a wall is 0.1, and the reading is ‘door’, we
would multiply the probability by the chances of a miss: 0.1 ∗ 0.2 = 0.02.

However, we more or less chose 0.6 and 0.2 at random; if we multiply the pos array by
these values the end result will no longer represent a true probability distribution.

In [7]: def update (pos, measure, p_hit, p_miss):

q = np.array(pos, dtype=float)

for i in range(len(hallway)):

if hallway[i] == measure:

q[i] = pos[i] * p_hit

else:

q[i] = pos[i] * p_miss

return q

pos = np.array([0.2]*10)

reading = 1 # 1 is ’door’

pos = update (pos, 1, .6, .2)

print(pos)
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print(’sum =’, sum(pos))

bar_plot.plot(pos)

[ 0.12 0.12 0.04 0.04 0.04 0.04 0.04 0.04 0.12 0.04]

sum = 0.64

We can see that this is not a probability distribution because it does not sum to 1.0. But
we can see that the code is doing mostly the right thing - the doors are assigned a number
(0.12) that is 3 times higher than the walls (0.04). So we can write a bit of code to normalize
the result so that the probabilities correctly sum to 1.0.

In [8]: def normalize(p):

s = sum(p)

for i in range (len(p)):

p[i] = p[i] / s

def update(pos, measure, p_hit, p_miss):

q = np.array(pos, dtype=float)

for i in range(len(hallway)):

if hallway[i] == measure:

q[i] = pos[i] * p_hit

else:

q[i] = pos[i] * p_miss

normalize(q)

return q
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pos = np.array([0.2]*10)

reading = 1 # 1 is ’door’

pos = update(pos, 1, .6, .2)

print(’sum =’, sum(pos))

print(’probability of door =’, pos[0])

print(’probability of wall =’, pos[2])

bar_plot.plot(pos)

sum = 1.0

probability of door = 0.1875

probability of wall = 0.0625

Normalization is done by dividing each element by the sum of all elements in the list. If
this is not clear you should spend a few minutes proving it to yourself algebraically. We can
see from the output that the sum is now 1.0, and that the probability of a door vs wall is
still three times larger. The result also fits our intuitiion that the probability of a door must
be less than 0.333, and that the probability of a wall must be greater than 0.0. Finally, it
should fit our intuition that we have not yet been given any information that would allow
us to distinguish between any given door or wall position, so all door positions should have
the same value, and the same should be true for wall positions.

3.4 Incorporating Movement Data

Recall how quickly we were able to find an exact solution to our dog’s position when we
incorporated a series of measurements and movement updates. However, that occured in a
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fictional world of perfect sensors. Might we be able to find an exact solution even in the
presense of noisy sensors?

Unfortunately, the answer is no. Even if the sensor readings perfectly match an extremely
complicated hallway map we could not say that we are 100% sure that the dog is in a specific
position - there is, after all, the possibility that every sensor reading was wrong! Naturally,
in a more typical situation most sensor readings will be correct, and we might be close to
100% sure of our answer, but never 100% sure. This may seem head-spinningly complicated,
but lets just go ahead and program the math, which as we have seen is quite simple.

First let’s deal with the simple case - assume the movement sensor is perfect, and it
reports that the dog has moved one space to the right. How would we alter our pos array?

I hope after a moment’s thought it is clear that we should just shift all the values one
space to the right. If we previously thought there was a 50% chance of simon being at
position 3, then after the move to the right we should believe that there is a 50% chance he
is at position 4. So let’s implement that. Recall that the hallway is circular, so we will use
modulo arithmetic to perform the shift correctly

In [9]: import numpy

def perfect_predict(pos, move):

""" move the position by ’move’ spaces, where positive is to the right, and negative

is to the left

"""

n = len(pos)

result = np.array(pos, dtype=float)

for i in range(n):

result[i] = pos[(i-move) % n]

return result

pos = np.array([.4, .1, .2, .3])

print(’pos before predict =’, pos)

bar_plot.plot (pos, title=’Before prediction’)

pos = perfect_predict(pos, 1)

print(’pos after predict =’, pos)

bar_plot.plot (pos, title=’After prediction’)

pos before predict = [ 0.4 0.1 0.2 0.3]

pos after predict = [ 0.3 0.4 0.1 0.2]
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We can see that we correctly shifted all values one position to the right, wrapping from
the end of the array back to the beginning.

3.5 Adding Noise to the Prediction

We want to solve real world problems, and we have already stated that all sensors have
noise. Therefore the code above must be wrong. What if the sensor reported that our dog
moved one space, but he actually moved two spaces, or zero? Once again this may initially
sound like an insummountable problem, but let’s just model it in math. Since this is just
an example, we will create a pretty simple noise model for the sensor - later in the book we
will handle far more sophisticated errors.

We will say that when the sensor sends a movement update, it is 80% likely to be right,
and it is 10% likely to overshoot one position to the right, and 10% likely to undershoot to
the left. That is, if we say the movement was 4 (meaning 4 spaces to the right), the dog is
80% likely to have moved 4 spaces to the right, 10% to have moved 3 spaces, and 10% to
have moved 5 spaces.

This is slightly harder than the math we have done so far, but it is still tractable. Each
result in the array now needs to incorporate probabilities for 3 different situations. For
example, consider position 9 for the case where the reported movement is 2. It should be
clear that after the move we need to incorporate the probability that was at position 7 (9-2).
However, there is a small chance that our dog actually moved from either 1 or 3 spaces away
due to the sensor noise, so we also need to use positions 6 and 8. How much? Well, we have
the probabilities, so we can just multiply and add. It would be 80% of position 7 plus 10%
of position 6 and 10% of position 8! Let’s try coding that:
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In [10]: def predict(pos, move, p_correct, p_under, p_over):

n = len(pos)

result = np.array(pos, dtype=float)

for i in range(n):

result[i] = \

pos[(i-move) % n] * p_correct + \

pos[(i-move-1) % n] * p_over + \

pos[(i-move+1) % n] * p_under

return result

p = np.array([0,0,0,1,0,0,0,0])

res = predict(p, 2, .8, .1, .1)

print(res)

bar_plot.plot (res)

[ 0. 0. 0. 0. 0.1 0.8 0.1 0. ]

The simple test case that we ran appears to work correctly. We initially believed that the
dog was in position 3 with 100% certainty; after the movement update we now give an 80%
probability to the dog being in position 5, and a 10% chance to undershooting to position
4, and a 10% chance of overshooting to position 6. Let us look at a case where we have
multiple beliefs:

In [11]: p = np.array([0, 0, .4, .6, 0, 0, 0, 0])

res = predict (p, 2, .8, .1, .1)

print(res)

bar_plot.plot(res)
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[ 0. 0. 0. 0.04 0.38 0.52 0.06 0. ]

Here the results are more complicated, but you should still be able to work it out in your
head. The 0.04 is due to the possibility that the 0.4 belief undershot by 1. The 0.38 is due
to the following: the 80% chance that we moved 2 positions (.4 ∗ .8) and the 10% chance
that we undershot (.6 ∗ .1). Overshooting plays no role here because if we overshot both .4
and .6 would be past this position. I strongly suggest working some examples until
all of this is very clear, as so much of what follows depends on understanding
this step.

If you look at the probabilities after performing the update you probably feel dismay. In
the example above we started with probabilitys of .4 and .6 in two fields; after performing
the update the probabilities are not only lowered, but they are strewn out across the map.

In [12]: bar_plot.plot (res)

52



This is not a coincidence, or the result of a carefully chosen example - it is always true of
the update step. This is inevitable; if our sensor is noisy we will lose a bit of information on
every update. Suppose we were to perform the update an infinite number of times - what
would the result be? If we lose information on every step, we must eventually end up with
no information at all, and our probabilities will be equally distributed across the pos array.
Let’s try this with say 500 iterations.

In [13]: pos = [1.0,0,0,0,0,0,0,0,0,0]

for i in range (500):

pos = predict(pos, 1, .8, .1, .1)

print(pos)

bar_plot.plot(pos)

[ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]
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After 500 iterations we have lost all information, even though we were 100% sure that we
started in position 1. Feel free to play with the numbers to see the effect of different number
of updates. For example, after 100 updates we have a small amount of information left.

And, if you are viewing this on the web or in IPython Notebook, here is an animation of
that output.

3.6 Integrating Measurements and Movement Updates

The problem of loosing information during an update may make it seem as if our system
would quickly devolve into no knowledge. However, recall that our process is not an endless
series of updates, but of measure->update->measure->update->measure->update. . . The
output of the measure step is fed into the update. The update step, with a degraded
certainty, is then fed into the measure step.

Let’s think about this intuitively. After the first measure->update round we have de-
graded the knowledge we gained by the measurement by a small amount. But now we take
another measurement. When we try to incorporate that new measurement into our belief,
do we become more certain, less certain, or equally certain. Consider a simple case - you are
sitting in your office. A co-worker asks another co-worker where you are, and they report
“in his office”. You keep sitting there while they ask and answer “has he moved”? “No”
“Where is he” “In his office”. Eventually you get up and move, and lets say the person
didn’t see you move. At that time the questions will go “Has he moved” “no” (but you
have!) “Where is he” “In the kitchen”. Wow! At that moment the statement that you
haven’t moved conflicts strongly with the next measurement that you are in the kitchen. If
we were modelling these with probabilities the probability that you are in your office would
lowever, and the probability that you are in the kitchen would go up a little bit. But now
imagine the subsequent conversation: “has he moved” “no” “where is he” “in the kitchen”.
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Pretty quickly the belief that you are in your office would fade away, and the belief that you
are in the kitchen would increase to near certainty. The belief that you are in the office will
never go to zero, nor will the belief that you are in the kitchen ever go to 1.0 because of the
chances of error, but in practice your co-workers would be correct to be quite confident in
their system.

That is what intuition tells us. What does the math tell us?
Well, we have already programmed the measure step, and we have programmed the

update step. All we need to do is feed the result of one into the other, and we will have
programmed our dog tracker!!! Let’s see how it performs. We will input data as if the dog
started at position 0 and moved right at each update. However, as in a real world application,
we will start with no knowledge and assign equal probability to all positions.

In [14]: p = np.array([.1]*10)

p = update(p, 1, .6, .2)

print(p)

[ 0.1875 0.1875 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.1875

0.0625]

In [15]: p = predict(p, 1, .8, .1, .1)

print(p)

bar_plot.plot(p)

[ 0.0875 0.175 0.175 0.075 0.0625 0.0625 0.0625 0.0625 0.075

0.1625]

So after the first update we have assigned a high probability to each door position, and
a low probability to each wall position. The update step shifted these probabilities to the
right, smearing them about a bit. Now lets look at what happens at the next sense.
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In [16]: p = update(p, 1, .6, .2)

print(p)

bar_plot.plot(p)

[ 0.15671642 0.31343284 0.10447761 0.04477612 0.03731343 0.03731343

0.03731343 0.03731343 0.13432836 0.09701493]

Notice the tall bar at position 1. This corresponds with the (correct) case of starting
at position 0, sensing a door, shifting 1 to the right, and sensing another door. No other
positions make this set of observations as likely. Now lets add an update and then sense the
wall.

In [17]: p = predict(p, 1, .8, .1, .1)

p = update(p, 0, .6, .2)

bar_plot.plot(p)
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This is exciting! We have a very prominent bar at position 2 with a value of around 35%.
It is over twice the value of any other bar in the plot, and is about 4% larger than our last
plot, where the tallest bar was around 31%. Let’s see one more sense->update cycle.

In [18]: p = predict(p, 1, .8, .1, .1)

p = update(p, 0, .6, .2)

bar_plot.plot(p)

57



Here things have degraded a bit due to the long string of wall positions in the map. We
cannot be as sure where we are when there is an undifferentiated line of wall positions, so
naturally our probabilities spread out a bit.

Finally, for those viewing this in a Notebook or on the web, here is an animation of that
algorithm.

3.7 The Effect of Bad Sensor Data

You may be suspicious of the results above because I always passed correct sensor data into
the functions. However, we are claiming that this code implements a filter - it should filter
out bad sensor measurements. Does it do that?

To make this easy to program and visualize I will change the layout of the hallway to
mostly alternating doors and hallways:

In [19]: hallway = [1,0,1,0,0,1,0,1,0,0]

pos = np.array([.1]*10)

measurements = [1,0,1,0,0]

for m in measurements:

pos = update(pos, m, .6, .2)

pos = predict(pos, 1, .8, .1, .1)

bar_plot.plot(pos)

print(pos)

[ 0.2245871 0.06288015 0.06109133 0.0581008 0.09334062 0.2245871

0.06288015 0.06109133 0.0581008 0.09334062]
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At this point we have correctly identified the likely cases, we either started at position 0
or 5, because we saw the following sequence of doors and walls 1,0,1,0,0. But now lets inject
a bad measurement, and see what happens:

In [20]: pos = update(pos, m, .6, .2)

pos = predict(pos, 1, .8, .1, .1)

bar_plot.plot(pos)

That one bad measurment appears to have significantly eroded our knowledge. However,
note that our highest probabilities are still at 0 and 5, which is correct. Now let’s continue
with a series of correct measurements

In [21]: measurements = [0,1,0,1,0,0]

for i,m in enumerate(measurements):

pos = update(pos, m, .6, .2)

pos = predict(pos, 1, .8, .1, .1)

plt.subplot(3, 2, i+1)

bar_plot.plot(pos, title=’step{}’.format(i+1))
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As you can see we quickly filtered out the bad sensor reading and converged on the most
likely positions for our dog.

3.8 Drawbacks and Limitations

Do not be mislead by the simplicity of the examples I chose. This is a robust and complete
implementation of a histogram filter, and you may use the code in real world solutions. If
you need a multimodal, discrete filter, this filter works.

With that said, while this filter is used in industry, it is not used often because it has
several limitations. Getting around those limitations is the motivation behind the chapters
in the rest of this book.

The first problem is scaling. Our dog tracking problem used only one variable, pos, to
denote the dog’s position. Most interesting problems will want to track several things in a
large space. Realistically, at a minimum we would want to track our dogs (x, y) coordinate,
and probably his velocity (ẋ, ẏ) as well. We have not covered the multidimensional case,
but instead of a histogram we use a multidimensional grid to store the probabilities at each
discrete location. Each sense() and update() step requires updating all values in the grid,
so a simple four variable problem would require O(n4) running time per time step. Realistic
filters have 10 or more variables to track, leading to exhorbinant computation requirements.

The second problem is that the histogram is discrete, but we live in a continuous world.
The histogram requires that you model the output of your filter as a set of discrete points. In
our dog in the hallway example, we used 10 positions, which is obviously far too few positions
for anything but a toy problem. For example, for a 100 meter hallway you would need 10,000
positions to model the hallway to 1cm accuracy. So each sense and update operation would
entail performing calculations for 10,000 different probabilities. It gets exponentially worse
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as we add dimensions. If our dog was roaming in a 100x100m2 courtyard, we would need
100,000,000 bins (10, 0002) to get 1cm accuracy.

A third problem is that the histogram is multimodal. This is not always a problem - an
entire class of filters, the particle filters, are multimodal and are often used because of this
property. But imagine if the GPS in your car reported to you that it is 40% sure that you are
on D street, but 30% sure you are on Willow Avenue. I doubt that you would find that useful.
Also, GPSs report their error - they might report that you are at (109.878W, 38.326N) with
an error of 9m. There is no clear mathematical way to extract error information from a
histogram. Heuristics suggest themselves to be sure, but there is no exact determination.
You may or may not care about that while driving, but you surely do care if you are trying
to send a rocket to Mars or track and hit an oncoming missle.

This difficulty is related to the fact that the filter often does not represent what is
physically occuring in the world. Consider this distribution for our dog:

In [22]: p = [0.2245871, 0.06288015, 0.06109133, 0.0581008, 0.09334062, 0.2245871,

0.06288015, 0.06109133, 0.0581008, 0.09334062]

bar_plot.plot(p)

The largest probabilities are in position 0 and position 5. This does not fit our physical
intuition at all. A dog cannot be in two places at once (my dog Simon certainly tries - his
food bowl and my lap often have equal allure to him). We would have to use heuristics to
decide how to interpret this distribution, and there is usually no satisfactory answer. This
is not always a weakness - a considerable amount of literature has been written on Multi-
Hypothesis Tracking (MHT). We cannot always distill our knowledge to one conclusion, and
MHT uses various techniques to maintain multiple story lines at once, using backtracking
schemes to go back in time to correct hypothesis once more information is known. This
will be the subject of later chapters. In other cases we truly have a multimodal situation
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- we may be optically tracking pedistrians on the street and need to represent all of their
positions.

In practice it is the exponential increase in computation time that leads to this filter
being the least frequently used of all filters in this book. Many problems are best formulated
as discrete or multimodal, but we have other filter choices with better performance. With
that said, if I had a small problem that this technique could handle I would choose to use
it; it is trivial to implement, debug, and understand, all virtues in my book.

3.9 Generalizing to Multiple Dimensions

3.10 Summary

The code is very small, but the result is huge! We will go into the math more later, but
we have implemented a form of a Bayesian filter. It is commonly called a Histogram filter.
The Kalman filter is also a Bayesian filter, and uses this same logic to produce it’s results.
The math is a bit more complicated, but not by much. For now, we will just explain that
Bayesian statistics compute the liklihood of the present based on the past. If we know
there are two doors in a row, and the sensor reported two doors in a row, it is likely that
we are positioned near those doors. Bayesian statistics just formalizes that example, and
Bayesian filters formalize filtering data based on that math by implementing the sense-
>update->sense->update process.

We have learned how to start with no information and derive information from noisy sen-
sors. Even though our sensors are very noisey (most sensors are more then 80% accurate, for
example) we quickly converge on the most likely position for our dog. We have learned how
the update step always degrades our knowledge, but the addition of another measurement,
even when it might have noise in it, improves our knowlege, allowing us to converge on the
most likely result.

If you followed the math carefully you will realize that all of this math is exact. The bar
charts that we are displaying are not an estimate or guess - they are mathematically exact
results that exactly represent our knowledge. The knowledge is probabilistic, to be sure, but
it is exact, and correct.

However, we are a long way from tracking an airplane or a car. This code only handles
the 1 dimensional case, whereas cars and planes operate in 2 or 3 dimensions. Also, our
position vector is multimodal. It expresses multiple beliefs at once. Imagine if your GPS
told you “it’s 20% likely that you are here, but 10% likely that you are on this other road,
and 5% likely that you are at one of 14 other locations. That would not be very useful
information. Also, the data is discrete. We split an area into 10 (or whatever) different
locations, whereas in most real world applications we want to work with continuous data.
We want to be able to represent moving 1 km, 1 meter, 1 mm, or any arbitrary amount,
such as 2.347 cm.

Finally, the bar charts may strike you as being a bit less certain than we would want.
A 25% certaintly may not give you a lot of confidence in the anwser. Of course, what is
important here is the ratio of this probability to the other probabilities in your vector. If the
next largest bar is 23% then we are not very knowledgable about our position, whereas if the
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next largest is 3% we are in fact quite certain. But this is not clear or intuitive. However,
there is an extremely important insight that Kalman filters implement that will signficantly
improve our accuracy from the same data.

If you can understand this chapter you will be able to understand and imple-
ment Kalman filters I cannot stress this enough. If anything is murky, go back and reread
this chapter and play with the code. The rest of this book will build on the algorithms that
we use here. If you don’t intuitively understand why this histogram filter works, and can at
least work through the math, you will have little success with the rest of the material. How-
ever, if you grasp the fundamental insight - multiplying probabilities when we measure, and
shifting probabilities when we update leads to a converging solution - then you understand
everything important you need to grasp the Kalman filter.
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Chapter 4

Least Squares Filters

4.1 Introduction

64



Chapter 5

Gaussian Probabilities

5.1 Introduction

The last chapter ended by discussing some of the drawbacks of the Discrete Bayesian filter.
For many tracking and filtering problems our desire is to have a filter that is unimodal and
continuous. That is, we want to model our system using floating point math (continuous)
and to have only one belief represented (unimodal). For example, we want to say an aircraft
is at (12.34381, -95.54321,2389.5) where that is latitude, longitude, and altitude. We do not
want our filter to tell us “it might be at (1,65,78) or at (34,656,98)” That doesn’t match our
physical intuition of how the world works, and as we discussed, it is prohibitively expensive
to compute.

So we desire a unimodal, continuous way to represent probabilities that models
how the real world works, and that is very computationally efficient to calculate.
As you might guess from the chapter name, Gaussian distributions provide all of
these features.

Before we go into the math, lets just look at a graph of the Gaussian distribution to get
a sense of what we are talking about.

In [4]: from stats import plot_gaussian

plot_gaussian(mean=100, variance=15*15, xlabel=’IQ’)
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Probably this is immediately recognizable to you as a ‘bell curve’. This curve is ubiquitous
because under real world conditions most observations are distributed in such a manner. In
fact, this is the bell curve for IQ (Intelligence Quotient). You’ve probably seen this before,
and understand it. It tells us that the average IQ is 100, and that the number of people that
have IQs higher or lower than that drops off as they get further away from 100. It’s hard to
see the exact number, but we can see that very few people have an IQ over 150 or under 50,
but a lot have an IQ of 90 or 110.

This curve is not unique to IQ distributions - a vast amount of natural phenomena
exhibits this sort of distribution, including the sensors that we use in filtering problems. As
we will see, it also has all the attributes that we are looking for - it represents a unimodal
belief or value as a probability, it is continuous, and it is computationally efficient. We will
soon discover that it also other desirable qualities that we do not yet recognize we need.

5.2 Nomenclature

A bit of nomenclature before we continue - this chart depicts the probability of of a random
variable having any value between (−∞..∞). For example, for this chart the probability of
the variable being 100 is roughly 2.7%, whereas the probability of it being 80 is around 1%.
> Random variable will be precisely defined later. For now just think of it as a variable
that can ‘freely’ and ‘randomly’ vary. A dog’s position in a hallway, air temperature, and a
drone’s height above the ground are all random variables. The position of the North Pole is
not, nor is a sin wave (a sin wave is anything but ‘free’).

You may object that human IQs cannot be less than zero, let alone −∞. This is true,
but this is a common limitation of mathematical modeling. “The map is not the territory”
is a common expression, and it is true for Bayesian filtering and statistics. The Gaussian
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distribution above very closely models the distribution of IQ test results, but being a model
it is necessarily imperfect. The difference between model and reality will come up again and
again in these filters.

You will see these distributions called Gaussian distributions, normal distributions, and
bell curves. Bell curve is ambiguous because there are other distributions which also look
bell shaped but are not Gaussian distributions, so we will not use it further in this book.
But Gaussian and normal both mean the same thing, and are used interchangeably. I will
use both throughout this book as different sources will use either term, and so I want you
to be used to seeing both. Finally, as in this paragraph, it is typical to shorten the name
and just talk about a Gaussian or normal - these are both typical shortcut names for the
Gaussian distribution.

5.3 Gaussian Distributions

So let us explore how Gaussians work. A Gaussian is a continuous probability distribution
that is completely described with two parameters, the mean (µ) and the variance (σ2). It is
defined as:

f(x, µ, σ) =
1

σ
√

2π
e−

1
2

(x−µ)2/σ2

Don’t be dissuaded by the equation if you haven’t seen it before; you will not need to
memorize or manipulate it. The computation of this function is stored in stats.py with the
function gaussian(x, mean, var).

Optional: Let’s remind ourselves how to look at a function stored in a file by
using the %load magic. If you type %load -s gaussian stats.py into a code cell
and then press CTRL-Enter, the notebook will create a new input cell and load
the function into it.

%load -s gaussian stats.py

def gaussian(x, mean, var):

"""returns normal distribution for x given a

gaussian with the specified mean and variance.

"""

return math.exp((-0.5*(x-mean)**2)/var) / \

math.sqrt(_two_pi*var)

We will plot a Gaussian with a mean of 22 (µ = 22), with a variance of 4 (σ2 = 4), and
then discuss what this means.

In [5]: from stats import gaussian, norm_cdf

plot_gaussian(22, 4, mean_line=True, xlabel=’$^{\circ}C$’)
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So what does this curve mean? Assume for a moment that we have a thermometer, which
reads 22 ◦C. No thermometer is perfectly accurate, and so we normally expect that ther-
mometer will read ± that temperature by some amount each time we read it. Furthermore,
a theorem called Central Limit Theorem states that if we make many measurements that
the measurements will be normally distributed. So, when we look at this chart we can sort
of think of it as representing the probability of the thermometer reading a particular value
given the actual temperature of 22◦C. However, that is not quite accurate mathematically.

Recall that we said that the distribution is continuous. Think of an infinitly long straight
line - what is the probability that a point you pick randomly is at, say, 2.0. Clearly 0%,
as there is an infinite number of choices to choose from. The same is true for normal
distributions; in the graph above the probability of being exactly 22◦C is 0% because there
are an infinite number of values the reading can take.

So what then is this curve? It is something we call the probability density function. Later
we will delve into this in greater detail; for now just understand that the area under the curve
at any region gives you the probability of those values. So, for example, if you compute the
area under the curve between 20 and 22 the result will be the probability of the temperature
reading being between those two temperatures.

So how do you compute the probability, or area under the curve? Well, you integrate the
equation for the Gaussian ∫ x1

x0

1

σ
√

2π
e−

1
2

(x−µ)2/σ2

dx

I wrote stats.norm cdf which computes the integral for you. So, for example, we can
compute

In [6]: print(’Probability of value in range 21.5 to 22.5 is {:.2f}%’.format(

norm_cdf((21.5, 22.5), 22,4)*100))
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print(’Probability of value in range 23.5 to 24.5 is {:.2f}%’.format(

norm_cdf((23.5, 24.5), 22,4)*100))

Probability of value in range 21.5 to 22.5 is 19.74%

Probability of value in range 23.5 to 24.5 is 12.10%

So the mean (µ) is what it sounds like - the average of all possible probabilities. Because
of the symmetric shape of the curve it is also the tallest part of the curve. The thermometer
reads 22◦C, so that is what we used for the mean.

Important : I will repeat what I wrote at the top of this section: “A Gaussian. . . is
completely described with two parameters”

The standard notation for a normal distribution for a random variable X is X ∼
N (µ, σ2). This means I can express the temperature reading of our thermometer as

temp = N (22, 4)

This is an extremely important result. Gaussians allow me to capture an infinite
number of possible values with only two numbers! With the values µ = 22 and σ2 = 4 I can
compute the distribution of measurements for over any range.

The Variance
Since this is a probability density distribution it is required that the area under the curve

always equals one. This should be intuitively clear - the area under the curve represents all
possible occurences, which must sum to one. We can prove this ourselves with a bit of code.
(If you are mathematically inclined, integrate the Gaussian equation from −∞ to ∞)

In [7]: print(norm_cdf((-1e8, 1e8), mu=0, var=4))

1.0

This leads to an important insight. If the variance is small the curve will be narrow. this
is because the variance is a measure of how much the samples vary from the mean. To keep
the area equal to 1, the curve must also be tall. On the other hand if the variance is large
the curve will be wide, and thus it will also have to be short to make the area equal to 1.

Let’s look at that graphically:

In [8]: import numpy as np

import matplotlib.pyplot as plt

xs = np.arange(15,30,0.05)

p1, = plt.plot (xs,[gaussian(x, 23, .2) for x in xs], label=’var=0.2’)

p2, = plt.plot (xs,[gaussian(x, 23, 1) for x in xs], label=’var=1’)

p3, = plt.plot (xs,[gaussian(x, 23, 5) for x in xs], label=’var=5’)

plt.legend()

plt.show()
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So what is this telling us? The blue gaussian is very narrow. It is saying that we believe
x = 23, and that we are very sure about that. In contrast, the red gaussian also believes
that x = 23, but we are much less sure about that. Our believe that x = 23 is lower, and so
our belief about the likely possible values for x is spread out - we think it is quite likely that
x = 20 or x = 26, for example. The blue gaussian has almost completely eliminated 22 or
24 as possible value - their probability is almost 0%, whereas the red curve considers them
nearly as likely as 23.

If we think back to the thermometer, we can consider these three curves as representing
the readings from three different thermometers. The blue curve represents a very accurate
thermometer, and the red one represents a fairly inaccurate one. Green of course represents
one in between the two others. Note the very powerful property the Gaussian distribution
affords us - we can entirely represent both the reading and the error of a thermometer with
only two numbers - the mean and the variance.

The standard notation for a normal distribution for a random variable X is just X ∼
N (µ, σ2) where µ is the mean and σ2 is the variance. It may seem odd to use σ squared
- why not just σ? We will not go into great detail about the math at this point, but in
statistics σ is the standard deviation of a normal distribution. Variance is defined as the
square of the standard deviation, hence σ2.

It is worth spending a few words on standard deviation now. The standard deviation is a
measure of how much variation from the mean exists. For Gaussian distributions, 68% of all
the data falls within one standard deviation(1σ) of the mean, 95% falls within two standard
deviations (2σ), and 99.7% within three (3σ). This is often called the 68-95-99.7 rule. So if
you were told that the average test score in a class was 71 with a standard deviation of 9.4,
you could conclude that 95% of the students received a score between 52.2 and 89.8 if the
distribution is normal (that is calculated with 71± (2 ∗ 9.4)).

The following graph depicts the relationship between the standard deviation and the
normal distribution.
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In [9]: from gaussian_internal import display_stddev_plot

display_stddev_plot()

plt.show()

Sidebar: An equivalent formation for a Gaussian is N (µ, 1/τ) where µ is the mean and
tau the precision. Here 1/τ = σ2; it is the reciprocal of the variance. While we do not use
this formulation in this book, it underscores that the variance is a measure of how precise our
data is. A small variance yields large precision - our measurement is very precise. Conversely,
a large variance yields low precision - our belief is spread out across a large area. You should
become comfortable with thinking about Gaussians in these equivalent forms. Gaussians
reflect our belief about a measurement, they express the precision of the measurement, and
they express how much variance there is in the measurements. These are all different ways
of stating the same fact.

5.4 Interactive Gaussians

For those that are reading this in IPython Notebook, here is an interactive version of the
Gaussian plots. Use the sliders to modify µ and σ2. Adjusting µ will move the graph to the
left and right because you are adjusting the mean, and adjusting σ2 will make the bell curve
thicker and thinner.

In [10]: import math

from IPython.html.widgets import interact, interactive, fixed

import IPython.html.widgets as widgets

def plt_g (mu,variance):
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xs = np.arange(2,8,0.1)

ys = [gaussian (x, mu,variance) for x in xs]

plt.plot (xs, ys)

plt.ylim((0,1))

plt.show()

interact (plt_g, mu=(0,10), variance=widgets.FloatSliderWidget(value=0.6,min=0.2,max=4.5))

Out[10]: <function main .plt g>

Finally, if you are reading this in an IPython Notebook, here is an animation of a Gaus-
sian. First, the mean is being shifted to the right. Then the mean is centered at µ = 5 and
the variance is modified.

5.5 Computational Properties of the Gaussian

Recall how our discrete Bayesian filter worked. We had a vector implemented as a numpy
array representing our belief at a certain moment in time. When we performed another
measurement using the update() function we had to multiply probabilities together, and
when we performed the motion step using the predict() function we had to shift and add
probabilities. I’ve promised you that the Kalman filter uses essentially the same process,
and that it uses Gaussians instead of histograms, so you might reasonable expect that we
will be multiplying, adding, and shifting Gaussians in the Kalman filter.

A typical textbook would directly launch into a multipage proof of the behavior of Gaus-
sians under these operations, but I don’t see the value in that right now. I think the math
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will be much more intuitive and clear if we just start developing a Kalman filter using Gaus-
sians. I will provide the equations for multiplying and shifting Gaussians at the appropriate
time. You will then be able to develop a physical intuition for what these operations do,
rather than be forced to digest a lot of fairly abstract math.

The key point, which I will only assert for now, is that all the operations are very simple,
and that they preserve the properties of the Gaussian. This is somewhat remarkable, in that
the Gaussian is a nonlinear function, and typically if you multiply a nonlinear equation with
itself you end up with a different equation. For example, the shape of sin(x)sin(x) is very
different from sin(x). But the result of multiplying two Gaussians is yet another Gaussian.
This is a fundamental property, and a key reason why Kalman filters are possible.

5.6 Computing Probabilities with scipy.stats

In this chapter I have used by custom written code for computing Gaussians, plotting, and so
on. I chose to do that to give you a chance to look at the code and see how these functions
are implemented. However, Python comes with “batteries included” as the saying goes,
and it comes with a wide range of statistics functions in the module scipy.stats. I find the
performance of some of the functions rather slow (the scipy.stats documentation contains
a warning to this effect), but this is offset by the fact that this is standard code available
to everyone, and it is well tested. So let’s walk through how to use scipy.stats to compute
various things.

The scipy.stats module contains a number of objects which you can use to compute
attributes of various probability distributions. The full documentation for this module is
here: http://http://docs.scipy.org/doc/scipy/reference/stats.html. However, we will focus
on the norm variable, which implements the normal distribution. Let’s look at some code
that uses scipy.stats.norm to compute a Gaussian, and compare its value to the value
returned by the gaussian() function.

In [11]: from scipy.stats import norm

print (norm(2,3).pdf(1.5))

print (gaussian(x=1.5, mean=2, var=3*3))

0.131146572034

0.13114657203397997

The call norm(2,3) creates what scipy calls a ‘frozen’ distribution - it creates and returns
an object with a mean of 2 and a standard deviation of 3. You can then use this object
multiple times to get the probability density of various values, like so:

In [12]: n23 = norm(2,3)

print (’probability density of 1.5 is %.4f’ % n23.pdf(1.5))

print (’probability density of 2.5 is also %.4f’ % n23.pdf(2.5))

print (’whereas probability density of 2 is %.4f’ % n23.pdf(2))
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probability density of 1.5 is 0.1311

probability density of 2.5 is also 0.1311

whereas probability density of 2 is 0.1330

If we look at the documentation for scipy.stats.norm here[1] we see that there are
many other functions that norm provides.

For example, we can generate n samples from the distribution with the rvs() function.

In []: print (n23.rvs(size=15))

We can get the cumulative distribution function (CDF), which is the probability that a
randomly drawn value from the distribution is less than or equal to x.

In []: # probability that a random value is less than the mean 2

print (n23.cdf (2))

We can get various properties of the distribution:

In []: print (’variance is’, n23.var())

print (’standard deviation is’, n23.std())

print (’mean is’, n23.mean())

There are many other functions available, and if you are interested I urge you to peruse
the documentation. I find the documentation to be excessively terse, but with a bit of
googling you can find out what a function does and some examples of how to use it. Most of
this functionality is not of immediate interest to the book, so I will leave the topic in your
hands to explore. The tutorial is quite approachable, and I suggest starting there. tutorial[2]

5.7 Summary and Key Points

The following points must be understood by you before we continue:

• Normal distributions occur throughout nature

• They express a continuous probability distribution

• They are completely described by two parameters: the mean (µ) and variance (σ2)

• µ is the average of all possible values

• The variance σ2 represents how much our measurements vary from the mean

• The standard deviation (σ) is the square root of the variance (σ2)

5.8 References

[1] http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.normfor
[2] http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
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Chapter 6

Kalman Filters

6.1 One Dimensional Kalman Filters

Now that we understand the histogram filter and Gaussians we are prepared to implement a
1D Kalman filter. We will do this exactly as we did the histogram filter - rather than going
into the theory we will just develop the code step by step. But first, let’s set the book style.

6.2 Tracking A Dog

As in the histogram chapter we will be tracking a dog in a long hallway at work. However, in
our latest hackathon someone created an RFID tracker that provides a reasonable accurate
position for our dog. Suppose the hallway is 100m long. The sensor returns the distance of
the dog from the left end of the hallway. So, 23.4 would mean the dog is 23.4 meters from
the left end of the hallway.

Naturally, the sensor is not perfect. A reading of 23.4 could correspond to a real position
of 23.7, or 23.0. However, it is very unlikely to correspond to a real position of say 47.6.
Testing during the hackathon confirmed this result - the sensor is reasonably accurate, and
while it had errors, the errors are small. Furthermore, the errors seemed to be evenly
distributed on both sides of the measurement; a true position of 23m would be equally likely
to be measured as 22.9 as 23.1.

Implementing and/or robustly modeling an RFID system is beyond the scope of this
book, so we will write a very simple model. We will start with a simulation of the dog
moving from left to right at a constant speed with some random noise added.

In [3]: from __future__ import print_function, division

import matplotlib.pyplot as plt

import numpy.random as random

import math

class DogSensor(object):

def __init__(self, x0=0, velocity=1, noise=0.0):
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""" x0 - initial position

velocity - (+=right, -=left)

noise - scaling factor for noise, 0== no noise

"""

self.x = x0

self.velocity = velocity

self.noise = math.sqrt(noise)

def sense(self):

self.x = self.x + self.velocity

return self.x + random.randn() * self.noise

The constructor init() initializes the DogSensor class with an initial position x0,
velocity vel, and an noise scaling factor. The sense() function has the dog move by the set
velocity and returns its new position, with noise added. If you look at the code for sense()
you will see a call to numpy.random.randn(). This returns a number sampled from a normal
distribution with a mean of 0.0. Let’s look at some example output for that.

In [4]: for i in range(20):

print(’{: 5.4f}’.format(random.randn()),end=’\t’)

if (i+1) % 5 == 0:

print (’’)

0.7405 0.7229 -0.5326 1.2238 -0.1799

0.0760 -0.5359 1.0663 0.5362 -0.6931

1.9148 0.5687 1.1368 -0.7581 1.7235

-1.1808 0.9561 0.4169 0.1081 -1.5491

You should see a sequence of numbers near 0, some negative and some positive. Most are
probably between -1 and 1, but a few might lie somewhat outside that range. This is what
we expect from a normal distribution - values are clustered around the mean, and there are
fewer values the further you get from the mean.

Okay, so lets look at the output of the DogSensor class. We will start by setting the
noise to 0 to check that the class does what we think it does

In [5]: import matplotlib.pyplot as plt

import matplotlib.pylab as pylab

dog = DogSensor (noise=0.0)

xs = []

for i in range(10):

x = dog.sense()

xs.append(x)

print("%.4f" % x, end=’ ’),

plt.plot(xs, label=’dog position’)

plt.legend(loc=’best’)

plt.show()
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1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000

The constructor initialized the dog at position 0 with a velocity of 1 (move 1.0 to the
right). So we would expect to see an output of 1..10, and indeed that is what we see. If
you thought the correct answer should have been 0..9 recall that sense() returns the dog’s
position after updating his position, so the first position is 0.0 + 1, or 1.0.

Now let’s inject some noise in the signal.

In [6]: def test_sensor(noise_scale):

dog = DogSensor(noise=noise_scale)

xs = []

for i in range(100):

x = dog.sense()

xs.append(x)

plt.plot(xs, label=’sensor’)

plt.plot([0,99],[1,100], ’r--’, label=’actual’)

plt.xlabel(’time’)

plt.ylabel(’pos’)

plt.ylim([0,100])

plt.title(’noise = ’ + str(noise_scale))

plt.legend(loc=’best’)

plt.show()

test_sensor(4.0)
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Note: numpy uses a random number generator to generate the normal distri-
bution samples. The numbers I see as I write this are unlikely to be the ones
that you see. If you run the cell above multiple times, you should get a slightly
different result each time. I could use numpy.random.seed(some value) to force
the results to be the same each time. This would simplify my explanations in
some cases, but would ruin the interactive nature of this chapter. To get a real
feel for how normal distributions and Kalman filters work you will probably want
to run cells several times, observing what changes, and what stays roughly the
same.

So the output of the sensor should be a wavering blue line drawn over a dotted red line.
The dotted red line shows the actual position of the dog, and the blue line is the noise signal
produced by the simulated RFID sensor. Please note that the red dotted line was manually
plotted - we do not yet have a filter that recovers that information!

If you are running this in an interactive IPython Notebook, I strongly urge you to run the
script several times in a row. You can do this by putting the cursor in the cell containing the
Python code and pressing Ctrl+Enter. Each time it runs you should see a different jagged
blue line wavering over the top of the dotted red line.

I also urge you to adjust the noise setting to see the result of various values. However,
since you may be reading this in a read only notebook, I will show two extreme examples.
The first plot shows the noise set to 100.0, and the second shows noise set to 0.5.

In [7]: test_sensor(100.0)
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In [8]: test_sensor(0.5)

You may not have a full understanding of the exact meaning of a noise value of 100.0,
but as it turns out if you multiply randn() with a number n, the result is just a normal
distribution with σ =

√
n. So the example with noise = 100 is using the normal distribution

N (0, 100). Recall the notation for a normal distribution is N (µ, σ2). If the square root is
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confusing, recall that normal distributions use σ2 for the variance, and σ is the standard devi-
ation, which we do not use in this book. DogSensor. init () takes the square root of the
noise setting so that the noise * randn() call properly computes the normal distribution.

6.3 Math with Gaussians

Let’s say we believe that our dog is at 23m, and the variance is 5, or posdog = N (23, 5)). We
can represent that in a plot:

In [9]: import stats

stats.plot_gaussian(23, 5)

This corresponds to a fairly inexact belief. While we believe that the dog is at 23, note
that roughly 21 to 25 are quite likely as well. Let’s assume for the moment our dog is
standing still, and we query the sensor again. This time it returns 23.2 as the position. Can
we use this additional information to improve our estimate of the dog’s position?

Intuition suggests ‘yes’. Consider: if we read the sensor 100 times and each time it
returned a value between 21 and 25, all centered around 23, we should be very confident
that the dog is somewhere very near 23. Of course, a different physical interpretation is
possible. Perhaps our dog was randomly wandering back and forth in a way that exactly
emulated a normal distribution. But that seems extremely unlikely - I certainly have never
seen a dog do that. So the only reasonable assumption is that the dog was mostly standing
still at 23.0.

Let’s look at 100 sensor readings in a plot:

In [10]: dog = DogSensor(23, 0, 5)

xs = range(100)

80



ys = []

for i in xs:

ys.append(dog.sense())

plt.plot(xs,ys, label=’dog position’)

plt.legend(loc=’best’)

plt.show()

Eyeballing this confirms our intuition - no dog moves like this. However, noisy sensor
data certainly looks like this. So let’s proceed and try to solve this mathematically. But
how?

Recall the histogram code for adding a measurement to a preexisting belief:

def update(pos, measure, p_hit, p_miss):

q = array(pos, dtype=float)

for i in range(len(hallway)):

if hallway[i] == measure:

q[i] = pos[i] * p_hit

else:

q[i] = pos[i] * p_miss

normalize(q)

return q

Note that the algorithm is essentially computing:

new_belief = old_belief * measurement * sensor_error
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The measurement term might not be obvious, but recall that measurement in this case
was always 1 or 0, and so it was left out for convenience.

If we are implementing this with gaussians, we might expect it to be implemented as:

new_gaussian = measurement * old_gaussian

where measurement is a Gaussian returned from the sensor. But does that make sense?
Can we multiply gaussians? If we multiply a Gaussian with a Gaussian is the result another
Gaussian, or something else?

It is not particularly difficult to perform the algebra to derive the equation for multiplying
two gaussians, but I will just present the result:

N(µ1, σ
2
1) ∗N(µ2, σ

2
2) = N(

σ2
1µ2 + σ2

2µ1

σ2
1 + σ2

2

,
1

1
σ2
1

+ 1
σ2
2

)

In other words the result is a Gaussian with

µ =
σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

,

σ =
1

1
σ2
1

+ 1
σ2
2

Without doing a deep analysis we can immediately infer some things. First and most
importantly the result of multiplying two Gaussians is another Gaussian. The expression
for the mean is not particularly illuminating, except that it is a combination of the means
and variances of the input. But the variance of the result is merely some combination of
the variances of the variances of the input. We conclude from this that the variances are
completely unaffected by the values of the mean!

Let’s immediately look at some plots of this. First, let’s look at the result of multiplying
N(23, 5) to itself. This corresponds to getting 23.0 as the sensor value twice in a row. But
before you look at the result, what do you think the result will look like? What should the
new mean be? Will the variance by wider, narrower, or the same?

In [11]: from __future__ import division

import numpy as np

def multiply(mu1, var1, mu2, var2):

mean = (var1*mu2 + var2*mu1) / (var1+var2)

variance = 1 / (1/var1 + 1/var2)

return (mean, variance)

xs = np.arange(16, 30, 0.1)

m1,v1 = 23, 5

m, v = multiply(m1,v1,m1,v1)

82



ys = [stats.gaussian(x,m1,v1) for x in xs]

plt.plot (xs, ys, label=’original’)

ys = [stats.gaussian(x,m,v) for x in xs]

plt.plot (xs, ys, label=’multiply’)

plt.legend(loc=’best’)

plt.show()

The result is either amazing or what you would expect, depending on your state of mind.
I must admit I vacillate freely between the two! Note that the result of the multiplication
is taller and narrow than the original Gaussian but the mean is the same. Does this match
your intuition of what the result should have been?

If we think of the Gaussians as two measurements, this makes sense. If I measure twice
and get the same value, I should be more confident in my answer than if I just measured
once. If I measure twice and get 23 meters each time, I should conclude that the length is
close to 23 meters. So the mean should be 23. I am more confident with two measurements
than with one, so the variance of the result should be smaller.

“Measure twice, cut once” is a useful saying and practice due to this fact! The Gaussian
is just a mathematical model of this physical fact, so we should expect the math to follow
our physical process.

Now let’s multiply two gaussians (or equivalently, two measurements) that are partially
separated. In other words, their means will be different, but their variances will be the same.
What do you think the result will be? Think about it, and then look at the graph.

In [12]: xs = np.arange(16, 30, 0.1)
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m1, v1 = 23, 5

m2, v2 = 25, 5

m, s = multiply(m1,v1,m2,v2)

ys = [stats.gaussian(x,m1,v1) for x in xs]

plt.plot (xs, ys, label=’measure 1’)

ys = [stats.gaussian(x,m2,v2) for x in xs]

plt.plot (xs, ys, label=’measure 2’)

ys = [stats.gaussian(x,m,v) for x in xs]

plt.plot(xs, ys,label=’multiply’)

plt.legend()

plt.show()

Another beautiful result! If I handed you a measuring tape and asked you to measure
the distance from table to a wall, and you got 23m, and then a friend make the same
measurement and got 25m, your best guess must be 24m.

That is fairly counter-intuitive, so let’s consider it further. Perhaps a more reasonable
assumption would be that either you or your coworker just made a mistake, and the true
distance is either 23 or 25, but certainly not 24. Surely that is possible. However, suppose the
two measurements you reported as 24.01 and 23.99. In that case you would agree that in this
case the best guess for the correct value is 24? Which interpretation we choose depends on
the properties of the sensors we are using. Humans make galling mistakes, physical sensors
do not.

This topic is fairly deep, and I will explore it once we have completed our Kalman
filter. For now I will merely say that the Kalman filter requires the interpretation that
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measurements are accurate, with Gaussian noise, and that a large error caused by misreading
a measuring tape is not Gaussian noise.

For now I ask that you trust me. The math is correct, so we have no choice but to accept
it and use it. We will see how the Kalman filter deals with movements vs error very soon.
In the meantime, accept that 24 is the correct answer to this problem.

One final test of your intuition. What if the two measurements are widely separated?

In [13]: xs = np.arange(0, 60, 0.1)

m1, v1 = 10, 5

m2, v2 = 50, 5

m, v = multiply(m1,v1,m2,v2)

ys = [stats.gaussian(x,m1,v1) for x in xs]

plt.plot (xs, ys, label=’measure 1’)

ys = [stats.gaussian(x,m2,v2) for x in xs]

plt.plot (xs, ys, label=’measure 2’)

ys = [stats.gaussian(x,m,v) for x in xs]

plt.plot(xs, ys, label=’multiply’)

plt.legend()

plt.show()

This result bothered me quite a bit when I first learned it. If my first measurement was
10, and the next one was 50, why would I choose 30 as a result? And why would I be more
confident? Doesn’t it make sense that either one of the measurements is wrong, or that I am
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measuring a moving object? Shouldn’t the result be nearer 50? And, shouldn’t the variance
be larger, not smaller?

Well, no. Recall the g-h filter chapter. In that chapter we agreed that if I weighed
myself on two scales, and the first read 160lbs while the second read 170lbs, and both were
equally accurate, the best estimate was 165lbs. Furthermore I should be a bit more confident
about 165lbs vs 160lbs or 170lbs because I know have two readings, both near this estimate,
increasing my confidence that neither is wildly wrong.

Let’s look at the math again to convince ourselves that the physical interpretation of the
Gaussian equations makes sense.

µ =
σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

If both scales have the same accuracy, then σ2
1 = σ2

2, and the resulting equation is

µ =
µ1 + µ2

2

which is just the average of the two weighings. If we look at the extreme cases, assume
the first scale is very much more accurate than than the second one. At the limit, we can
set σ2

1 = 0, yielding
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This again fits our physical intuition of favoring the second, accurate scale over the first,
inaccurate scale.

6.4 Implementing the Update Step

Recall the histogram filter uses a numpy array to encode our belief about the position of our
dog at any time. That array stored our belief of our dog’s position in the hallway using 10
discrete positions. This was very crude, because with a 100m hallway that corresponded to
positions 10m apart. It would have been trivial to expand the number of positions to say
1,000, and that is what we would do if using it for a real problem. But the problem remains
that the distribution is discrete and multimodal - it can express strong belief that the dog
is in two positions at the same time.
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Therefore, we will use a single Gaussian to reflect our current belief of the dog’s position.
In other words, we will use dogpos = N (µ, σ2). Gaussians extend to infinity on both sides of
the mean, so the single Gaussian will cover the entire hallway. They are unimodal, and seem
to reflect the behavior of real-world sensors - most errors are small and clustered around the
mean. Here is the entire implementation of the update function for a Kalman filter:

In [14]: def update(mean, variance, measurement, measurement_variance):

return multiply(mean, variance, measurement, measurement_variance)

Kalman filters are supposed to be hard! But this is very short and straightforward. All
we are doing is multiplying the Gaussian that reflects our belief of where the dog was with
the new measurement. Perhaps this would be clearer if we used more specific names:

In [15]: def update_dog(dog_pos, dog_variance, measurement, measurement_variance):

return multiply(dog_pos, dog_sigma, measurement, measurement_variance)

That is less abstract, which perhaps helps with comprehension, but it is poor coding
practice. We are writing a Kalman filter that works for any problem, not just tracking dogs
in a hallway, so we don’t use variable names with ‘dog’ in them. Still, the update dog()

function should make what we are doing very clear.
Let’s look at an example. We will suppose that our current belief for the dog’s position

is N(2, 5). Don’t worry about where that number came from. It may appear that we have
a chicken and egg problem, in that how do we know the position before we sense it, but we
will resolve that shortly. We will create a DogSensor object initialized to be at position 0.0,
and with no velocity, and modest noise. This corresponds to the dog standing still at the far
left side of the hallway. Note that we mistakenly believe the dog is at position 2.0, not 0.0.

In [16]: dog = DogSensor(velocity=0, noise=1)

pos,s = 2, 5

for i in range(20):

pos,s = update(pos, s, dog.sense(), 5)

print(’time:’, i, ’\tposition =’, "%.3f" % pos, ’\tvariance =’, "%.3f" % s)

time: 0 position = 1.616 variance = 2.500

time: 1 position = 0.501 variance = 1.667

time: 2 position = 0.388 variance = 1.250

time: 3 position = 0.105 variance = 1.000

time: 4 position = 0.222 variance = 0.833

time: 5 position = 0.154 variance = 0.714

time: 6 position = 0.194 variance = 0.625

time: 7 position = 0.024 variance = 0.556

time: 8 position = -0.019 variance = 0.500

time: 9 position = -0.079 variance = 0.455

time: 10 position = -0.064 variance = 0.417

time: 11 position = -0.046 variance = 0.385
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time: 12 position = -0.108 variance = 0.357

time: 13 position = -0.138 variance = 0.333

time: 14 position = -0.159 variance = 0.312

time: 15 position = -0.151 variance = 0.294

time: 16 position = -0.212 variance = 0.278

time: 17 position = -0.212 variance = 0.263

time: 18 position = -0.266 variance = 0.250

time: 19 position = -0.241 variance = 0.238

Because of the random numbers I do not know the exact values that you see, but the
position should have converged very quickly to almost 0 despite the initial error of believing
that the position was 2.0. Furthermore, the variance should have quickly converged from
the initial value of 5.0 to 0.238.

By now the fact that we converged to a position of 0.0 should not be terribly surprising.
All we are doing is computing new pos = old pos * measurement and the measurement is
a normal distribution around 0, so we should get very close to 0 after 20 iterations. But the
truly amazing part of this code is how the variance became 0.238 despite every measurement
having a variance of 5.0.

If we think about the physical interpretation of this is should be clear that this is what
should happen. If you sent 20 people into the hall with a tape measure to physically measure
the position of the dog you would be very confident in the result after 20 measurements -
more confident than after 1 or 2 measurements. So it makes sense that as we make more
measurements the variance gets smaller.

Mathematically it makes sense as well. Recall the computation for the variance after the
multiplication: σ2 = 1/( 1

σ2
1

+ 1
σ2
2
). We take the reciprocals of the sigma from the measurement

and prior belief, add them, and take the reciprocal of the result. Think about that for a
moment, and you will see that this will always result in smaller numbers as we proceed.

6.5 Implementing Predictions

That is a beautiful result, but it is not yet a filter. We assumed that the dog was sitting
still, an extremely dubious assumption. Certainly it is a useless one - who would need to
write a filter to track non-moving objects? The histogram used a loop of sense and update
functions, and we must do the same to accommodate movement.

How how do we perform the predict function with gaussians? Recall the histogram
method:

def predict(pos, move, p_correct, p_under, p_over):

n = len(pos)

result = array(pos, dtype=float)

for i in range(n):

result[i] = \

pos[(i-move) % n] * p_correct + \

pos[(i-move-1) % n] * p_over + \
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pos[(i-move+1) % n] * p_under

return result

In a nutshell, we shift the probability vector by the amount we believe the animal moved,
and adjust the probability. How do we do that with gaussians?

It turns out that we just add gaussians. Think of the case without gaussians. I think my
dog is at 7.3m, and he moves 2.6m to right, where is he now? Obviously, 7.3 + 2.6 = 9.9.
He is at 9.9m. Abstractly, the algorithm is new pos = old pos + dist moved. It does not
matter if we use floating point numbers or gaussians for these values, the algorithm must be
the same.

How is addition for gaussians performed? It turns out to be very simple:

N(µ1, σ1
2) +N(µ2, σ2

2) = N(µ1 + µ2, σ1
2 + σ2

2)

All we do is add the means and the variance separately! Does that make sense? Think
of the physical representation of this abstract equation. µ1 is the old position, and µ2 is the
distance moved. Surely it makes sense that our new position is µ1 + µ2. What about the
variance? It is perhaps harder to form an intuition about this. However, recall that with the
update() function for the histogram filter we always lost information - our confidence after
the update was lower than our confidence before the update. Perhaps this makes sense -
we don’t really know where the dog is moving, so perhaps the confidence should get smaller
(variance gets larger). I assure you that the equation for gaussian addition is correct, and
derived by basic algebra. Therefore it is reasonable to expect that if we are using gaussians
to model physical events, the results must correctly describe those events.

I recognize the amount of hand waving in that argument. Now is a good time to either
work through the algebra to convince yourself of the mathematical correctness of the algo-
rithm, or to work through some examples and see that it behaves reasonably. This book will
do the latter.

So, here is our implementation of the predict function:

In [17]: def predict(pos, variance, movement, movement_variance):

return (pos + movement, variance + movement_variance)

What is left? Just calling these functions. The histogram did nothing more than loop
over the update() and predict() functions, so let’s do the same.

In [18]: # assume dog is always moving 1m to the right

movement = 1

movement_error = 2

sensor_error = 10

pos = (0, 500) # gaussian N(0,50)

dog = DogSensor(pos[0], velocity=movement, noise=sensor_error)
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zs = []

ps = []

for i in range(10):

pos = predict(pos[0], pos[1], movement, movement_error)

print(’PREDICT: {: 10.4f} {: 10.4f}’.format(pos[0], pos[1]),end=’\t’)

Z = dog.sense()

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

print(’UPDATE: {: 10.4f} {: 10.4f}’.format(pos[0], pos[1]))

plt.plot(ps, label=’filter’)

plt.plot(zs, c=’r’, linestyle=’dashed’, label=’measurement’)

plt.legend(loc=’best’)

plt.show()

PREDICT: 1.0000 502.0000 UPDATE: 0.0324 9.8047

PREDICT: 1.0324 11.8047 UPDATE: 1.4467 5.4138

PREDICT: 2.4467 7.4138 UPDATE: 1.8519 4.2574

PREDICT: 2.8519 6.2574 UPDATE: 3.6222 3.8490

PREDICT: 4.6222 5.8490 UPDATE: 3.9355 3.6904

PREDICT: 4.9355 5.6904 UPDATE: 6.1234 3.6267

PREDICT: 7.1234 5.6267 UPDATE: 8.3287 3.6007

PREDICT: 9.3287 5.6007 UPDATE: 8.6857 3.5900

PREDICT: 9.6857 5.5900 UPDATE: 9.6664 3.5856

PREDICT: 10.6664 5.5856 UPDATE: 9.7450 3.5838
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There is a fair bit of arbitrary constants code above, but don’t worry about it. What
does require explanation are the first few lines:

movement = 1

movement_error = 2

For the moment we are assuming that we have some other sensor that detects how the
dog is moving. For example, there could be an inertial sensor clipped onto the dog’s collar,
and it reports how far the dog moved each time it is triggered. The details don’t matter.
The upshot is that we have a sensor, it has noise, and so we represent it with a Gaussian.
Later we will learn what to do if we do not have a sensor for the predict() step.

For now let’s walk through the code and output bit by bit.

movement = 1

movement_error = 2

sensor_error = 10

pos = (0, 500) # gaussian N(0,500)

The first lines just set up the initial conditions for our filter. We are assuming that the
dog moves steadily to the right 1m at a time. We have a relatively low error of 2 for the
movement sensor, and a higher error of 10 for the RFID position sensor. Finally, we set our
belief of the dog’s initial position as N(0, 500). Why those numbers. Well, 0 is as good as
any number if we don’t know where the dog is. But we set the variance to 500 to denote
that we have no confidence in this value at all. 100m is almost as likely as 0 with this value
for the variance.

Next we initialize the RFID simulator with

dog = DogSensor(pos[0], velocity=movement, noise=sensor_error)
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It may seem very ‘convenient’ to set the simulator to the same position as our guess, and
it is. Do not fret. In the next example we will see the effect of a wildly inaccurate guess for
the dog’s initial position.

The next code allocates an array to store the output of the measurements and filtered
positions.

zs = []

ps = []

This is the first time that I am introducing standard nomenclature used by the Kalman
filtering literature. It is traditional to call our measurement Z, and so I follow that convention
here. As an aside, I find the nomenclature used by the literature very obscure. However, if
you wish to read the literature you will have to become used to it, so I will not use a much
more readable variable name such as m or measure.

Now we just enter our update() ... predict() loop.

for i in range(10):

pos = predict(pos[0], pos[1], movement, sensor_error)

print ’PREDICT:’, "%.4f" %pos[0], ", %.4f" %pos[1]

Wait, why predict() before update()? It turns out the order does not matter once,
but the first call to ,DogSensor.sense() assumes that the dog has already moved, so we
start with the update step. In practice you will order these calls based on the details of your
sensor, and you will very typically do the sense() first.

So we call the update function with the gaussian representing our current belief about
our position, the another gaussian representing our belief as to where the dog is moving, and
then print the output. Your output will differ, but when writing this I get this as output:

PREDICT: 1.000 502.000

What is this saying? After the prediction, we believe that we are at 1.0, and the variance
is now 502.0. Recall we started at 500.0. The variance got worse, which is always what
happens during the prediction step.

Z = dog.sense()

zs.append(Z)

Here we sense the dog’s position, and store it in our array so we can plot the results later.
Finally we call the update function of our filter, save the result in our ps array, and print

the updated position belief:

pos = update(pos[0], pos[1], Z, movement_error)

ps.append(pos[0])

print ’UPDATE:’, "%.4f" %pos[0], ", %.4f" %pos[1]

Your result will be different, but I get
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UPDATE: 1.6279 , 9.8047

as the result. What is happening? Well, at this point the dog is really at 1.0, however
the predicted position is 1.6279. What is happening is the RFID sensor has a fair amount
of noise, and so we compute the position as 1.6279. That is pretty far off from 1, but this
is just are first time through the loop. Intuition tells us that the results will get better as
we make more measurements, so let’s hope that this is true for our filter as well. Now look
at the variance: 9.8047. It has dropped tremendously from 502.0. Why? Well, the RFID
has a reasonably small variance of 2.0, so we trust it far more than our previous belief. At
this point there is no way to know for sure that the RFID is outputting reliable data, so the
variance is not 2.0, but is has gotten much better.

Now the software just loops, calling predict() and update() in turn. Because of the
random sampling I do not know exactly what numbers you are seeing, but the final position is
probably between 9 and 11, and the final variance is probably around 3.5. After several runs I
did see the final position nearer 7, which would have been the result of several measurements
with relatively large errors.

Now look at the plot. The noisy measurements are plotted in with a dotted red line, and
the filter results are in the solid blue line. Both are quite noisy, but notice how much noisier
the measurements (red line) are. This is your first Kalman filter shown to work!

In this example I only plotted 10 data points so the output from the print statements
would not overwhelm us. Now let’s look at the filter’s performance with more data. This
time we will plot both the output of the filter and the variance.

In [19]: %precision 2

# assume dog is always moving 1m to the right

movement = 1

movement_error = 2

sensor_error = 4.5

pos = (0, 100) # gaussian N(0,50)

dog = DogSensor(pos[0], velocity=movement, noise=sensor_error)

zs = []

ps = []

vs = []

for i in range(50):

pos = predict(pos[0], pos[1], movement, movement_error)

Z = dog.sense()

zs.append(Z)

vs.append(pos[1])

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])
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#plt.subplot(121)

p1, = plt.plot(zs,c=’r’, linestyle=’dashed’)

p2, = plt.plot(ps,)

plt.legend([p1,p2], [’measurement’, ’filter’], loc=2)

plt.show()

plt.plot(vs)

plt.title(’Variance’)

plt.show()

print ([float("%0.4f" % v) for v in vs])
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[102.0, 6.3099, 4.6267, 4.2812, 4.1939, 4.1708, 4.1646, 4.1629, 4.1624, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623, 4.1623]

Here we can see that the variance converges very quickly to roughly 4.1623 in 10 steps.
We interpret this as meaning that we become very confident in our position estimate very
quickly. The first few measurements are unsure due to our uncertainty in our guess at the
initial position, but the filter is able to quickly determine an accurate estimate.

Before I go on, I want to emphasize that this code fully implements a 1D Kalman
filter. If you have tried to read the literature, you are perhaps surprised, because
this looks nothing like the complex, endless pages of math in those books. To
be fair, the math gets a bit more complicated in multiple dimensions, but not
by much. So long as we worry about using the equations rather than deriving
them we can create Kalman filters without a lot of effort. Moreover, I hope you’ll
agree that you have a decent intuitive grasp of what is happening. We represent
our beliefs with Gaussians, and our beliefs get better over time because more
measurement means more data to work with. “Measure twice, cut once!”

6.5.1 Animating the Tracking

If you are reading this in IPython Notebook you will be able to see an animation of the filter
tracking the dog directly below this sentence.

The top plot shows the output of the filter in green, and the measurements with a dashed
red line. The bottom plot shows the Gaussian at each step.

When the track first starts you can see that the measurements varies quite a bit from the
initial prediction. At this point the Gaussian probability is small (the curve is low and wide)
so the filter does not trust its prediction. As a result, the filter adjusts its estimate a large
amount. As the filter innovates you can see that as the Gaussian becomes taller, indicating
greater certainty in the estimate, the filter’s output becomes very close to a straight line.
At x=15 and greater you can see that there is a large amount of noise in the measurement,
but the filter does not react much to it compared to how much it changed for the firs noisy
measurement.

6.6 Implementation in a Class (Optional)

For many purposes the code above suffices. However, if you write enough of these filters the
functions will become a bit annoying. For example, having to write

pos = predict(pos[0], pos[1], movement, movement_error)

is a bit cumbersome and error prone. Let’s investigate how we might implement this in
a form that makes our lives easier.
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First, values for the movement error and the measurement errors are typically constant
for a given problem, so we only want to specify them once. We can store them in instance
variables in the class. Second, it is annoying to have to pass in the state (pos in the code
snippet above) and then remember to assign the output of the function back to that state,
so the state should also be an instance variable. Our first attempt might look like:

class KalmanFilter1D:

def __init__(self, initial_state, measurement_error, movement_error):

self.state = initial_state

self.measurement_error = measurement_error

self.movement_error = movement error

That works, but I am going to use different naming. The Kalman filter literature has
settled on one letter notations for each of these concepts, and so you might as well start
getting exposed to it now. At first it seems impossiblely terse, but as you become familiar
with the nomenclature you’ll see that the math formulas in the textbooks will have an exact
one-to-one correspondance with the code. Unfortunately there is not a lot of meaning behind
the names chosen; you will just have to memorize them.

So, we use x for the state (estimated value of the filter) and P for the variance of the
state. R is the measurement error, and Q is the movement error. This gives us:

class KalmanFilter1D:

def __init__(self, x0, R, Q):

self.x = x0

self.R = R

self.Q = Q

Now we can implement the update() and predict() function. In the literature the
measurement is usually named either z or y; I find y is too easy to confuse with the y axis of
a plot, so I like z. I like to think I can hear a z in measurement, which helps me remember
what z stands for. So for the update method we might write:

def update(z):

self.x = (self.P * z + self.x * self.R) / (self.P + self.R)

self.P = 1 / (1/self.P + 1/self.R)

Finally, the movement is usually called u, and so we will use that. So for the predict
function we might write:

def predict(self, u):

self.x += u

self.P += self.Q
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That give us the following code. Production code would require signficant comments.
However, in the next chapter we will develop Kalman filter code that works for any dimension,
including 1, so this class will never be more than a stepping stone for us, since we can, and
will use the class developed in the next chapter in the rest of the book.

In [29]: class KalmanFilter1D:

def __init__(self, x0, P, R, Q):

self.x = x0

self.P = P

self.R = R

self.Q = Q

def update(self, z):

self.x = (self.P * z + self.x * self.R) / (self.P + self.R)

self.P = 1. / (1./self.P + 1./self.R)

def predict(self, u=0.0):

self.x += u

self.P += self.Q

6.7 Relationship to the g-h Filter

In the first chapter I stated that the Kalman filter is a form of g-h filter. However, we have
been reasoning about the probability of Gaussians, and not used any of the reasoning or
equations of the first chapter. A trivial amount of algebra will reveal the relationship, so
let’s do that now. It’s not particularly illuminating algebra, so feel free to skip to the bottom
to see the final equation that relates g to the variances.

The equation for our estimate is:

µx′ =
σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

which I will make more friendly for our eyes as:

µx′ =
ya+ xb

a+ b

We can easily put this into the g-h form with the following algebra
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µx′ = (x− x) +
ya+ xb

a+ b

µx′ = x− a+ b

a+ b
x+

ya+ xb

a+ b

µx′ = x+
−x(a+ b) + xb+ ya

a+ b

µx′ = x+
−xa+ ya

a+ b

µx′ = x+
a

a+ b
(y − x)

We are almost done, but recall that the variance of estimate is given by

σ2
x′ =

1
1
σ2
1

+ 1
σ2
2

=
1

1
a

+ 1
b

We can incorporate that term into our equation above by observing that

a

a+ b
=

a/a

(a+ b)/a
=

1

(a+ b)/a

=
1

1 + b
a

=
1

b
b

+ b
a

=
1

b

1
1
b

+ 1
a

=
σ2
x′

b

We can tie all of this together with

µx′ = x+
a

a+ b
(y − x)

= x+
σ2
x′

b
(y − x)

= x+ gn(y − x)

�

where

gn =
σ2
x′

σ2
y

The end result is multipying the residual of the two measurements by a constant and
adding to our previous value, which is the g equation for the g-h filter. g is the variance of
the new estimate divided by the variance of the measurement. Of course in this case g is not
truly a constant, as it varies with each time step as the variance changes, but it is truly the
same formula. We can also derive the formula for h in the same way but I don’t find this a
particularly interesting derivation. The end result is
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hn =
COV (x, ẋ)

σ2
y

The takeaway point is that g and h are specified fully by the variance and covariances
of the measurement and preditions at time n. In other words, we are just picking a point
between the measurement and prediction by a scale factor determined by the quality of each
of those two inputs. That is all the Kalman filter is.

Exercise: Modify the values of movement error and sensor error and note the effect
on the filter and on the variance. Which has a larger effect on the value that variance
converges to. For example, which results in a smaller variance:

movement_error = 40

sensor_error = 2

or:

movement_error = 2

sensor_error = 40

6.8 Introduction to Designing a Filter

So far we have developed our filter based on the dog sensors introduced in the Discrete
Bayesian filter chapter. We are used to this problem by now, and may feel ill-equipped to
implement a Kalman filter for a different problem. To be honest, there is still quite a bit
of information missing from this presentation. The next chapter will fill in the gaps. Still,
lets get a feel for it by designing and implementing a Kalman filter for a thermometer. The
sensor for the thermometer outputs a voltage that corresponds to the temperature that is
being measured. We have read the manufacturer’s specifications for the sensor, and it tells
us that the sensor exhibits white noise with a standard deviation of 2.13.

We do not have a real sensor to read, so we will simulate the sensor with the following
function. We have hard-coded the voltage to 16.3 - obviously the voltage will differ based
on the temperature, but that is not important to our filter design.

In [32]: def volt(temp_variance):

return random.randn()*temp_variance + 16.3

We generate white noise with a given variance using the equation random.randn() *

variance. The specification gives us the standard deviation of the noise, not the variance,
but recall that variance is just the square of the standard deviation. Hence we raise 2.13 to
the second power.

Sidebar: spec sheets are just what they sound like - specifications. Any indi-
vidual sensor will exhibit different performance based on normal manufacturing
variations. Numbers given are often maximums - the spec is a guarantee that
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the performance will be at least that good. So, our sensor might have standard
deviation of 1.8. If you buy an expensive piece of equipment it often comes with
a sheet of paper displaying the test results of your specific item; this is usu-
ally very trustworthy. On the other hand, if this is a cheap sensor it is likely
it received little to no testing prior to being sold. Manufacturers typically test
a small subset of their output to verify that everything falls within the desired
performance range. If you have a critical application you will need to read the
specification sheet carefully to figure out exactly what they mean by their ranges.
Do they guarantee their number is a maximum, or is it, say, the 3σ error rate?
Is every item tested? Is the variance normal, or some other distribution. Finally,
manufacturing is not perfect. Your part might be defective and not match the
performance on the sheet.

For example, I just randomly looked up a data sheet for an airflow sensor. There
is a field Repeatability, with the value±0.50%. Is this a Gaussian? Is there a bias?
For example, perhaps the repeatability is nearly 0.0% at low temperatures, and
always nearly +0.50 at high temperatures. Data sheets for electrical components
often contain a section of “Typical Performance Characteristics”. These are used
to capture information that cannot be easily conveyed in a table. For example, I
am looking at a chart showing output voltage vs current for a LM555 timer. There
are three curves showing the performance at different temperatures. The response
is ideally linear, but all three lines are curved. This clarifies that errors in voltage
outputs are probably not Gaussian - in this chip’s case higher temperatures leads
to lower voltage output, and the voltage output is quite nonlinear if the input
current is very high.

As you might guess, modeling the performance of your sensors is one of the harder
parts of creating good Kalman filter.

Now we need to write the Kalman filter processing loop. As with our previous problem,
we need to perform a cycle of predicting and updating. The sensing step probably seems
clear - call volt() to get the measurement, pass the result into update() function, but what
about the predict step? We do not have a sensor to detect ‘movement’ in the voltage, and
for any small duration we expect the voltage to remain constant. How shall we handle this?

As always, we will trust in the math. We have no known movement, so we will set that
to zero. However, that means that we are predicting that the temperature will never change
over time. If that is true, then over time we should become extremely confident in our
results. Once the filter has enough measurements it will become very confident that it can
predict the subsequent temperatures, and this will lead it to ignoring measurements that
result due to an actual temperature change. This is called a smug filter, and is something
you want to avoid. So we will add a bit of error to our prediction step to tell the filter not to
discount changes in voltage over time. In the code below I set movement error = .2. This
is just the expected variance in the change of voltage over each time step. I chose this value
merely to be able to show how the variance changes through the update and predict steps.
For an real sensor you would set this value for the actual amount of change you expect. For
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example, this would be an extremely small number if it is a thermometer for ambient air
temperature in a house, and a high number if this is a thermocouple in a chemical reaction
chamber. We will say more about selecting the actual value in the next chapter.

Let’s see what happens.

In [45]: ’’’

temp_variance = 2.13**2

sensor_error = temp_variance

movement_error = .2

movement = 0

voltage = (25,1000) #who knows what the first value is?

zs = []

ps = []

vs = []

N=50

for i in range(N):

Z = volt()

zs.append(Z)

voltage = update(voltage[0], voltage[1], Z, sensor_error)

ps.append(voltage[0])

vs.append(voltage[1])

voltage = predict(voltage[0], voltage[1], movement, movement_error)

plt.scatter(range(N), zs, marker=’+’, s=64, color=’r’, label=’measurements’)

p1, = plt.plot(ps, label=’filter’)

plt.legend(loc=’best’)

plt.xlim((0,N));plt.ylim((0,30))

plt.show()

plt.plot(vs)

plt.title(’Variance’)

plt.show()

print(’Variance converges to’,vs[-1])

print(’Last voltage is’,voltage[0])

’’’

temp_variance = 2.13**2

movement_error = .2

N=50

zs = [volt(temp_variance) for i in range(N)]
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ps = []

estimates = []

kf = KalmanFilter1D(x0=25, # initial state

P = 1000, # initial variance - large says ’who knows?’

R=temp_variance, # sensor noise

Q=movement_error) # movement noise

for i in range(N):

kf.predict(movement)

kf.update(zs[i])

# save for latter plotting

estimates.append(kf.x)

ps.append(kf.P)

# plot the filter output and the variance

plt.scatter(range(N), zs, marker=’+’, s=64, color=’r’, label=’measurements’)

p1, = plt.plot(estimates, label=’filter’)

plt.legend(loc=’best’)

plt.xlim((0,N));plt.ylim((0,30))

plt.show()

plt.plot(ps)

plt.title(’Variance’)

plt.show()

print(’Variance converges to’,vs[-1])

print(’Last voltage is’,voltage[0])
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Variance converges to 16.920051100338714

Last voltage is 25

The first plot shows the individual sensor measurements marked with ’+’s vs the filter
output. Despite a lot of noise in the sensor we quickly discover the approximate voltage of
the sensor. In the run I just completed at the time of authorship, the last voltage output
from the filter is 16.213, which is quite close to the 16.4 used by the volt() function. On
other runs I have gotten up to around 16.9 as an output and also as low as 15.5 or so.

The second plot shows how the variance converges over time. Compare this plot to
the variance plot for the dog sensor. While this does converge to a very small value, it is
much slower than the dog problem. The section Explaining the Results - Multi-Sensor
Fusion explains why this happens.

6.8.1 Animation

For those reading this in IPython Notebook, here is an animation showing the filter working.
The top plot in the animation draws a green line for the predicted next voltage, then a red
‘+’ for the actual measurement, draws a light red line to show the residual, and then draws
a blue line to the filter’s output. You can see that when the filter starts the corrections made
are quite large, but after only a few updates the filter only adjusts its output by a small
amount even when the measurement is far from it.

The lower plot shows the Gaussian belief as the filter innovates. When the filter starts
the Gaussian curve is centered over 25, our initial guess for the voltage, and is very wide and
short due to our inital uncertainty. But as the filter innovates, the Gaussian quickly moves
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to about 16.0 and becomes taller, reflecting the growing confidence that the filter has in it’s
estimate for the voltage. You will also note that the Gaussian’s height bounces up and down
a little bit. If you watch closely you will see that the Gaussian becomes a bit shorter and
more spread out during the prediction step, and becomes taller and narrower as the filter
incorporates another measurement (the innovation step).

Think of this animation in terms of the g-h filter. At each step the g-h filter makes a
prediction, takes a measurement, computes the residual (the difference between the predic-
tion and the measurement, and then selects a point on the residual line based on the scaling
factor g. The Kalman filter is doing exactly the same thing, except that the scaling factor g
varies with time. As the filter becomes more confident in its state the scaling factor favors
the filter’s prediction over the measurement.

If this is not clear, I urge you to go back and review the g-h chapter. This is the
crux of the algorithms in this book.

Exercise(optional): Write a function that runs the Kalman filter many times and
record what value the voltage converges to each time. Plot this as a histogram. After 10,000
runs do the results look normally distributed? Does this match your intuition of what should
happen?

use plt.hist(data,bins=100) to plot the histogram.

In [21]: #Your code here

Solution

In [42]: sensor_error = temp_variance

def VKF():

voltage=(14,1000)

for i in range(N):

Z = volt(temp_variance)

voltage = update(voltage[0], voltage[1], Z, sensor_error)

return voltage[0]

vs = []

for i in range (10000):

vs.append (VKF())

plt.hist(vs, bins=100, color=’#e24a33’)

plt.show()
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Discussion
The results do in fact look like a normal distribution. Each voltage is Gaussian, and

the Central Limit Theorem guarantees that a large number of Gaussians is normally
distributed. We will discuss this more in a subsequent math chapter.

6.9 Explaining the Results - Multi-Sensor Fusion

author’s note: I am not overly keen about this explanation. It is true that multiple sensors
improve results, but we get good results merely by having an accurate model of the process.
I explain this much better in the next chapter. I’ll leave this section here while I mull how
best to explain this at this stage of learning. For now don’t worry if this section is not
entirely convincing; it does need work.

So how does the Kalman filter do so well? I have glossed over one aspect of the filter as
it becomes confusing to address too many points at the same time. We will return to the
dog tracking problem. We used two sensors to track the dog - the RFID sensor that detects
position, and the inertial tracker that tracked movement. However, we have focused all of
our attention on the position sensor. Let’s change focus and see how the filter performs if the
inertial tracker is also noisy. This will provide us with an vital insight into the performance
of Kalman filters.

In [23]: sensor_error = 30

movement_sensor = 30

pos = (0,500)

dog = DogSensor(0, velocity=movement, noise=sensor_error)
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zs = []

ps = []

vs = []

for i in range(100):

Z = dog.sense()

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

vs.append(pos[1])

pos = predict(pos[0], pos[1], movement+ random.randn(), movement_error)

plt.plot(ps, label=’filter’)

plt.plot(zs, linestyle=’dashed’, c=’r’, label=’measurement’)

plt.legend()

plt.show()

plt.plot(vs)

plt.title(’Variance’)

plt.show()
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This result is worse than the example where only the measurement sensor was noisy.
Instead of being mostly straight, this time the filter’s output is distinctly jagged. But, it
still mostly tracks the dog. What is happening here?

This illustrates the effects of multi-sensor fusion. Suppose we get a position reading of
-28.78 followed by 31.43. From that information alone it is impossible to tell if the dog is
standing still during very noisy measurements, or perhaps sprinting from -29 to 31 and being
accurately measured. But we have a second source of information, his velocity. Even when
the velocity is also noisy, it constrains what our beliefs might be. For example, suppose that
with the 31.43 position reading we get a velocity reading of 59. That matches the difference
between the two positions quite well, so this will lead us to believe the RFID sensor and the
velocity sensor. Now suppose we got a velocity reading of 1.7. This doesn’t match our RFID
reading very well - it suggests that the dog is standing still or moving slowly.

When sensors measure different aspects of the system and they all agree we have strong
evidence that the sensors are accurate. And when they do not agree it is a strong indication
that one or more of them are inaccurate.

We will formalize this mathematically in the next chapter; for now trust this intuitive
explanation. We use this sort of reasoning every day in our lives. If one person tells us
something that seems far fetched we are inclined to doubt them. But if several people
independently relay the same information we attach higher credence to the data. If one
person disagrees with several other people, we tend to distrust the outlier. If we know the
people that might alter our belief. If a friend is inclined to practical jokes and tall tales we
may put very little trust in what they say. If one lawyer and three lay people opine on some
fact of law, and the lawyer disagrees with the three you’ll probably lend more credence to
what the lawyer says because of her expertise. In the next chapter we will learn how to
mathematical model this sort of reasoning.
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6.10 More examples

6.10.1 Example: Extreme Amounts of Noise

So I didn’t put a lot of noise in the signal, and I also ‘correctly guessed’ that the dog was at
position 0. How does the filter perform in real world conditions? Let’s explore and find out.
I will start by injecting a lot of noise in the RFID sensor. I will inject an extreme amount
of noise - noise that apparently swamps the actual measurement. What does your intuition
tell about how the filter will perform if the noise is allowed to be anywhere from -300 or 300.
In other words, an actual position of 1.0 might be reported as 287.9, or -189.6, or any other
number in that range. Think about it before you scroll down.

In [24]: sensor_error = 30000

movement_error = 2

pos = (0,500)

dog = DogSensor(pos[0], velocity=movement, noise=sensor_error)

zs = []

ps = []

for i in range(1000):

pos = predict(pos[0], pos[1], movement, movement_error)

Z = dog.sense()

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

p1, = plt.plot(zs,c=’r’, linestyle=’dashed’, label=’measurement’)

p2, = plt.plot(ps, c=’#004080’, label=’filter’)

plt.legend(loc=’best’)

plt.show()
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In this example the noise is extreme yet the filter still outputs a nearly straight line! This
is an astonishing result! What do you think might be the cause of this performance? If you
are not sure, don’t worry, we will discuss it latter.

6.10.2 Example: Bad Initial Estimate

Now let’s lets look at the results when we make a bad initial estimate of position. To avoid
obscuring the results I’ll reduce the sensor variance to 30, but set the initial position to
1000m. Can the filter recover from a 1000m initial error?

In [25]: sensor_error = 30

movement_error = 2

pos = (1000,500)

dog = DogSensor(0, velocity=movement, noise=sensor_error)

zs = []

ps = []

for i in range(100):

pos = predict(pos[0], pos[1], movement, movement_error)

Z = dog.sense()

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])
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plt.plot(ps, label=’filter’)

plt.plot(zs,c=’r’, linestyle=’dashed’, label=’measurement’)

plt.legend(loc=’best’)

plt.show()

Again the answer is yes! Because we are relatively sure about our belief in the sensor
(σ = 30) even after the first step we have changed our belief in the first position from 1000
to somewhere around 60.0 or so. After another 5-10 measurements we have converged to the
correct value! So this is how we get around the chicken and egg problem of initial guesses. In
practice we would probably just assign the first measurement from the sensor as the initial
value, but you can see it doesn’t matter much if we wildly guess at the initial conditions -
the Kalman filter still converges very quickly.

6.10.3 Example: Large Noise and Bad Initial Estimate

What about the worst of both worlds, large noise and a bad initial estimate?

In [26]: sensor_error = 30000

movement_error = 2

pos = (1000,500)

dog = DogSensor(0, velocity=movement, noise=sensor_error)

zs = []

ps = []
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for i in range(1000):

pos = predict(pos[0], pos[1], movement, movement_error)

Z = dog.sense()

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

plt.plot(zs,c=’r’, linestyle=’dashed’, label=’measurement’)

plt.plot(ps, c=’#004080’, label=’filter’)

plt.legend(loc=’best’)

plt.show()

This time the filter does struggle. Notice that the previous example only computed 100
updates, whereas this example uses 1000. By my eye it takes the filter 400 or so iterations to
become reasonable accurate, but maybe over 600 before the results are good. Kalman filters
are good, but we cannot expect miracles. If we have extremely noisy data and extremely
bad initial conditions, this is as good as it gets.

Finally, let’s make the suggest change of making our initial position guess just be the
first sensor measurement.

In [27]: sensor_error = 30000

movement_error = 2

pos = None

dog = DogSensor(0, velocity=movement, noise=sensor_error)

111



zs = []

ps = []

for i in range(1000):

Z = dog.sense()

zs.append(Z)

if pos == None:

pos = (Z, 500)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

pos = predict(pos[0], pos[1], movement, movement_error)

plt.plot(zs,c=’r’, linestyle=’dashed’, label=’measurement’)

plt.plot(ps, c=’#004080’, label=’filter’)

plt.legend(loc=’best’)

plt.show()

This simple change significantly improves the results. On some runs it takes 200 iterations
or so to settle to a good solution, but other runs it converges very rapidly. This all depends
on whether the initial measurement Z had a small amount or large amount of noise.

200 iterations may seem like a lot, but the amount of noise we are injecting is truly
huge. In the real world we use sensors like thermometers, laser rangefinders, GPS satellites,
computer vision, and so on. None have the enormous error as shown here. A reasonable
value for the variance for a cheap thermometer might be 10, for example, and our code is
using 30,000 for the variance.
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6.10.4 Exercise: Interactive Plots

Implement the Kalman filter using IPython Notebook’s animation features to allow you to
modify the various constants in real time using sliders. Refer to the section Interactive
Gaussians in the Gaussian chapter to see how to do this. You will use the interact()

function to call a calculation and plotting function. Each parameter passed into interact()

automatically gets a slider created for it. I have built the boilerplate for this; just fill in the
required code.

In [28]: from IPython.html.widgets import interact, interactive, fixed

import IPython.html.widgets as widgets

def plot_kalman_filter(start_pos, sensor_noise, movement, movement_noise, noise_scale):

# your code goes here

pass

interact(plot_kalman_filter,

start_pos=(-10,10),

sensor_noise=widgets.IntSliderWidget(value=5,min=0,max=100),

movement=widgets.FloatSliderWidget(value=1,min=-2.,max=2.),

movement_noise=widgets.FloatSliderWidget(value=5,min=0,max=100.),

noise_scale=widgets.FloatSliderWidget(value=1,min=0,max=2.))

Out[28]: <function main .plot kalman filter>

Solution
One possible solution follows.

In [29]: zs = np.zeros(100)

ps = np.zeros(100)

def plot_kalman_filter(start_pos, sensor_noise, movement, movement_noise,noise_scale):

dog = DogSensor(start_pos, velocity=movement, noise=sensor_noise)

random.seed(303)

pos = (0,100)

for i in range(100):

Z = dog.sense() + random.randn()*noise_scale

zs[i] = Z

pos = update(pos[0], pos[1], Z, sensor_error)

ps[i] = pos[0]

pos = predict(pos[0], pos[1], movement + random.randn()*movement_noise, movement_noise)

plt.plot(zs,c=’r’, linestyle=’dashed’, label=’measurement’)

plt.plot(ps, c=’#004080’, label=’filter’)

plt.legend(loc=’best’)
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plt.show()

interact(plot_kalman_filter,

start_pos=(-10,10),

sensor_noise=widgets.IntSliderWidget(value=5,min=0,max=100),

movement=widgets.FloatSliderWidget(value=1,min=-2.,max=2.),

movement_noise=widgets.FloatSliderWidget(value=2,min=0,max=100.),

noise_scale=widgets.FloatSliderWidget(value=1,min=0,max=20.))

Out[29]: <function main .plot kalman filter>

6.10.5 Exercise - Nonlinear Systems

Our equations are linear:

new pos = old pos+ dist moved

new position = old position ∗measurement

Do you suppose that this filter works well or poorly with nonlinear systems?
Implement a Kalman filter that uses the following equation to generate the measurement

value for i in range(100):

Z = math.sin(i/3.) * 2

Adjust the variance and initial positions to see the effect. What is, for example, the
result of a very bad initial guess?
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In [30]: #enter your code here.

Solution:

In [31]: sensor_error = 30

movement_error = 2

pos = (100,500)

zs = []

ps = []

for i in range(100):

pos = predict(pos[0], pos[1], movement, movement_error)

Z = math.sin(i/3.)*2

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

plt.plot(zs,c=’r’, linestyle=’dashed’, label=’input’)

plt.plot(ps, c=’#004080’, label=’filter’)

plt.legend(loc=’best’)

plt.show()

Discussion
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Here we set a bad initial guess of 100. We can see that the filter never ‘acquires’ the
signal. Note now the peak of the filter output always lags the peak of the signal by a small
amount, and how the filtered signal does not come very close to capturing the high and low
peaks of the input signal.

If we recall the g-h filter chapter we can understand what is happening here. The structure
of the g-h filter requires that the filter output chooses a value part way between the prediction
and measurement. A varying signal like this one is always accelerating, whereas our process
model assumes constant velocity, so the filter is mathematically guaranteed to always lag
the input signal.

Maybe we just didn’t adjust things ‘quite right’. After all, the output looks like a sin
wave, it is just offset some. Let’s test this assumption.

6.10.6 Exercise - Noisy Nonlinear Systems

Implement the same system, but add noise to the measurement.

In [32]: #enter your code here

Solution

In [33]: sensor_error = 30

movement_error = 2

pos = (100,500)

zs = []

ps = []

for i in range(100):

pos = predict(pos[0], pos[1], movement, movement_error)

Z = math.sin(i/3.)*2 + random.randn()*1.2

zs.append(Z)

pos = update(pos[0], pos[1], Z, sensor_error)

ps.append(pos[0])

p1, = plt.plot(zs,c=’r’, linestyle=’dashed’, label=’measurement’)

p2, = plt.plot(ps, c=’#004080’, label=’filter’)

plt.legend(loc=’best’)

plt.show()
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Discussion
This is terrible! The output is not at all like a sin wave, except in the grossest way. With

linear systems we could add extreme amounts of noise to our signal and still extract a very
accurate result, but here even modest noise creates a very bad result.

Very shortly after practitioners began implementing Kalman filters they recognized the
poor performance of them for nonlinear systems and began devising ways of dealing with it.
Much of the remainder of this book is devoted to this problem and its various solutions.

6.11 Summary

This information in this chapter takes some time to assimilate. To truly understand this
you will probably have to work through this chapter several times. I encourage you to
change the various constants and observe the results. Convince yourself that Gaussians
are a good representation of a unimodal belief of something like the position of a dog in a
hallway. Then convince yourself that multiplying Gaussians truly does compute a new belief
from your prior belief and the new measurement. Finally, convince yourself that if you are
measuring movement, that adding the Gaussians correctly updates your belief. That is all
the Kalman filter does. Even now I alternate between complacency and amazement at the
results.

If you understand this, you will be able to understand multidimensional Kalman filters
and the various extensions that have been make on them. If you do not fully understand
this, I strongly suggest rereading this chapter. Try implementing the filter from scratch,
just by looking at the equations and reading the text. Change the constants. Maybe try
to implement a different tracking problem, like tracking stock prices. Experimentation will
build your intuition and understanding of how these marvelous filters work.

In [33]:
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author notes: clean up the code - same stuff duplicated over and over - write a ‘clean
implementation’ at the end.
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Chapter 7

Multivariate Kalman Filters

7.1 Introduction

The techniques in the last chapter are very powerful, but they only work in one dimension.
The gaussians represent a mean and variance that are scalars - real numbers. They provide
no way to represent multidimensional data, such as the position of a dog in a field. You may
retort that you could use two Kalman filters for that case, one tracks the x coordinate and the
other tracks the y coordinate. That does work in some cases, but put that thought aside,
because soon you will see some enormous benefits to implementing the multidimensional
case.

In this chapter I am purposefully glossing over many aspects of the mathematics behind
Kalman filters. If you are familiar with the topic you will read statements that you disagree
with because they contain simplifications that do not necessarily hold in more general cases.
If you are not familiar with the topic, expect some paragraphs to be somewhat ‘magical’ -
it will not be clear how I derived a certain result. I prefer that you develop an intuition
for how these filters work through several worked examples. If I started by presenting a
rigorous mathematical formulation you would be left scratching your head about what all
these terms mean and how you might apply them to your problem. In later chapters I will
provide a more rigorous mathematical foundation, and at that time I will have to either
correct approximations that I made in this chapter or provide additional information that I
did not cover here.

To make this possible we will restrict ourselves to a subset of problems which we can de-
scribe with Newton’s equations of motion. In the literature these filters are called discretized
continuous-time kinematic filters. In the next chapter we will develop the math required for
solving any kind of dynamic system.

In this chapter we are dealing with a simpler form that we can discuss in terms of Newton’s
equations of motion: given a constant velocity v we can compute distance exactly with:

x = vt+ x0

If we instead assume constant acceleration we get

x =
a

2
t2 + v0t+ x0
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And if we assume constant jerk we get

x =
j

3
t3 +

a0

2
t2 + v0t+ x0

As a reminder, we can compute these equations using basic calculus. Given a constant
velocity v we can compute the distance travelled over time with the equation

v =
dx

dt
x =

∫
v dtx = vt+ x0

7.2 Multivariate Normal Distributions

What might a multivariate normal distribution look like? In this context, multivariate just
means multiple variables. Our goal is to be able to represent a normal distribution across
multiple dimensions. Consider the 2 dimensional case. Let’s say we believe that x = 2 and
y = 17. Therefore we can see that for N dimensions, we need N means, like so:

µ =


µ1

µ2
...
µn


Therefore for this example we would have

µ =

[
2
17

]
The next step is representing our variances. At first blush we might think we would also

need N variances for N dimensions. We might want to say the variance for x is 10 and the
variance for y is 4, like so.

σ2 =

[
10
4

]
While this is possible, it does not consider the more general case. For example, suppose

we were tracking house prices vs total m2 of the floor plan. These numbers are correlated.
It is not an exact correlation, but in general houses in the same neighborhood are more
expensive if they have a larger floor plan. We want a way to express not only what we think
the variance is in the price and the m2, but also the degree to which they are correlated. It
turns out that we use the following matrix to denote covariances with multivariate normal
distributions. You might guess, correctly, that covariance is short for correlated variances.

Σ =


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n
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If you haven’t seen this before it is probably a bit confusing at the moment. Rather
than explain the math right now, we will take our usual tactic of building our intuition first
with various physical models. At this point, note that the diagonal contains the variance
for each state variable, and that all off-diagonal elements (covariances) are represent how
much the ith (row) and jth (column) state variable are linearly correlated to each other. In
other words, it is a measure for how much they change together. No correlation will have a
covariance of 0. So, for example, if the variance for x is 10, the variance for y is 4, and there
is no linear correlation between x and y, then we would say

Σ =

[
10 0
0 4

]
If there was a small amount of correlation between x and y we might have

Σ =

[
10 1.2
1.2 4

]
where 1.2 is the covariance between x and y. Note that this is always symmetric - the

covariance between x and y is always equal to the covariance between y and x. That is,
σxy = σyx for any x and y.

Now, without explanation, here is the full equation for the multivariate normal distribu-
tion in n dimensions.

N (µ, Σ) = (2π)−
n
2 |Σ|−

1
2 e−

1
2

(x−µ)′Σ−1(x−µ)

I urge you to not try to remember this function. We will program it in a Python function
and then call it when we need to compute a specific value. However, if you look at it briefly
you will note that it looks quite similar to the univariate normal distribution except it uses
matrices instead of scalar values, and the root of π is scaled by n. Here is the univariate
equation for reference:

f(x, µ, σ) =
1

σ
√

2π
e−

1
2

(x−µ)2/σ2

If you are reasonably well-versed in linear algebra this equation should look quite man-
ageable; if not, don’t worry! Let’s just plot it and see what it looks like.

In [2]: import mkf_internal

import numpy as np

mkf_internal.plot_3d_covariance((2,17), np.array([[10.,0],[0,4.]]))
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Here we have plotted a two dimensional multivariate Gaussian with a mean of µ = [ 2
17 ]

and a covariance of Σ = [ 8 0
0 10 ]. The three dimensional shape shows the probability of for

any value of (x,y) in the z-axis. I have projected just the variance for x and y onto the walls
of the chart - you can see that they take on the normal Gaussian bell curve shape. You can
also see that, as we might hope, that the curve for x is wider than the curve for y, which
is explained by σ2

x = 10 and σ2
y = 4. Also, the highest point of the curve is centered over

(2,17), the means for x and y. I hope this demystifies the equation for you. Any multivariate
Gaussian will create this sort of shape. If we think of this as a the Gaussian for our dog’s
position in a two dimensional field, the z-value at each point of (x,y) indicates the probability
of the dog being at that position. So, he has the highest probability of being at (2,17), a
modest probability of being at (5,14), and a very low probability of being at (10,10).

We will discuss the mathematical description of covariances in the Kalman Filter math
chapter. For this chapter we just need to understand the following.

1. The diagonal of the matrix contains the variance for each variable.

2. Each off-diagonal element contains σij - the covariance between i and j. This tells us
how much linear correlation there is between the two variables. 0 means no correlation,
and as the number gets higher the correlation gets greater.

3. σij = σji

4. The covariance between x and itself is just the variance of x: σxx = σ2
x.

5. This chart only shows a 2 dimensional Gaussian, but the equation works for any number
of dimensions >= 1. It’s kind of hard to show a chart for the higher dimensions.

I have programmed the multivariate Gaussian equation and saved it in the file stats.py

with the function name multivariate gaussian. I am not showing the code here because I
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have taken advantage of the linear algebra solving apparatus of numpy to efficiently compute
a solution - the code does not correspond to the equation in a one to one manner. If you
wish to view the code, I urge you to either load it in an editor, or load it into this worksheet
by putting %load -s multivariate gaussian stats.py in the next cell and executing it
with ctrl-enter.

However, please note that the Kalman filter equations incorporate this computation
automatically; you will not be using this function very often in this book, so I would not
spend a lot of time mastering this function unless it interests you.

As of version 0.14 scipy.stats has implemented the multivariate normal equation
with the function multivariate normal(). It implements a ‘frozen’ form where
you set the mean and covariance once, and then calculate the probability for any
number of values for x over any arbitrary number of calls. This is much more
efficient then recomputing everything in each call. So, if you have version 0.14
or later you may want to substitute my function for the built in version. Use
scipy.version.version to get the version number. I deliberately named my
function multivariate gaussian() to ensure it is never confused with the built
in version. I will say that for a single call, where the frozen variables do not
matter, mine consistently runs faster as measured by the timeit function.

The tutorial[1] for the scipy.stats module explains ‘freezing’ distributions and
other very useful features. As of this date, it includes an example of using the
multivariate normal function, which does work a bit differently from my function.

In [3]: from stats import gaussian, multivariate_gaussian

Let’s use it to compute a few values just to make sure we know how to call and use the
function, and then move on to more interesting things.

First, let’s find the probability for our dog being at (2.5, 7.3) if we believe he is at (2,7)
with a variance of 8 for x and a variance of 10 for y.

Start by setting x to (2.5,7.3):

In [4]: x = [2.5, 7.3]

Next, we set the mean of our belief:

In [5]: mu = [2.0, 7.0]

Finally, we have to define our covariance matrix. In the problem statement we did not
mention any correlation between x and y, and we will assume there is none. This makes
sense; a dog can choose to independently wander in either the x direction or y direction
without affecting the other. If there is no correlation between the values you just fill in the
diagonal of the covariance matrix with the variances. I will use the seemingly arbitrary name
P for the covariance matrix. The Kalman filters use the name P for this matrix, so I will
introduce the terminology now to avoid explaining why I change the name later.
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In [6]: P = [[8., 0.],

[0., 10.]]

Now just call the function

In [7]: print(multivariate_gaussian(x,mu,P))

0.017439537440741816

Note that the function can accept lists, np.array, or np.matrix as arguments, or
even scalars. Type multivariate gaussian? in a cell and press ctrl-enter to get
the help for this function.

Let’s check the probability for the dog being at exactly (2,7)

In [8]: from __future__ import print_function

import numpy as np

x = np.array([2,7]) # using array to show we can use lists and arrays

prob = multivariate_gaussian(x,mu,P) * 100.

print("Probability dog is at (2,7) is {:.3}%".format(prob))

Probability dog is at (2,7) is 1.78%

These numbers are not easy to interpret. Let’s plot this in 3D, with the z (up) coordinate
being the probability.

In [9]: import mkf_internal

mkf_internal.plot_3d_covariance((2,7), np.array([[8.,0],[0,4.]]))
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The result is clearly a 3D bell shaped curve. We can see that the gaussian is centered
around (2,7), and that the probability quickly drops away in all directions. On the sides of
the plot I have drawn the Gaussians for x in greens and for y in orange.

As beautiful as this is, it is perhaps a bit hard to get useful information. For example,
it is not easy to tell if x and y both have the same variance or not. So for most of the rest
of this book we will display multidimensional Gaussian using contour plots. I will use some
helper functions in stats.py to plot them. If you are interested in linear algebra go ahead
and look at the code used to produce these contours, otherwise feel free to ignore it.

In [10]: import stats

P = np.array([[2,0],[0,2]])

plt.subplot(131)

stats.plot_covariance_ellipse((2,7), cov=P, facecolor=’g’, alpha=0.2,

title=’|2 0|\n|0 2|’)

plt.subplot(132)

P = np.array([[2,0],[0,9]])

stats.plot_covariance_ellipse((2,7), P, facecolor=’g’, alpha=0.2,

title=’|2 0|\n|0 9|’)

plt.subplot(133)

P = np.array([[2,1.2],[1.2,2]])

stats.plot_covariance_ellipse((2,7), P, facecolor=’g’, alpha=0.2,

title=’|2 1.2|\n|1.2 2|’)

plt.tight_layout()

plt.show()
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From a mathematical perspective these display the values that the multivariate gaussian
takes for a specific standard deviation (in this case σ = 1). Think of it as taking a horizontal
slice through the 3D surface plot we did above. However, thinking about the physical
interpretation of these plots clarifies their meaning.

The first plot uses the mean and covariance matrices of

µ =

[
2
7

]
Σ =

[
2 0
0 2

]
Let this be our current belief about the position of our dog in a field. In other words,

we believe that he is positioned at (2,7) with a variance of σ2 = 2 for both x and y. The
contour plot shows where we believe the dog is located with the ‘+’ in the center of the
ellipse. The ellipse shows the boundary for the 1σ2 probability - points where the dog is
quite likely to be based on our current knowledge. Of course, the dog might be very far
from this point, as Gaussians allow the mean to be any value. For example, the dog could
be at (3234.76,189989.62), but that has vanishing low probability of being true. Generally
speaking displaying the 1σ to 2σ contour captures the most likely values for the distribution.
Recall from the Gaussians chapter the the 68-95-99.7 rule - 68% of all values will fall within
1 standard deviation (1σ), 95% within 2σ, and 99.7% within 3σ.

An equivalent way of thinking about this is the circle/ellipse shows us the amount of
error in our belief. A tiny circle would indicate that we have a very small error, and a very
large circle indicates a lot of error in our belief. We will use this throughout the rest of the
book to display and evaluate the accuracy of our filters at any point in time.

The second plot uses the mean and covariance matrices of

µ =

[
2
7

]
Σ =

[
2 0
0 9

]
This time we use a different variance for x (2) vs y (9). The result is an ellipse. When

we look at it we can immediately tell that we have a lot more uncertainty in the y value
vs the x value. Our belief that the value is (2,7) is the same in both cases, but errors are
different. This sort of thing happens naturally as we track objects in the world - one sensor
has a better view of the object, or is closer, than another sensor, and so we end up with
different error rates in the different axis.

The third plot uses the mean and covariance matrices of:

µ =

[
2
7

]
Σ =

[
2 1.2

1.2 2

]
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This is the first contour that has values in the off-diagonal elements of cov, and this is
the first contour plot with a slanted ellipse. This is not a coincidence. The two facts are
telling use the same thing. A slanted ellipse tells us that the x and y values are somehow
correlated. We denote that in the covariance matrix with values off the diagonal. What
does this mean in physical terms? Think of trying to park your car in a parking spot. You
can not pull up beside the spot and then move sideways into the space because most cars
cannot go purely sideways. x and y are not independent. This is a consequence of the
steering system in a car. When your tires are turned the car rotates around its rear axle
while moving forward. Or think of a horse attached to a pivoting exercise bar in a corral.
The horse can only walk in circles, he cannot vary x and y independently, which means he
cannot walk straight forward to to the side. If x changes, y must also change in a defined
way.

So when we see this ellipse we know that x and y are correlated, and that the correlation
is “strong”. The size of the ellipse shows how much error we have in each axis, and the slant
shows how strongly correlated the values are.

A word about correlation and independence. If variables are independent they can
vary separately. If you walk in an open field, you can move in the x direction (east-west),
the y direction(north-south), or any combination thereof. Independent variables are always
also uncorrelated. Except in special cases, the reverse does not hold true. Variables can be
uncorrelated, but dependent. For example, consider the pair(x, y) where y = x2. Correlation
is a linear measurement, so x and y are uncorrelated. However, they are obviously dependent
on each other.

7.3 Unobserved Variables

Let’s say we are tracking an aircraft and we get the following data for the x coordinate at
time t=1,2, and 3 seconds. What does your intuition tell you the value of x will be at time
t=4 seconds?

In [11]: import mkf_internal

mkf_internal.show_position_chart()
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It appears that the aircraft is flying in a straight line because we can draw a line between
the three points, and we know that aircraft cannot turn on a dime. The most reasonable
guess is that x=4 at t=4. I will depict that with a green arrow.

In [12]: mkf_internal.show_position_prediction_chart()

If this is data from a Kalman filter, then each point has both a mean and variance. Let’s
try to show that by showing the approximate error for each point. Don’t worry about why
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I am using a covariance matrix to depict the variance at this point, it will become clear in a
few paragraphs. The intent at this point is to show that while we have x=1,2,3 that there
is a lot of error associated with each measurement.

In [13]: mkf_internal.show_x_error_chart()

We can see that there is a lot of error associated with each value of x. We could write a
1D Kalman filter as we did in the last chapter, but suppose this is the output of that filter,
and not just raw sensor measurements. Are we out of luck?

Let us think about how we predicted that x=4 at t=4. In one sense we just drew a
straight line between the points and saw where it lay at t=4. My constant refrain: what is
the physical interpretation of that? What is the difference in x over time? In other words,
what is ∂x

∂t
? The derivative, or difference in distance over time is velocity.

This is the key point in Kalman filters, so read carefully! Our sensor is only detecting
the position of the aircraft (how doesn’t matter). It does not have any kind of sensor that
provides velocity to us. But based on the position estimates we can compute velocity. In
Kalman filters we would call the velocity an unobserved variable. Unobserved means what
it sounds like - there is no sensor that is measuring velocity directly. Since the velocity is
based on the position, and the position has error, the velocity will have error as well. What
happens if we draw the velocity errors over the positions errors?

In [14]: mkf_internal.show_x_with_unobserved()
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Think about what this plot means. We have a lot of error in our position estimates. We
therefore have a lot of error in our velocity estimates. But look at the intersections between
the velocity and the positions. Take the intersection at t=2. The intersection between the
velocity and the position is where our aircraft is most likely to be, which I have roughly
depicted with a red ellipse (‘roughly’ because I set the size via eyeball, not via math). The
size of the error is much smaller than the error of the positions, despite the fact that velocity
was derived from position.

What makes this possible? Imagine for a moment that we superimposed the velocity from
a different airplane over the position graph. Clearly the two are not related, and there is
no way that combining the two could possibly yield any additional information. In contrast,
the velocity of the this airplane tells us something very important - the direction and speed
of travel. So long as the aircraft does not alter its velocity the velocity allows us to predict
where the next position is. After a relatively small amount of error in velocity the probability
that it is a good match with the position is very small. Think about it - if you suddenly
change direction your position is also going to change a lot. If the position measurement is
not in the direction of the assumed velocity change it is very unlikely to be true. The two
are correlated, so if the velocity changes so must the position, and in a predictable way.

7.4 Kalman Filter Algorithm

So in general terms we can show how a multidimensional Kalman filter works. In the example
above, we compute velocity from the previous position measurements using something called
the measurement function. Then we predict the next position by using the current estimate
and something called the state transition function. In our example above,

new position = old position+ velocity ∗ time
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Next, we take the measurement from the sensor, and compare it to the prediction we
just made. In a world with perfect sensors and perfect airplanes the prediction will always
match the measured value. In the real world they will always be at least slightly different.
We call the difference between the two the residual. Finally, we use something called the
Kalman gain to update our estimate to be somewhere between the measured position and
the predicted position. I will not describe how the gain is set, but suppose we had perfect
confidence in our measurement - no error is possible. Then, clearly, we would set the gain so
that 100% of the position came from the measurement, and 0% from the prediction. At the
other extreme, if he have no confidence at all in the sensor (maybe it reported a hardware
fault), we would set the gain so that 100% of the position came from the prediction, and
0% from the measurement. In normal cases, we will take a ratio of the two: maybe 53% of
the measurement, and 47% of the prediction. The gain is updated on every cycle based on
the variance of the variables (in a way yet to be explained). It should be clear that if the
variance of the measurement is low, and the variance of the prediction is high we will favor
the measurement, and vice versa.

The chart shows a prior estimate of x = 2 and a velocity ẋ = 1.

We use the familar dot notation ẋ to denote the derivative of x.

Therefore we predict x = 2 + 1 = 3.
However, the new measurement is z = 2.3, giving a residual r = 0.7. Finally, the Kalman

filter gain K gives us a new estimate of x = 2.8.

We use the notation z to denote a measurement. I will address notation in more
detail later. It is an unfortunate reality that nearly every text on Kalman filtering
uses different notation and variables - there is almost no agreement across texts.
Be sure to read the introductory material very carefully to avoid being led astray.

In [15]: from mkf_internal import *

show_residual_chart()
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7.5 The Equations

The brilliance of the Kalman filter is taking the insights of the chapter up to this point and
finding an optimal mathematical solution. The Kalman filter finds what is called a least
squared fit to the set of measurements to produce an optimal output. We will not trouble
ourselves with the derivation of these equations. It runs to several pages, and offers a lot
less insight than the words above, in my opinion. Furthermore, to create a Kalman filter for
your application you will not be manipulating these equations, but only specifying a number
of parameters that are used by them. It would be going too far to say that you will never
need to understand these equations; but to start we can pass them by and I will present the
code that implements them. So, first, let’s see the equations. > Kalman Filter Predict Step:

x̂−k+1 = Fkx̂k + Bkuk (1)

P−k+1 = FkPkF
T
k + Qk (2)

Kalman Filter Update Step:

yk = zk −Hkx̂
−
k (3)

Sk = HkP
−
k HT

k + Rk (4)

Kk = P−k HT
kS−1

k (5)

x̂k = x̂−k + Kky (6)

Pk = (I−KkHk)P
−
k (7)

Dash off, wipe the blood out of your eyes, and we’ll disuss what this means.
These are nothing more than linear algebra equations that implement the algorithm

we used in the last chapter, but using multidimensional Gaussians instead of univariate
Gaussians, and optimized for a least squares fit.

The subscripts indicate which time step the data comes from; k is now, k+ 1 is the next
step. AT is the transpose of the matrix A, and A−1 is the inverse. Finally, the hat denotes
an estimate, so x̂k is the estimate of x at time k.

Different texts use different notation and variable names for the Kalman filter. Later we
will expose you to these different forms to prepare you for reading the original literature. In
the equations above I have adopted the variable names used by the Wikipedia article[2] on
Kalman filters. Each bold letter denotes a matrix or vector. The subscripts indicate which
time step the data comes from; k is now, k + 1 is the next step. The caret (ˆ) indicates
that the value is an estimate. Finally, I particularly like how Brown [3] uses a raised − to
denote a prediction, and so I have adopted that approach. For a matrix A, AT signifies its
transpose, and A−1 its inverse. So, taken together, x̂−k+1 represents the prediction for the

estimate of x at time step k + 1, where x is some vector in the form x =
[
x1 x2 .. xn

]T
.
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The notation does not specify that x is a column vector - we will learn the shapes and sizes
of all of the variables later in the chapter.

author’s note: do we really want to explain notation here?

7.5.1 Kalman Equations Expressed as an Algorithm

However, I still find the notation to be a bit dense, and unnecessarily complicated for writing
code. The subscripts indicate the time step, but when we write code it is very clear what
is being calculated at each time step. For most of this book I’m going to use the following
simplified equations, which express an algorithm.

Predict Step

x := Fx + Bu (1)

P := FPFT + Q (2)

Update Step

y := z−Hx (3)

S := HPHT + R (4)

K := PHTS−1 (5)

x := x + Ky (6)

P := (I−KH)P (7)

This is an algorithm, so := denotes assignment, not equality. For example, equation (6)
has P on both sides of the :=. This equation updates the value of P by the computation on
the right hand side; it does not imply that the two sides of the equation are equal (they are
not).

What do all of the variables mean? What is P, for example? Don’t worry right now.
Instead, I am just going to design a Kalman filter, and introduce the names as we go. Then
we will just pass them into Python function that implement the equations above, and we
will have our solution. Later sections will then delve into more detail about each step and
equation. I think learning by example and practice is far easier than trying to memorize a
dozen abstract facts at once.

7.6 Implementation in Python

Before we go any further let’s gain some familiarity with the equations by programming
them in Python. I have written a production quality implementation of the Kalman filter
equations in my filterpy library, and we will be using that later in the chapter and the
remainder of the book. We could just look at that code, but it contains a significant amount
of code to ensure that the computations are numerically stable, that you do not pass in bad
data, and so on. Let’s just try to program this.

The filter equations are linear algebra equations, so we will use the Python library that
implements linear algebra - numpy. In the filter equations a bold variable denotes a matrix.
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Numpy provides two types to implement matrices: numpy.array and numpy.matrix. You
might suspect that the latter is the one we want to use. As it turns out numpy.matrix

does support linear algebra well, except for one problem - most of the rest of numpy uses
numpy.array, not numpy.matrix. You can pass a numpy.matrix into a function, and get a
numpy.array back as a result. Hence, the standard advice is that numpy.matrix is depre-
cated, and you should always use numpy.array even when numpy.matrix is more convienient.
I ignored this advice in a early version of this code and ended up regretting that choice, and
so now I use ‘numpy.array’ only.

numpy.array implements a any-dimensional array. You can construct it with any list
like object. The following constructs a 1-D array from a list:

In [16]: import numpy as np

x = np.array([1,2,3])

print(x)

print(type(x))

[1 2 3]

<class ’numpy.ndarray’>

You can create a 2D array with nested lists:

In [17]: x = np.array([[1,2,3],

[4,5,6]])

print(x)

[[1 2 3]

[4 5 6]]

You can create arrays of 3 or more dimensions, but we have no need for that here, and
so I will not elaborate.

By default the arrays use the data type of the values in the list; if there are multiple
types than it will choose the type that most accurately represents all the values. So, for
example, if your list contains a mix of int and float the data type of the array would be
of type float. You can override this with the dtype parameter.

In [18]: x = np.array([1,2,3],dtype=float)

print(x)

[ 1. 2. 3.]

You can perform matrix addition with the + operator, but matrix multiplication requires
the dot method or function. The * operator performs element-wise multiplication, which is
not what you want for linear algebra.

In [2]: x = np.array([[1,2],[3,4]], dtype=float)

print(’addition:\n’, x+x)

print(’\nelement-wise multiplication\n’, x*x)

print(’\nmultiplication\n’, np.dot(x,x))

print(’\ndot is also a member\n’, x.dot(x))
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---------------------------------------------------------------------------

NameError Traceback (most recent call last)

<ipython-input-2-d764da120a34> in <module>()

----> 1 x = np.array([[1,2],[3,4]], dtype=float)

2 print(’addition:\n’, x+x)

3 print(’\nelement-wise multiplication\n’, x*x)

4 print(’\nmultiplication\n’, np.dot(x,x))

5 print(’\ndot is also a member\n’, x.dot(x))

NameError: name ’np’ is not defined

You can get the transpose with .T, and the inverse with numpy.linalg.inv.

In [20]: print(’transpose\n’, x.T)

print(’\ninverse\n’, np.linalg.inv(x))

transpose

[[ 1. 3.]

[ 2. 4.]]

inverse

[[-2. 1. ]

[ 1.5 -0.5]]

Finally, there are helper functions like zeros to create a matrix of all zeros, ones to get
all ones, and eye to get the identity matrix.

In [21]: print(’zeros\n’, np.zeros((3,2)))

print(’\neye\n’, np.eye(3))

zeros

[[ 0. 0.]

[ 0. 0.]

[ 0. 0.]]

eye

[[ 1. 0. 0.]

[ 0. 1. 0.]

[ 0. 0. 1.]]

There is a lot of useful functionality in numpy, but let’s move on to implementing the
Kalman filter. Let’s start with the prediction equations.
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x := Fx + Bu (1)

P := FPFT + Q (2)

Those are linear algebra equations using matrix multiplication and addition. Assuming
each variable is already defined somewhere, we can implement these equations in Python
and numpy with:

x = dot(F, x) + dot(B, u)

P = dot(F, P).dot(F.T) + Q

That is all there is to it! Okay, we need to put these in a function or a class somehow,
but that is the ‘hard’ code, which is actually pretty easy.

Now let’s do the update step. Again, they consist of matrix multiplication and addition.

y := z−Hx (3)

S := HPHT + R (4)

K := PHTS−1 (5)

x := x + Ky (6)

P := (I−KH)P (7)

In Python we would write:

y = z - dot(H, x)

S = dot(H, P).dot(H.T) + R

K = dot(P, H.T).dot(np.linalg.inv(S))

x = x + dot(K,y)

P = (I - dot(K, H)).dot(P)

And that is it, we have implemented a Kalman filter!
Well, you probably do not want to cut and paste that code into every project that uses a

Kalman filter. So let’s put this into a class. I don’t intend to teach you how to program here,
so I will instead point you to my KalmanFilter class from my filterpy module, available on
github [4]. However, I have written a simplified version of that class below for your inspection.

In [22]: import numpy as np

import scipy.linalg as linalg

import matplotlib.pyplot as plt

import numpy.random as random

from numpy import dot

class KalmanFilter:

def __init__(self, dim_x, dim_z, dim_u=0):

""" Create a Kalman filter. You are responsible for setting the

various state variables to reasonable values; the defaults below will
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not give you a functional filter.

Parameters

----------

dim_x : int

Number of state variables for the Kalman filter. For example, if

you are tracking the position and velocity of an object in two

dimensions, dim_x would be 4.

This is used to set the default size of P, Q, and u

dim_z : int

Number of of measurement inputs. For example, if the sensor

provides you with position in (x,y), dim_z would be 2.

dim_u : int (optional)

size of the control input, if it is being used.

Default value of 0 indicates it is not used.

"""

self.x = np.zeros((dim_x,1)) # state

self.P = np.eye(dim_x) # uncertainty covariance

self.Q = np.eye(dim_x) # process uncertainty

self.u = np.zeros((dim_x,1)) # motion vector

self.B = 0 # control transition matrix

self.F = 0 # state transition matrix

self.H = 0 # Measurement function

self.R = np.eye(dim_z) # state uncertainty

# identity matrix. Do not alter this.

self._I = np.eye(dim_x)

if use_short_form:

self.update = self.update_short_form

def update(self, Z, R=None):

"""

Add a new measurement (Z) to the kalman filter. If Z is None, nothing

is changed.

Parameters

----------

Z : np.array

measurement for this update.
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R : np.array, scalar, or None

Optionally provide R to override the measurement noise for this

one call, otherwise self.R will be used.

"""

if Z is None:

return

if R is None:

R = self.R

elif np.isscalar(R):

R = np.eye(self.dim_z) * R

# error (residual) between measurement and prediction

y = Z - dot(H, x)

# project system uncertainty into measurement space

S = dot(H, P).dot(H.T) + R

# map system uncertainty into kalman gain

K = dot(P, H.T).dot(linalg.inv(S))

# predict new x with residual scaled by the kalman gain

self.x = self.x + dot(K, y)

I_KH = self._I - dot (K, H)

self.P = dot(I_KH).dot(P).dot(I_KH.T) + dot(K, R).dot(K.T)

def predict(self, u=0):

""" Predict next position.

Parameters

----------

u : np.array

Optional control vector. If non-zero, it is multiplied by B

to create the control input into the system.

"""

self.x = dot(self.F, self.x) + dot(self.B, u)

self.P = self.F.dot(self.P).dot(self.F.T) + self.Q

We will see how to use this class in the rest of the chapter, so I will not belabor its
use here. There are several additions to the version in filterpy that make it more usable.
For example, instead of using variables for the R, P , and so on, the filterpy version uses
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properties. This allows you to write something like:

dog_filter.R = 3

and the class will recognize that R is actually supposed to be a matrix and convert the
3 into an appropriate matrix (we don’t yet know what an ‘appropriate’ matrix for R = 3
would be, but we will learn that soon).

You can import the class from filterpy using the following import statement, and that
is what we will do in the rest of this chapter and book:

In [1]: from filterpy.kalman import KalmanFilter

---------------------------------------------------------------------------

ImportError Traceback (most recent call last)

<ipython-input-1-677e40b1808d> in <module>()

----> 1 from filterpy.kalman import KalmanFilter

ImportError: No module named ’filterpy’

7.7 Tracking a Dog

Let’s go back to our tried and true problem of tracking our dog. This time we will include
the fundamental insight of this chapter - that of using unobserved variables to improve our
estimates. In simple terms, our algorithm is:

1. predict the next value for x with "x + vel*time"

2. get measurement for x

3. compute residual as: "x - x_prediction"

4. compute kalman gain based on noise levels

5. compute new position as "residual * kalman gain"

That is the entire Kalman filter algorithm. It is both what we described above in words,
and it is what the rather obscure Kalman Filter equations do. The Kalman filter equations
just express this algorithm by using linear algebra.

As I mentioned above, there is actually very little programming involved in creating a
Kalman filter. We will just be defining several matrices and parameters that get passed into
the Kalman filter algorithm code. Rather than try to explain each of the steps ahead of
time, which can be a bit abstract and hard to follow, let’s just do it for our by now well
known dog tracking problem. Naturally this one example will not cover every use case of
the Kalman filter, but we will learn by starting with a simple problem and then slowly start
addressing more complicated situations.
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Step 1: Choose the State Variables and Set Initial Conditions In the previous
chapter we tracked a dog in one dimension by using a Gaussian. The mean (µ) represented
the most likely position, and the variance (σ2) represented the probability distribution of
the position. In that problem the position is the state of the system, and we call µ the state
variable.

In this chapter we will be tracking both the position and velocity of the dog, so we have
two state variables. State variables can either be observed variables - directly measured by a
sensor, or unobserved variables - inferred from the observed variables. For our dog tracking
problem, our observed state variable is position, and th unobserved variable is velocity.

In the previous chapter would denote the dog’s position being 3.2 as:

µ = 3.2

In this chapter we will use the multivariate Gaussian as described at the beginning of
this chapter. For example, if we wanted to specify a position of 10.0 and a velocity of 4.5,
we would write:

µ =

[
10.0
4.5

]
The Kalman filter is implemented using linear algebra. We use an n× 1 matrix to store

n state variables. For the dog tracking problem, we use x to denote position, and the first
derivative of x, ẋ, for velocity. The Kalman filter equations use x for the state, so we define
x as:

x =

[
x
ẋ

]
We use x instead of µ, but recognize this is just the mean of the multivariate Gaussian.
The other half of the Gaussian is the covariance Σ. The Kalman filter equations use the

alternative symbol P, but it means the same thing. In the one dimensional Kalman filter
we specified an initial value for σ2, and then the filter took care of updating it’s value as
measurements were added to the filter. The same thing happens in the multidimensional
Kalman filter.

In the last chapter we initialized the dog’s position at 0.0, and set the σ2 = 500 to indicate
that we were very unsure about this initial value. We need to do the same thing for the
multidimensional Kalman filter. We will set the initial position to 0.0, the initial velocity to
0.0, and then set σ2 to a 500 for both the position and velocity to reflect our uncertainty.

Recall that the diagonals of the covariance matrix contains the variance of each variable.
So to initialize the Kalman filter to the values in the previous paragraph we would write:

x =

[
0
0

]
P =

[
500 0
0 500

]
I am often frustrated when books use the same value for multiple variables in an example

as it can be unclear which value corresponds to which variable. To ensure that there is no
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confusion let’s look at the example of setting the initial position to 1, the initial velocity to
2.3, the σ2 of the position to 500, and the σ2 of the velocity to 400. In that case we would
write:

x =

[
1

2.3

]
P =

[
500 0
0 400

]
We have chosen our state variables and set our initial conditions, so this step is complete.

Step 2: Design State Transition Function The next step in designing a Kalman
filter is telling it how to predict the next state from the current state by providing it with
equations that describe the physical model of the system. For example, for our dog tracking
problem we are tracking a moving object, so we just need to provide it with the Newtonian
equations for motion. If we were tracking a thrown ball we would have to provide equations
for how a ball moves in a gravitational field, and perhaps include the effects of things like
air drag. If we were writing a Kalman filter for a rocket we would have to tell it how the
rocket responds to its thrusters and main engine. A Kalman filter for a bowling ball would
incorporate the effects of friction and ball rotation. You get the idea.

In the language of Kalman filters the physical model is call the process model. That is
probably a better term than physical model because the Kalman filter can be used to track
non-physical things like stock prices. We describe the process model with a set of equations
we call the State Transition Function.

We know from elementary physics how to compute a future position given our current
position and velocity. Let x be our current position, and ∆t be the amount of time in the
future, and x− be our predicted position. The velocity is then the derivative of x, which we
notate as ẋ. We can then write

x− = ẋ∆t+ x

Equation (1) of the Kalman filter x− = Fx + Bu implements the state transition func-
tion that we are discussing. This requires us to formulate the motion equation above with
matrices, so let’s learn how to do that now. For the moment we will ignore the Bu term, as
for our problem it turns out that it is equal to zero. Thus, we must express our equations
in the form x− = Fx.

A quick review on how to represent linear equations with matrices. Take the following
two equations:

2x+ 3y = 83x− y = 1

We can put this in matrix form by writing:[
2 3
3 −1

] [
x
y

]
=

[
8
1

]
If you perform the matrix multiplication in this equation the result will be the two equations
above.
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So, given that x =
[
x ẋ

]T
we can write:

x− = Fx[
x
ẋ

]−
= F

[
x
ẋ

]
Since x is a 2×1 matrix F must be a 2×2 matrix to yield another 2×1 matrix as a result.

The first row of the F is easy to derive:[
x
ẋ

]−
=

[
1 ∆t
? ?

]
×
[
x
ẋ

]
When we multiply the first row of F that out we get:

x− = 1x+ ∆tẋ, or

x− = ẋ∆t+ x

which is our equation for computing the new position based on velocity, time, and the
previous position.

Now we have to account for the second row. I’ve let it somewhat unstated up to now, but
we are assuming constant velocity for this problem. Naturally this assumption is not true; if
our dog moves it must accelerate and decelerate. If you cast your mind back to the g-h Filter
chapter we explored the effect of assuming constant velocity. So long as the acceleration is
small compared to ∆t the filter will still perform well.

Therefore we will assume that

ẋ− = ẋ

which gives us the second row of F as follows, once we set ∆t = 1:[
x
ẋ

]−
=

[
1 1
0 1

]
×
[
x
ẋ

]
Which, when multiplied out, yields our desired equations:

x− = x+ ẋ

ẋ− = ẋ

In the vocabulary of Kalman filters we call this transforming the state matrix. We take
our state matrix, which for us is ( xẋ ), and multiply it by a matrix we will call F to compute
the new state. In this case, F = ( 1 1

0 1 ).
You will do this for every Kalman filter you ever design. Your state matrix will change

depending on how many state random variables you have, and then you will create F so that
it updates your state based on whatever the physics of your problem dictates. F is always a
matrix of constants. Each row in F is If this is not fully clear, don’t worry, we will do this
many times in this book.
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Step 3: Design the Motion Function The Kalman filter does not just filter data,
it allows us to incorporate control inputs for systems like robots and airplanes. Consider the
state transition function we wrote for the dog:

xt = ẋ(∆t) + xt−1

Suppose that instead of passively tracking our dog we were actively controlling a robot.
At each time step we would send control signals to the robot based on our current position vs
desired position. Kalman filter equations incorporate that knowledge into the filter equations,
creating a predicted position based both on current velocity and control inputs to the drive
motors.

We will cover this use case later, but for now passive tracking applications we set those
terms to 0. In step 2 there was the unexplained term Bu in equation (1):

x̂ = Fx + Bu

.
Here u is the control input, and B is its transfer function. For example, u might be a

voltage controlling how fast the wheel’s motor turns, and multiplying by B yields x
ẋ . Since

we do not need these terms we will set them both to zero and not concern ourselves with
them for now.

Step 4: Design the Measurement Function The Kalman filter computes the up-
date step in what we call measurement space. We mostly ignored this issue in the previous
chapter because of the complication it adds. In the last chapter we tracked our dog’s position
using a sensor that reported his position. Computing the residual was easy - subtract the
filter’s predicted position from the measurement:

residual = measurement− position

However, consider what would happen if we were trying to track temperature using a
thermometer that varies a voltage output depending on the temperature. The equation
for the residual computation would be nonsense; you can’t subtract a temperature from a
voltage.

residual = zvolts − tempC (BAD!)

The Kalman filter generalizes this problem by having you supply a measurement function.
It is somewhat counterintuitive at first. As I already stated the Kalman filter performs its
calculations in measurement space. It needs to do that because it only really makes sense
to talk about the residual of the measurement in terms of the measurement. So it does
something like this:

residual = measurement - convert_to_measurement(predicted state)
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In other words, for the thermometer tracking problem, it would take the filter’s current
prediction of temperature, convert that to whatever voltage would represent that temper-
ature, and then subtract it from the current thermometer voltage output. This gives it a
residual in the correct units (volts).

It does this with a measurement function matrix that you provide it. At first it might
seem counterintuitive: to use the thermometer we need to know how to convert the output
voltage into a temperature, but we tell the Kalman filter how to convert a temperature into
a voltage!. But if you think about it, what you are really telling the filter is how your sensor
works. Your sensor converts temperature into voltage, and you are just telling the Kalman
filter how it does it. The Kalman filter equations can take that information and figure out
how to perform the inverse operation without you explicitly telling it the computation.

The Kalman filter equation that performs this step is:

y := z−Hx− (3)

where y is the residual, x− is the predicted value for x, z is the measurement, and H is
the measurement function. It is just a matrix that we multiply the state into to convert it
into a measurement.

For our dog tracking problem we have a sensor that measures position, but no sensor that

measures velocity. So for a given state x =
[
x ẋ

]T
we will want to multiply the position x

by 1 to get the corresponding measurement of the position, and multiply the velocity ẋ by
0 to get the corresponding measurement of velocity (of which there is none).

We only have 1 measurement in this example, so the dimension of the residual matrix
needs to be 1× 1. x is 2× 1, so H needs to be 1× 2 to get the right result. If we put this
in linear algebra terms we get:

y = z−
[
1 0

] [x
ẋ

]
, or

y = z− H

[
x
ẋ

]
And so, for our Kalman filter we set

H =
[
1 0

]
Believe it or not, we have designed the majority of our Kalman filter!! All that is left is

to model the noise in our sensors.

Step 5: Design the Measurement Noise Matrix The measurement noise is a
matrix that models the noise in our sensors as a covariance matrix. This can be admittedly
a very difficult thing to do in practice. A complicated system may have many sensors, the
correlation between them might not be clear, and usually their noise is not a pure Gaussian.
For example, a sensor might be biased to read high if the temperature is high, and so the
noise is not distributed equally on both sides of the mean. Later we will address this topic
in detail. For now I just want you to get used to the idea of the measurement noise matrix
so we will keep it deliberately simple.
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In the last chapter we used a variance of 5 for our position sensor. Let’s use the same
value here. The Kalman filter equations uses the symbol R for this matrix.

R = 5

In general the matrix will have dimension m×m, where m is the number of sensors. It is
m×m because it is a covariance matrix, as there may be correlations between the sensors.
We have only 1 sensor here so we write:

R =
[
5
]

Step 6: Design the Process Noise Matrix What is process noise? Consider the
motion of a thrown ball. In a vacuum and with constant gravitational force it moves in a
parabola. However, if you throw the ball on the surface of the earth you will also need to
model factors like rotation and air drag. However, even when you have done all of that there
is usually things you cannot account for. For example, consider wind. On a windy day the
ball’s trajectory will differ from the computed trajectory, perhaps by a significant amount.
Without wind sensors, we may have no way to model the wind. The Kalman filter models
this as process noise, and calls it Q.

Astute readers will realize that we can inspect the ball’s path and extract wind as an
unobserved state variable, but the point to grasp here is there will always be some unmodeled
noise in our process, and the Kalman filter gives us a way to model it.

Designing the process noise matrix can be quite demanding, and we will put it off until the
Kalman math chapter. In this chapter we will focus on building an intuitive understanding
on how modifying this matrix alters the behavior of the filter.

As you might expect, the Kalman filter uses the process noise matrix during the prediction
step because the prediction step is the step that uses the process model to predict the next
state. It is used in equation (2) from the Kalman filter equations:

P = FPFT + Q

If you look back at step one you will recall that P is the covariance matrix. It will be
of size n × n where n is the number of state variables. FPFT is just some linear algebra
‘magic’ that switches P into state space. We will cover this in detail in the Kalman math
chapter; for now I will just say that when the Kalman filter performs the math for Step 4
above it needed to convert P into measurement space to compute the residual and Kalman
gain, so here it it converted back into state space to perform the state prediction.

In pseudocode we might express this equation as:

P = to_state_space(P_in_measurement_space) + process_noise

This is the multidimensional linear algebra analogue of the predict step in the one di-
mensional case, where we added the variance of the filter to the variance of the movement:

sigma = sigma + movement_sigma
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P is dimensioned n × n, so Q must have the same dimensions. We are just adding
matrices, so hopefully it is clear that each element in Q specifies how much uncertainty is
added to the system due to the process noise. We have not given the math for this yet, but
if you suspect the math is simetimes difficult you would be correct.

However, for the class of problems we are solving in this chapter (discretized continuous-
time kinematic filters), where we can directly compute the state equations for moving objects
by using Newton’s equations.

For these kinds of problems we can rely on precomputed forms for Q. We will learn how
to perform the computation in the next chapter. For now I present them without proof. If
we assume that for each time period the acceleration due to process noise is constant and
uncorrelated, we get the following.

For constant velocity the form is [
1
4
∆t4 1

2
∆t3

1
2
∆t3 ∆t

]
σ2

and for constant acceleration we have1
4
∆t4 1

2
∆t3 1

2
∆t2

1
2
∆t3 ∆t2 ∆t

1
2
∆t2 ∆t 1

σ2

It is in general not true that acceleration will be constant and uncorrelated, but this
is still a useful approximation for moderate time period, and will suffice for this chapter.
Fortunately you can get a long way with approximations and simulation. Let’s think about
what these matrices are implying. We are trying to model the effects of process noise, such
as the wind buffeting the flight of a thrown ball. Variations in wind will cause changes in
acceleration, and so the effect on the acceleration is large. However, the effects on velocity
and position are proportionally smaller. In the matrices, the acceleration term is in the lower
right, and this is the largest value. A good rule of thumb is to set σ somewhere from 1

2
∆a

to ∆a, where ∆a is the maximum amount that the acceleration will change between sample
periods. In practice we pick a number, run simulations on data, and choose a value that
works well.

The filtered result will not be optimal, but in my opinion the promise of optimal results
from Kalman filters is mostly wishful thinking. Consider, for example, tracking a car. In
that problem the process noise would include things like potholes, wind gusts, changing drag
due to turning, rolling down windows, and many more factors. We cannot realistically model
that analytically, and so in practice we work out a simplified model, compute Q based on
that simplified model, and then add a bit to Q in hopes of taking the uncalculable factors
into account. Then we use a lot of simulations and trial runs to see if the filter behaves
well; if it doesn’t we adjust Q until the filter performs well. In this chapter we will focus
on forming an intuitive understanding on how adjusting Q affects the output of the filter.
In the Kalman Filter Math chapter we will discuss the analytic computation of Q, and also
provide code that will compute it automatically for you.

For now we will implement a short Python function that produces this matrix for you.
In the literature this model is called the Discrete Wiener Process Acceleration Model, which
is normally abbreviated DWPA, and we will use that nomenclature here.
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In [24]: def Q_DWPA(dim, dt=1., sigma=1.):

""" Returns the Q matrix for the Discrete Wiener Process Acceleration Model.

dim may be either 2 or 3, dt is the time step, and sigma is the variance in

the noise"""

assert dim == 2 or dim == 3

if dim == 2:

Q = np.array([[.25*dt**4, .5*dt**3],

[ .5*dt**3, dt**2]], dtype=float)

else:

Q = np.array([[.25*dt**4, .5*dt**3, .5*dt**2],

[ .5*dt**3, dt**2, dt],

[ .5*dt**2, dt, 1]], dtype=float)

return Q * sigma

7.8 Implementing the Kalman Filter

As we already explained, the Kalman filter equations are already implemented for you in the
filterpy library, so let’s start by importing it and creating a filter.

In [25]: import numpy as np

from filterpy.kalman import KalmanFilter

dog_filter = KalmanFilter (dim_x=2, dim_z=1)

That’s it. We import the filter, and create a filter that uses 2 state variables. We specify
the number of state variables with the ‘dim=2’ expression (dim means dimensions).

The Kalman filter class contains a number of variables that you need to set. x is the
state, F is the state transition function, and so on. Rather than talk about it, let’s just do
it!

In [26]: dog_filter.x = np.array([[0], [0]]) # initial state (location and velocity)

dog_filter.F = np.array([[1,1], [0,1]]) # state transition matrix

dog_filter.H = np.array([[1,0]]) # Measurement function

dog_filter.R *= 5 # measurement noise

dog_filter.Q = Q_DWPA(2, sigma=0.) # process noise

dog_filter.P *= 500. # covariance matrix

Let’s look at this line by line.
1: We just assign the initial value for our state. Here we just initialize both the position

and velocity to zero.
2: We set F = ( 1 1

0 1 ), as in design step 2 above.
3: We set H = ( 1 0 ), as in design step 3 above.
4: We set R = 5 and Q = 0 as in steps 5 and 6.
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5: Recall in the last chapter we set our initial belief to N (µ, σ2) = N (0, 500) to signify
our lack of knowledge about the initial conditions. We implemented this in Python with a
list that contained both µ and σ2 in the variable pos:

pos = (0,500)

Multidimensional Kalman filters stores the state variables in x and their covariance in
P. These are f.x and f.P in the code above. Notionally, this is similar as the one dimension
case, but instead of having a mean and variance we have a mean and covariance. For the
multidimensional case, we have

N (µ, σ2) = N (x,P)

P is initialized to the identity matrix of size n×n, so multiplying by 500 assigns a variance
of 500 to x and ẋ. So f.P contains [

500 0
0 500

]
This will become much clearer once we look at the covariance matrix in detail in later

sessions. For now recognize that each diagonal element eii is the variance for the ith state
variable, and that the 500 is just a statement that we are very uncertain about our initial
value by some amount.

Summary: For our dog tracking problem, in the 1-D case µ was the position,
and σ2 was the variance. In the 2-D case x is our position and velocity, and P is
the covariance of the position and velocity. It is the same thing, just in higher
dimensions!

All that is left is to run the code! The DogSensor class from the previous chapter has
been placed in DogSensor.py.

In [27]: import numpy as np

from DogSensor import DogSensor

from filterpy.kalman import KalmanFilter

def dog_tracking_filter(R,Q=0,cov=1.):

dog_filter = KalmanFilter (dim_x=2, dim_z=1)

dog_filter.x = np.array([[0],

[0]]) # initial state (location and velocity)

dog_filter.F = np.array([[1,1],

[0,1]]) # state transition matrix

dog_filter.H = np.array([[1,0]]) # Measurement function

dog_filter.R *= R # measurement uncertainty

dog_filter.P *= cov # covariance matrix

if np.isscalar(Q):

dog_filter.Q = Q_DWPA(2, sigma=Q)
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else:

dog_filter.Q = Q

return dog_filter

def filter_dog(noise=0, count=0, R=0, Q=0, P=500., data=None, initial_x=None):

""" Kalman filter ’count’ readings from the DogSensor.

’noise’ is the noise scaling factor for the DogSensor.

’data’ provides the measurements. If set, noise will

be ignored and data will not be generated for you.

returns a tuple of (positions, measurements, covariance)

"""

if data is None:

dog = DogSensor(velocity=1, noise=noise)

zs = [dog.sense() for t in range(count)]

else:

zs = data

dog_filter = dog_tracking_filter(R=R, Q=Q, cov=P)

if initial_x is not None:

dog_filter.x = initial_x

pos = [None] * count

cov = [None] * count

for t in range(count):

z = zs[t]

pos[t] = dog_filter.x[0,0]

cov[t] = dog_filter.P

# perform the kalman filter steps

dog_filter.update (z)

dog_filter.predict()

return (pos, zs, cov)

This is the complete code for the filter, and most of it is just boilerplate. The first
function dog tracking filter() is a helper function that creates a KalmanFilter object
with specified R, Q and P matrices. We’ve shown this code already, so I will not discuss it
more here.

The function filter dog() implements the filter itself. Lets work through it line by
line. The first line creates the simulation of the DogSensor, as we have seen in the previous
chapter.

dog = DogSensor(velocity=1, noise=noise)
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The next line uses our helper function to create a Kalman filter.

dog_filter = dog_tracking_filter(R=R, Q=Q, cov=500.)

We will want to plot the filtered position, the measurements, and the covariance, so we
will need to store them in lists. The next three lines initialize empty lists of length count in
a pythonic way.

pos = [None] * count

zs = [None] * count

cov = [None] * count

Finally we get to the filter. All we need to do is perform the update and predict steps of
the Kalman filter for each measurement. The KalmanFilter class provides the two functions
update() and predict() for this purpose. update() performs the measurement update step
of the Kalman filter, and so it takes a variable containing the sensor measurement.

Absent the bookkeeping work of storing the filter’s data, the for loop reads:

for t in range (count):

z = dog.sense()

dog_filter.update (z)

dog_filter.predict()

It really cannot get much simpler than that. As we tackle more complicated problems
this code will remain largely the same; all of the work goes into setting up the KalmanFilter
variables; executing the filter is trivial.

Now let’s look at the result. Here is some code that calls filter track() and then plots
the result. It is fairly uninteresting code, so I will not walk through it.

In [28]: def plot_track(noise=None, count=0, R=0, Q=0, P=500., initial_x=None,

data=None, plot_P=True, title=’Kalman Filter’):

ps, zs, cov = filter_dog(noise=noise, data=data, count=count,

R=R, Q=Q, P=P, initial_x=initial_x)

p0, = plt.plot([0,count],[0,count])

p1, = plt.plot(range(1,count+1),zs, linestyle=’dashed’)

p2, = plt.plot(range(1,count+1),ps)

plt.legend([p0,p1,p2], [’actual’,’measurement’, ’filter’], loc=2)

plt.ylim((0-10,count+10))

plt.title(title)

plt.show()

if plot_P:

plt.subplot(121)

plot_covariance(cov, (0,0))
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plt.subplot(122)

plot_covariance(cov, (1,1))

plt.show()

def plot_covariance(P, index=(0,0)):

ps = []

for p in P:

ps.append(p[index[0],index[1]])

plt.plot(ps)

Finally, call it. We will start by filtering 100 measurements with a noise factor of 30,
R = 5 and Q = 0.

In [29]: plot_track (noise=30, R=5, Q=0.01, count=100)
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There is still a lot to learn, but we have implemented our first, full Kalman filter using
the same theory and equations as published by Nobert Kalman! Code very much like this
runs inside of your GPS and phone, inside every airliner, inside of robots, and so on.

The first plot plots the output of the Kalman filter against the measurements and the
actual position of our dog (drawn in green). After the initial settling in period the filter
should track the dog’s position very closely.

The next two plots show the variance of x and of ẋ. If you look at the code, you will see
that I have plotted the diagonals of P over time. Recall that the diagonal of a covariance
matrix contains the variance of each state variable. So P[0, 0] is the variance of x, and P[1, 1]
is the variance of ẋ. You can see that despite initializing P = ( 500 0

0 500 ) we quickly converge
to small variances for both the position and velocity. We will spend a lot of time on the
covariance matrix later, so for now I will leave it at that.

In the previous chapter we filtered very noisy signals with much simpler code than the
code above. However, realize that right now we are working with a very simple example
- an object moving through 1-D space and one sensor. That is about the limit of what
we can compute with the code in the last chapter. In contrast, we can implement very
complicated, multidimensional filter with this code merely by altering are assignments to
the filter’s variables. Perhaps we want to track 100 dimensions in financial models. Or we
have an aircraft with a GPS, INS, TACAN, radar altimeter, baro altimeter, and airspeed
indicator, and we want to integrate all those sensors into a model that predicts position,
velocity, and accelerations in 3D (which requires 9 state variables). We can do that with the
code in this chapter.
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7.9 Compare to Univariate Kalman Filter

The equations in this chapter look very different from the equations in the last chapter, yet
I claimed the last chapter implemented a full 1-D (univariate) Kalman filter.

Recall that the univariate equations for the update step are:

µ =
σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

,

σ2 =
1

1
σ2
1

+ 1
σ2
2

and that the 1-D equations for the predict step are:

µ = µ1 + µ2,

σ2 = σ2
1 + σ2

2

Let’s implement a simple 1-D kalman filter using the Kalman filter from this chapter,
and compare its output to the kalman filter from the previous chapter by plotting it. We
will use a simple model of tracking an object that starts at x=0 and moves by 1 at each
step. We will assume the arbitrary value 5 for the measurement noise and .02 for the process
noise.

First, let’s implement the filter from the last chapter:

In [30]: from __future__ import division

import numpy as np

from numpy.random import randn

from filterpy.kalman import KalmanFilter

# 1-D Kalman filter equations

def predict(pos, variance, movement, movement_variance):

return (pos + movement, variance + movement_variance)

def update (mu1, var1, mu2, var2):

mean = (var1*mu2 + var2*mu1) / (var1+var2)

variance = 1 / (1/var1 + 1/var2)

return (mean, variance)

Now, let’s implement the same thing using the kalman filter. I will implement it as a
function that returns a KalmanFilter object so that you can run the analysis code several
times with the KalmanFilter initialized to the same starting conditions each time.

In [31]: from filterpy.kalman import KalmanFilter

def mkf_filter(R, Q):

f = KalmanFilter(dim_x=1, dim_z=1, dim_u=1)
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f.P = 500.

f.H = np.array([[1.]])

f.F = np.array([[1.]])

f.B = np.array([[1.]])

f.Q = Q

f.R = R

return f

Finally, let’s compare the two. I will plot the data from the 1-D Kalman filter as a blue
line, and the output of the filter from this chapter as red dots. I wrote it as a function so
you can easily modify the parameters and regenerate the plots.

In [32]: def plot_kf_compare(x0, p0, R, Q, move):

# storage for filter output

x1 = []

x2 = []

p1 = []

p2 = []

# initialize the filters

f = mkf_filter(R, Q)

f.x[0,0] = 0.

f.P[0,0] = p0

pos = (x0, p0)

for i in range(50):

z = i*move + randn()

pos = update(pos[0], pos[1], z, R)

f.update(z)

x1.append(pos[0])

x2.append(f.x[0,0])

p1.append(pos[1])

p2.append(f.P[0,0])

u = move + randn()

pos = predict(pos[0], pos[1], u, Q)

f.predict(u=u)

plt.scatter(range(len(x2)), x2, c=’r’)

plt.title(’State’)

plt.plot(x1)

plt.figure()
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plt.plot(p1)

plt.scatter(range(len(x2)), p2, c=’r’)

plt.title(’Variance’)

plt.show()

plot_kf_compare(x0=0., p0=500., R=5., Q=.2, move=1.)
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Discussion As you can see, both filters produce the same results. Feel free to vary the
initial guess, the measurement noise, and the process noise; so long as you make the same
changes to both filters the output should be the same. This is a solid demonstration, albeit
not a rigorous proof, that both filters in fact implement the same math for the 1-D case.

7.10 Converting the Multivariate Equations to the

Univariate Case

As it turns out the Kalman filter equations are quite easy to deal with in one dimension, so
let’s do the mathematical proof.

Important This section will provide you with a strong intuition into what the
Kalman filter equations are actually doing. I strong recommend reading this
section carefully as it should make this material much easier to understand. It is
not merely a proof of correctness that you would normally want to skip past!

Let’start with the predict step, which is slightly easier. Here are the multivariate equa-
tions.

x− := Fx + Bu

P := FPFT + Q

The state mathbfx only has one variable, so it is a 1 × 1 matrix. Our motion u is also
be a 1× 1 matrix. Therefore, F and B must also be 1× 1 matrices. That means that they
are all scalars, and we can write

x = Fx+Bu

Here the variables are not bold, denoting that they are just variables.
Our state transition is simple - the next state is the same as this state, so F = 1. The

same holds for the motion transition, so, B = 1. Thus we have

x = x+ u

which is equivelant to the Gaussian equation from the last chapter

µ = µ1 + µ2

Hopefully the general process is clear, so now I will go a bit faster on the rest. Our other
equation for the predict step is

P := FPFT + Q

Again, since our state only has one variable P and Q must also be 1 × 1 matrix, which
we can treat as scalars, yielding

P := FPF T +Q
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We already know F = 1. The transpose of a scalar is the scalar, so F T = 1. This yields

P := P +Q

which is equivalent to the Gaussian equation of

σ2 = σ2
1 + σ2

2

Here our our multivariate Kalman filter equations for the update step.

y := z−Hx

K := PHT (HPHT + R)−1

x := x− + Ky

P := (I−KH)P

As above, all of the matrices become scalars. H defines how we convert from a position
to a measurement. Both are positions, so there is no conversion, and thus H = 1. Let’s
substitute in our known values and convert to scalar in one step. One final thing you need
to know - division is scalar’s analogous operation for matrix inversion, so we will convert the
matrix inversion to division.

y := z − x
K := P/(P +R)

x := x+Ky

P := (1−K)P

Before we continue with the proof, I want you to look at those equations to recognize
what a simple concept these equations implement. The residual y is nothing more than the
measurement minus the previous state. The gain K is scaled based on how certain we are
about the last prediction vs how certain we are about the measurement. We choose a new
state x based on the old value of x plus the scaled value of the residual. Finally, we update
the uncertainty based on how certain we are about the measurement. Algorithmically this
should sound exactly like what we did in the last chapter.

So let’s finish off the algebra to prove that. It’s straightforward, and not at all necessary
for you to learn unless you are interested. Feel free to skim past if you like - it will not help
you with Kalman filtering.

Recall that the univariate equations for the update step are:

µ =
σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

,

σ2 =
1

1
σ2
1

+ 1
σ2
2

Here we will say that µ1 is the state x, and µ2 is the measurement z. That is entirely
arbitrary, we could have chosen the opposite assigment. Thus it follows that that σ2

1 is the
state uncertainty P , and σ2

2 is the measurement noise R. Let’s substitute those in.
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µ =
Pz +Rx

P +R
σ2 =

1
1
P

+ 1
R

I will handle µ first. The corresponding equation in the multivariate case is

x = x+Ky

= x+
P

P +R
(z − x)

=
P +R

P +R
x+

Pz − Px
P +R

=
Px+Rx+ Pz − Px

P +R

=
Pz +Rx

P +R
�

Now let’s look at σ2. The corresponding equation in the multivarate case is

P = (1−K)P

= (1− P

P +R
)P

= (
P +R

P +R
− P

P +R
)P

= (
P +R− P
P +R

)P

=
RP

P +R

=
1

P+R
RP

=
1

R
RP

+ P
RP

=
1

1
P

+ 1
R

�

So we have proven that the multivariate equations are equivalent to the univariate equa-
tions when we only have one state variable. I’ll close this section by recognizing one quibble
- I hand waved my assertion that H = 1 and F = 1. In general we know this is not true. For
example, a digital thermometer may provide measurement in volts, and we need to convert
that to temperature, and we use H to do that conversion. I left that issue out of the last
chapter to keep the explanation as simple and streamlined as possible. It is very straightfor-
ward to add that generalization to the equations of the last chapter, redo the algebra above,
and still have the same results. In practice we do not use the equations in the last chapter
to perform Kalman filtering due to the material in the next section which demonstrates how
much better the Kalman filter performs when we include unobserved variables. So I prefer
to leave the equations from the last chapter in their simplest form so that they economically
represent our central ideas without any extra complications.
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Exercise: Compare to a Filter That Incorporates Velocity The last example
did not use one of the fundamental insights of this chapter, unobserved variables. In this
example velocity would the the unobserved variable. Write a Kalman filter that uses the

state x =
[
x ẋ

]T
and compare it against the filter in the last exercise which used the state

x =
[
x
]
.

In [33]: # your code here

Solution We’ve already implemented a Kalman filter for position and velocity, so I will
provide the code without much comment, and then plot the result.

In [34]: def pos_vel_filter(R,Q):

f = KalmanFilter(dim_x=2, dim_z=1)

f.R = R

f.Q = Q_DWPA(2, sigma=Q)

f.F = np.array([[1,1],

[0,1]]) # state transition matrix

f.H = np.array([[1,0]]) # Measurement function

return f

def plot_compare_pos_vel(x0, p0, R, Q, move):

# storage for filter output

x1 = []

x2 = []

# initialize the filters

f1 = mkf_filter(R, Q)

f1.x[0,0] = 0.

f1.P[0,0] = p0

f2 = pos_vel_filter(R, Q)

f2.x[0,0] = 0.

f2.x[1,0] = 1.

f2.P *= p0

for i in range(50):

u = move + randn()

f1.predict(u=u)

f2.predict(u=u)

z = i*move + randn()

f1.update(z)

f2.update(z)
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x1.append(f1.x[0,0])

x2.append(f2.x[0,0])

plt.plot(x1, label=’1D Filter’)

plt.scatter(range(len(x2)), x2, c=’r’, label=’2D Filter’)

plt.title(’State’)

plt.legend(loc=4)

plt.show()

plot_compare_pos_vel(x0=0., p0=500., R=5., Q=.2, move=1.)

Discussion The output of the filter that incorporates velocity into the state produces
much better output than the filter that only tracks position - the output is much closer to
a straight line. We’ve already discussed why unobserved variables increase the precision of
the filter, so I will not repeat that explanation here. But the last exercise and this one is
intended to trigger a train of thought:

1. The equations in this chapter are mathematically equivalient to the equations in the
last chapter when we are only tracking one state variable.

2. Therefore, the simple Bayesian reasoning we used in the last chapter applies to this
chapter as well.

3. Therefore, the equations in this chapter might ‘look ugly’, but they really are just
implementing multiplying and addition of Gaussians.
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The above might not seem worth emphasizing, but as we continue in the book
the mathematical demands will increase significantly. It is easy to get lost in a
thicket of linear algebra equations when you read a book or paper on optimal
estimation. Any time you start getting lost, just go back to the basics of the
predict/update cycle based on residuals between measurements and predictions
and the meaning of the math will usually be much clearer. The math looks
daunting, and can sometimes be very hard to solve analytically, but the concepts
are quite simple.

7.11 Adjusting the Filter

Your results will vary slightly depending on what numbers your random generator creates
for the noise component of the noise, but the filter in the last section should track the actual
position quite well. Typically as the filter starts up the first several predictions are quite
bad, and varies a lot. But as the filter builds its state the estimates become much better.

Let’s start varying our parameters to see the effect of various changes. This is a very
normal thing to be doing with Kalman filters. It is difficult, and often impossible to exactly
model our sensors. An imperfect model means imperfect output from our filter. Engineers
spend a lot of time tuning Kalman filters so that they perform well with real world sensors.
We will spend time now to learn the effect of these changes. As you learn the effect of each
change you will develop an intuition for how to design a Kalman filter. As I wrote earlier,
designing a Kalman filter is as much art as science. The science is, roughly, designing the H
and F matrices - they develop in an obvious manner based on the physics of the system we
are modeling. The art comes in modeling the sensors and selecting appropriate values for
the rest of our variables.

Let’s look at the effects of the noise parameters R and Q. I will only run the filter for
twenty steps to ensure we can see see the difference between the measurements and filter
output. I will start by holding R to 5 and vary Q.

In [35]: dog = DogSensor(velocity=1, noise=30)

zs = [dog.sense() for t in range(30)]

plot_track (data=zs, R=5, Q=10,count=30, plot_P=False, title=’R = 5, Q = 10’)

plot_track (data=zs, R=5, Q=.02,count=30, plot_P=False, title=’R = 5, Q = 0.02’)
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The filter in the first plot should follow the noisy measurement almost exactly. In the
second plot the filter should vary from the measurement quite a bit, and be much closer to
a straight line than in the first graph.

In the Kalman filter R is the measurement noise and Q is the process uncertainty. R is
the same in both plots, so ignore it for the moment. Why does Q affect the plots this way?
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Let’s remind ourselves of what the term process uncertainty means. Consider the problem
of tracking a ball. We can accurately model its behavior in static air with math, but if there
is any wind our model will diverge from reality.

In the first case we set Q = 10, which is quite large. In physical terms this is telling the
filter “I don’t trust my motion prediction step”. Strictly speaking, we are telling the filter
there is a lot of external noise that we are not modeling with F, but the upshot of that is
to not trust the motion prediction step. So the filter will be computing velocity (ẋ), but
then mostly ignoring it because we are telling the filter that the computation is extremely
suspect. Therefore the filter has nothing to use but the measurements, and thus it follows
the measurements closely.

In the second case we set Q = 0.02, which is quite small. In physical terms we are
telling the filter “trust the motion computation, it is really good!”. Again, more strictly this
actually says there is very small amounts of process noise, so the motion computation will
be accurate. So the filter ends up ignoring some of the measurement as it jumps up and
down, because the variation in the measurement does not match our trustworthy velocity
prediction.

AUTHOR’S NOTE: move covariance matrix coverage here, then do R, then
Q. Order as below is confusing.

7.11.1 Designing Q

author’s note: text needs to move to kalman math chapter. leaving here for
now. Do not read

But what does “quite large” and “quite small” mean, and what should Q contain? The
numbers in the Q matrix are not arbitrary, but the variances of the process noise. This
means that they have the same units as the rest of the system. So, suppose the noise of our
sensor has a standard deviation of 0.5m, and the rest of our system is specified in meters as
well. Variance is the standard deviation squared, so if σ = 0.5, then σ2 = 0.25.

If we have m state variables then Q will be an m×m matrix. Q is a covariance matrix
for the state variables, so it will contain the variances and covariances for the process noise
for each state variable.

Let’s make this concrete. Assume our state variables are x =
[
x ẋ

]T
. (note: it is

customary to use this transpose form of writing an matrix in text. It is how we denote that
x is a column matrix without taking up a lot of line space). Then Q will contain:

Q =

[
σ2
x σxẋ

σẋx σ2
ẋ

]
But again, what does this mean? This is a one dimensional problem, where our variables

are x and ẋ. Assume we are tracking a person walking in 1D, so x is their position, and ẋ is
their velocity. We have no state variable for ẍ, so we are assuming acelleration is zero, and
thus their velocity is constant. No one walks with constant velocity, even if they are trying
to do so. The process noise specifies how much variance there is in each state variable due
to the changes in velocity that inevitably happen.

You will very typically see Q expressed in this form (indeed, this is what the code imme-
diately above does):
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[
0 0
0 0.1

]
Why all zeros but in the last row and column. This is a useful approximation that we can

use for Q under certain circumstances. Think about the person. As they accelerate, that
will also alter their velocity, and eventually their position. But if the acceleration is small
compared to our time sample rate, then the changes to distance will small. This follows from
the Newtonian equations:

v = a∆t

d =
a

2
∆t2

If t is small and a is small than the contribution of a
2
∆t2 will be extremely small. In this

case it is safe to set all of the terms in Q to 0 except the variance for the last term.
On the other hand, let’s suppose this is not the case. How should Q be designed? Our

design of the system is:

Xn+1 = ΦXn + Un

where ΦXn is our state transition, which computes x at time n + 1 using Newtonian
equations, and Un is the white noise associated with the process. For a walking human,
based on the equations above we get

Un =

[
a∆t2

2

∆t

]
So white noise has the variance Un and a mean of 0, which we notate as w ∼ N (0, Q).
Finding an analytic value for Q in a simple problem like this is not difficult, but it quickly

becomes difficult to impossible as the number of state variables increase. So in this chapter
we will use the simplification that only the variance of the last term is important. In the
Kalman filter math chapter we will discuss finding an analytic solution for Q, and then
present C. F. van Loan’s extremely useful numerical technique for finding Q, which is what
you will typically use in practice.

7.11.2 Designing R

Now let’s leave Q = 0.1, but bump R up to 1000. This is telling the filter that the measure-
ment noise is very large.

In [36]: plot_track (data=zs, R=1000, Q=0.1,count=30, plot_P=False, title=’R = 1000, Q = 0.1’)
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The filter output should be much closer to the green line, especially after 10-20 cycles. If
you are running this in Ipython Notebook, I strongly urge you to run this many times in a
row (click inside the code box, and press CTRL-Enter). Most times the filter tracks almost
exactly with the actual position, randomly going slightly above and below the green line,
but sometimes it stays well over or under the green line for a long time. What is happening
in the latter case?

The filter is strongly preferring the motion update to the measurement, so if the prediction
is off it takes a lot of measurements to correct it. It will eventually correct because the velocity
is a hidden variable - it is computed from the measurements, but it will take awhile.

To some extent you can get similar looking output by varying either R or Q, but I urge
you to not ‘magically’ alter these until you get output that you like. Always think about the
physical implications of these assignments, and vary R and/or Q based on your knowledge
of the system you are filtering.

7.12 A Detailed Examination of the Covariance Matrix

So far I have not given a lot of coverage of the covariance matrix. P, the covariance matrix
is nothing more than the variance of our state - such as the position of our dog. It has
many elements in it, but don’t be daunted; we will learn how to interpret a very large 9×9
covariance matrix, or even larger.

Recall the beginning of the chapter, where we provided the equation for the covariance
matrix. It read:
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P =


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n


(I have substituted P for Σ because of the nomenclature used by the Kalman filter

literature).
The diagonal contains the variance of each of our state variables. So, if our state variables

are

x =

(
x
ẋ

)
and the covariance matrix happens to be

P =

(
2 0
0 6

)
we know that the variance of x is 2, and the variance of ẋ is 6. The off diagonal elements

are all 0, so we also know that x and ẋ are not correlated. Recall the ellipses that we drew
of the covariance matrices. Let’s look at the ellipse for the matrix.

In [37]: P = np.array([[2,0],[0,6]])

stats.plot_covariance_ellipse ((0,0), P, facecolor=’g’, alpha=0.2,

title=’|2 0|\n|0 6|’)

Of course it is unlikely that the position and velocity of an object remain uncorrelated
for long. Let’s look at a more typical covariance matrix
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In [38]: P = np.array([[2,2.4],[2.4,6]])

stats.plot_covariance_ellipse ((0,0), P, facecolor=’g’, alpha=0.2,

title =’|2.0 2.4|\n|2.4 6.0|’)

Here the ellipse is slanted, signifying that x and ẋ are correlated (and, of course, depen-
dent - all correlated variables are dependent). You may or may not have noticed that the
off diagonal elements were set to the same value, 2.4. This was not an accident. Let’s look
at the equation for the covariance for the case where the number of dimensions is two.

P =

(
σ2

1 pσ1σ2

pσ2σ1 σ2
2

)
Look at the computation for the off diagonal elements.

P0,1 = pσ1σ2

P1,0 = pσ2σ1.

If we re-arrange terms we get

P0,1 = pσ1σ2

P1,0 = pσ1σ1, yielding

P0,1 = P1,0

In general, we can state that Pi,j = Pj,i.
So for my example I multiplied the diagonals, 2 and 6, to get 12, and then scaled that

with the arbitrarily chosen p = .2 to get 2.4.
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Let’s get back to concrete terms. Let’s start by revisiting plotting a track. I will hard
code the data and noise to avoid being at the mercy of the random number generator, which
might generate data that does not illustrate what I want to talk about. I will start by using
the same parameters as a chart above: R=5, Q=.02, and P=500.

In [39]: # guarantee the noise is the same each time so I can be sure of

# what the graphs look like.

zs = [-6.947, 12.467, 6.899, 2.643, 6.980, 5.820, 5.788, 10.614, 5.210,

14.338, 11.401, 19.138, 14.169, 19.572, 25.471, 13.099, 27.090,

12.209, 14.274, 21.302, 14.678, 28.655, 15.914, 28.506, 23.181,

18.981, 28.197, 39.412, 27.640, 31.465, 34.903, 28.420, 33.889,

46.123, 31.355, 30.473, 49.861, 41.310, 42.526, 38.183, 41.383,

41.919, 52.372, 42.048, 48.522, 44.681, 32.989, 37.288, 49.141,

54.235, 62.974, 61.742, 54.863, 52.831, 61.122, 61.187, 58.441,

47.769, 56.855, 53.693, 61.534, 70.665, 60.355, 65.095, 63.386]

plot_track (data=zs, R=5, Q=.02, P=500., count=len(zs), plot_P=False, title=’P=500’)

Looking at the output we see a very large spike in the filter output at the beginning.
If you look at the data (dotted red line) you will see a corresponding, smaller spike in
the beginning of the data. We set P=500, which corresponds to P = [ 500 0

0 500 ]. We now have
enough information to understand what this means, and how the Kalman filter treats it. The
500 in the upper left hand corner corresponds to σ2

x; therefore we are saying the standard
deviation of x is

√
500, or roughly 22.36 meters, assuming our measurements are in meters.

If we recall how standard deviations work, roughly 99% of the samples occur withing 3σ,
therefore P=500 is telling the Kalman filter that the initial estimate could be up to 67 meters
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off. That is a pretty large error, so when the measurement spikes the Kalman filter distrusts
its own estimate and jumps wildly to try to incorporate the measurement. Then, as the filter
evolves P quickly converges to a more realistic value.

Now let us see the effect of a smaller initial value for P.

In [40]: plot_track (data=zs, R=5, Q=.02, P=1., count=len(zs), plot_P=False, title=’P=1’)

This plot does not have the spike that the former plot did; the filter starts tracking the
measurements and doesn’t take any time to ‘settle’ to the signal.

Do not conclude from this that the ‘magic’ is to just use a small P. Yes, this will avoid
having the Kalman filter take time to accurately track the signal, but if we are truly uncertain
about the initial measurements this can cause the filter to generate very bad results. If we
are tracking a living object we are probably very uncertain about where it is before we start
tracking it. On the other hand, if we are filtering the output of a thermometer, we are just
as certain about the first measurement as the 1000th. For your Kalman filter to perform
well you must set P to a value that truly reflects your knowledge about the data.

Let’s see the result of a bad initial estimate coupled with a very small P We will set our
initial estimate at 100m (whereas the dog starts at 0m), but set P=1.

In [41]: x = np.array([[100,0]]).T

plot_track(data=zs, R=5, Q=.02, P=1., initial_x=x,count=len(zs),

plot_P=False, title=’P=1’)
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We can see that the initial estimates are terrible, up to around step 15 to 20. This is
because we told the Kalman filter that we strongly believe in our initial estimate of 100m.

Now, let’s provide a more reasonable value for P and see the difference.

In [42]: x = np.array([[100,0]]).T

plot_track(data=zs, R=5, Q=.02, P=500., initial_x=x,count=len(zs),

plot_P=False, title=’P=500’)
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In this case the Kalman filter is very uncertain about the initial state, so it converges onto
the signal much faster. It is producing good output after only 5 to 6 evolutions. With the
theory we have developed so far this is about as good as we can do. However, this scenario
is a bit artificial; if we do not know where the object is when we start tracking we do not
initialize the filter to some arbitrary value, such as 0 or 100. Instead, we would normally
take the first measurement, use that to initialize the Kalman filter, and proceed from there.
But this is an engineering decision. You really need to understand the domain in which you
are working and initialize your filter on the best available information. For example, suppose
we were trying to track horses in a horse race. The initial measurements might be very bad,
and provide you with a position far from the starting gate. We know that the horse must
of started at the starting gate; initializing the filter to the initial measurement would lead
to suboptimal results. In this scenario we would want to always initialize the Kalman filter
with the starting gate position.

If we have the luxury of not needing to perform the filtering in real time, as the data
comes in, we can take advantage of other techniques. We can ‘eyeball’ the data and see
that the initial measurements are giving us reasonable values for the dog’s position because
we can see all of the data at once. A fixed lag smoother will look N steps ahead before
computing the state, and other filters will do things like first run forwards, than backwards
over the data. This will be the subject of later chapters. It is worthwhile to keep in mind that
whenever possible we should prefer this sort of batch processing because it takes advantage
of all available information. It does incur cost of additional processing time and increased
storage due to the requirement to store some or all of the measurements. And, of course,
batch processing does not work if we need real time results, such as when using GPS in our
car.

Lets do another Kalman filter for our dog, and this time plot the covariance ellipses on
the same plot as the position.

In [43]: def plot_track_ellipses(noise, count, R, Q=0, P=20., plot_P=True, title=’Kalman Filter’):

dog = DogSensor(velocity=1, noise=noise)

f = dog_tracking_filter(R=R, Q=Q, cov=P)

ps = []

zs = []

cov = []

for t in range (count):

z = dog.sense()

f.update (z)

ps.append (f.x[0,0])

cov.append(f.P)

zs.append(z)

f.predict()

p0, = plt.plot([0,count],[0,count],’g’, label=’actual’)

p1, = plt.plot(range(1,count+1),zs,c=’r’, linestyle=’dashed’, label=’measurement’)

p2, = plt.plot(range(1,count+1),ps, c=’b’, label=’filter’)
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plt.legend(loc=’best’)

plt.title(title)

for i,p in enumerate(cov):

stats.plot_covariance_ellipse ((i+1, ps[i]), cov=p, axis_equal=False,

facecolor=’g’, edgecolor=None, alpha=0.2)

if i == len(cov)-1:

s = (’$\sigma^2_{pos} = %.2f$’ % p[0,0])

plt.text (20,10,s,fontsize=18)

s = (’$\sigma^2_{vel} = %.2f$’ % p[1,1])

plt.text (20,5,s,fontsize=18)

#plt.xlim((-10,30))

#plt.ylim((-10,40))

plt.show()

plot_track_ellipses (noise=5, R=5, Q=.2, count=20, title=’R = 5’)

plot_track_ellipses (noise=5, R=.5, Q=.2, count=20, title=’R = 0.5’)
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The output on these is a bit messy, but you should be able to see what is happening. In
both plots we are drawing the covariance matrix for each point. We start with the covariance
P = ( 50 0

0 50 ), which signifies a lot of uncertainty about our initial belief. After we receive the
first measurement the Kalman filter updates this belief, and so the variance is no longer as
large. In the top plot the first ellipse (the one on the far left) should be a slightly squashed
ellipse. As the filter continues processing the measurements the covariance ellipse quickly
shifts shape until it settles down to being a long, narrow ellipse tilted in the direction of
movement.

Think about what this means physically. The x-axis of the ellipse denotes our uncertainty
in position, and the y-axis our uncertainty in velocity. So, an ellipse that is taller than it is
wide signifies that we are more uncertain about the velocity than the position. Conversely,
a wide, narrow ellipse shows high uncertainty in position and low uncertainty in velocity.
Finally, the amount of tilt shows the amount of correlation between the two variables.

The first plot, with R = 5, finishes up with an ellipse that is wider than it is tall. If
that is not clear I have printed out the variances for the last ellipse in the lower right hand
corner. The variance for position is 3.85, and the variance for velocity is 3.0.

In contrast, the second plot, with R = 0.5, has a final ellipse that is taller than wide.
The ellipses in the second plot are all much smaller than the ellipses in the first plot. This
stands to reason because a small R implies a small amount of noise in our measurements.
Small noise means accurate predictions, and thus a strong belief in our position.

7.13 Question: Explain Ellipse Differences

Why are the ellipses for R = 5 shorter, and more tilted than the ellipses for R = 0.5. Hint:
think about this in the context of what these ellipses mean physically, not in terms of the
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math. If you aren’t sure about the answer,change R to truly large and small numbers such
as 100 and 0.1, observe the changes, and think about what this means.

7.13.1 Solution

The x axis is for position, and y is velocity. An ellipse that is vertical, or nearly so, says
there is no correlation between position and velocity, and an ellipse that is diagonal says that
there is a lot of correlation. Phrased that way, it sounds unlikely - either they are correlated
or not. But this is a measure of the output of the filter, not a description of the actual,
physical world. When R is very large we are telling the filter that there is a lot of noise
in the measurements. In that case the Kalman gain K is set to favor the prediction over
the measurement, and the prediction comes from the velocity state variable. So, there is a
large correlation between x and ẋ. Conversely, if R is small, we are telling the filter that the
measurement is very trustworthy, and K is set to favor the measurement over the prediction.
Why would the filter want to use the prediction if the measurement is nearly perfect? If the
filter is not using much from the prediction there will be very little correlation reported.

This is a critical point to understand!. The Kalman filter is just a mathematical
model for a real world system. A report of little correlation does not mean there is no corre-
lation in the physical system, just that there was no linear correlation in the mathematical
model. It’s just a report of how much measurement vs prediction was incorporated into the
model.

Let’s bring that point home with a truly large measurement error. We will set R = 500.
Think about what the plot will look like before scrolling down. To emphasize the issue, I
will set the amount of noise injected into the measurements to 0, so the measurement will
exactly equal the actual position.

In [44]: plot_track_ellipses (noise=0, R=500, Q=.2, count=7, title=’R = 500’)
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I hope the result was what you were expecting. The ellipse quickly became very wide
and not very tall. It did this because the Kalman filter mostly used the prediction vs the
measurement to produce the filtered result. We can also see how the filter output is slow to
acquire the track. The Kalman filter assumes that the measurements are extremely noisy,
and so it is very slow to update its estimate for ẋ.

Keep looking at these plots until you grasp how to interpret the covariance matrix P.
When you start dealing with a, say, 9×9 matrix it may seem overwhelming - there are 81
numbers to interpret. Just break it down - the diagonal contains the variance for each state
variable, and all off diagonal elements are the product of two variances and a scaling factor
p. You will not be able to plot a 9×9 matrix on the screen because it would require living
in 10-D space, so you have to develop your intution and understanding in this simple, 2-D
case.

sidebar: when plotting covariance ellipses, make sure to always use
plt.axis(‘equal’) in your code. If the axis use different scales the ellipses will
be drawn distorted. For example, the ellipse may be drawn as being taller than
it is wide, but it may actually be wider than tall.

7.14 Walking Through the KalmanFilter Code (Op-

tional)

** author’s note: this code is somewhat old. This section needs to be edited; I would not
pay a lot of attention to it right now. **

The kalman filter code that we are using is implemented in my Python library
filterpy. If you are interested in the full implementation of the filter you should look
in filterpy\kalman\kalman filter.py. In the following I will present a simplified im-
plementation of the same code. The code in the library handles issues that are beyond the
scope of this chapter, such as numerical stability and support for the extended Kalman filter,
subject of a later chapter.

The code is implemented as the class KalmanFilter. Some Python programmers are
not a fan of object oriented (OO) Python, and eschew classes. I do not intend to enter into
that battle other than to say that I have often seen OO abused. Here I use the class to
encapsulate the data that is pertinent to the filter so that you do not have to store and pass
around a half dozen variables everywhere.

The method init () is used by Python to create the object. Here is the method

def __init__(self, dim_x, dim_z):

""" Create a Kalman filter. You are responsible for setting the

various state variables to reasonable values; the defaults below will

not give you a functional filter.

Parameters
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----------

dim_x : int

Number of state variables for the Kalman filter. For example, if

you are tracking the position and velocity of an object in two

dimensions, dim_x would be 4.

This is used to set the default size of P, Q, and u

dim_z : int

Number of of measurement inputs. For example, if the sensor

provides you with position in (x,y), dim_z would be 2.

"""

self.dim_x = dim_x

self.dim_z = dim_z

self.x = np.zeros((dim_x,1)) # state

self.P = np.eye(dim_x) # uncertainty covariance

self.Q = np.eye(dim_x) # process uncertainty

self.u = 0 # control input vector

self.B = np.zeros((dim_x,1))

self.F = 0 # state transition matrix

self.H = 0 # Measurement function

self.R = np.eye(dim_z) # state uncertainty

# identity matrix. Do not alter this.

self._I = np.eye(dim_x)

More than anything this method exists to document for you what the variable names are
in the filter. To do anything useful with this filter you will have to modify most of these
values. Some are set to useful values. For example, R is set to an identity matrix; if you want
the diagonals of R to be 10. you may write (as we did earlier in this chapter) my filter.R

+= 10..
The names used for each variable matches the math symbology used in this chapter.

Thus, self.P is the covariance matrix, self.x is the state, and so on.
The predict function implements the predict step of the Kalman equations, which are

x̂ = Fx + Bu

P = FPFT + Q

The corresponding code is

def predict(self):

self.x = self.F.dot(self.x) + self.B.dot(self.u)

self.P = self.F.dot(self.P).dot(self.F.T) + self.Q
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I haven’t discussed the use of numpy much until now, but this method illustrates the
power of that package. We use numpy’s array class to store our data and perform the linear
algebra for our filters. array implements matrix multiplication using the .dot() method;
if you use * you will get element-wise multiplication. As a heavy user of linear algebra this
design is somewhat distressing as I use matrix multiplication far more often than element-
wise multiplication. However, this design is due to historical developments in the library and
we must live with it. The Python community has recognized this problem, and in Python
3.5 we will have the @ operator to implement matrix multiplication.

With that in mind, the Python code self.F.dot(self.x) implements the math expres-
sion Fx.

Numpy’s array implements matrix transposition by using the .T property. Therefore,
F.T is the python implementation of FT .

The update() method implements the update equations of the Kalman filter, which are

ỹ = z−Hx̂

K = PHT (HPHT + R)−1

x̂ = x̂ + Kỹ

P = (I−KH)P

The corresponding code is:

def update(self, Z, R=None):

"""

Add a new measurement (Z) to the kalman filter. If Z is None, nothing

is changed.

Optionally provide R to override the measurement noise for this

one call, otherwise self.R will be used.

self.residual, self.S, and self.K are stored in case you want to

inspect these variables. Strictly speaking they are not part of the

output of the Kalman filter, however, it is often useful to know

what these values are in various scenarios.

"""

if Z is None:

return

if R is None:

R = self.R

elif np.isscalar(R):

R = np.eye(self.dim_z) * R

# error (residual) between measurement and prediction

self.residual = Z - self.H.dot(self.x)
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# project system uncertainty into measurement space

self.S = self.H.dot(self.P).dot(self.H.T) + R

# map system uncertainty into kalman gain

self.K = self.P.dot(self.H.T).dot(linalg.inv(self.S))

# predict new x with residual scaled by the kalman gain

self.x = self.x + self.K.dot(self.residual)

KH = self.K.dot(self.H)

I_KH = self._I - KH

self.P = (I_KH.dot(self.P.dot(I_KH.T)) +

self.K.dot(self.R.dot(self.K.T)))

There are a few more complications in this piece of code compared to predict() but it
should still be quite clear.

The first complication are the lines:

if Z is None:

return

This just lets you deal with missing data in a natural way. It is typical to use None to
indicate the absence of data. If there is no data for an update we skip the update equations.
This bit of code means you can write something like:

z = read_sensor() # may return None if no data

my_kf.update(z)

instead of: z = read sensor() if z is not None: my kf.update(z)
Reasonable people will argue whether my choice is cleaner, or obscures the fact that

we do not update if the measurement is None. Having written a lot of avionics code my
proclivity is always to do the safe thing. If we pass ‘None’ into the function I do not want an
exception to occur; instead, I want the reasonable thing to happen, which is to just return
without doing anything. If you feel that my choice obscures that fact, go ahead and write
the explicit if statement prior to calling update() and get the best of both worlds.

The next bit of code lets you optionally pass in a value to override R. It is common for the
sensor noise to vary over time; if it does you can pass in the value as the optional parameter
R.

if R is None:

R = self.R

elif np.isscalar(R):

R = np.eye(self.dim_z) * R
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This code will use self.R if you do not provide a value for R. If you did provide a value,
it will check if you provided a scalar (number); if so it constructs a matrix of the correct
dimension for you. Otherwise it assumes that you passed in a matrix of the correct dimension.

The rest of the code implements the Kalman filter equations, with one exception. Instead
of implementing

P = (I−KH)P

it implements the somewhat more complicated form

P = (I−KH)P(I−KRK)T + KRKT

.
The reason for this altered equation is that it is more numerically stable than the former

equation, at the cost of being a bit more expensive to compute. It is not always possible
to find the optimal value for K, in which case the former equation will not produce good
results because it assumes optimality. The longer reformulation used in the code is derived
from more general math that does not assume optimality, and hence provides good results
for non-optimal filters (such as when we can not correctly model our measurement error).

Various texts differ as to whether this form of the equation should always be used, or only
used when you know you need it. I choose to expend a bit more processing power to ensure
stability; if your hardware is very constrained and you are able to prove that the simpler
equation is correct for your problem then you might choose to use it instead. Personally, I
find that a risky approach and do not recommend it to non-experts. Brown’s Introduction
to Random Signals and Applied Kalman Filtering [3] discusses this issue in some detail, if
you are interested.

7.15 References

• [1] http://docs.scipy.org/doc/scipy/reference/tutorial/stats.htmly

• [2] https://en.wikipedia.org/wiki/Kalman filter

• [3] Brown, Robert Grover. Introduction to Random Signals and Applied Kalman Fil-
tering John Wiley & Sons, Inc. 2012

• [4] filterpy library. Roger Labbe. https://github.com/rlabbe/filterpy
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Chapter 8

Kalman Filter Math

** author’s note:** the ordering of material in this chapter is questionable. I delve into
solving ODEs before discussing the basic Kalman equations. If you are reading this while it
is being worked on (so long as this notice exists), you may find it easier to skip around a bit
until I organize it better.

If you’ve gotten this far I hope that you are thinking that the Kalman filter’s fearsome
reputation is somewhat undeserved. Sure, I hand waved some equations away, but I hope
implementation has been fairly straightforward for you. The underlying concept is quite
straightforward - take two measurements, or a measurement and a prediction, and choose
the output to be somewhere between the two. If you believe the measurement more your
guess will be closer to the measurement, and if you believe the prediction is more accurate
your guess will lie closer it it. That’s not rocket science (little joke - it is exactly this math
that got Apollo to the moon and back!).

Well, to be honest I have been choosing my problems carefully. For any arbitrary problem
finding some of the matrices that we need to feed into the Kalman filter equations can be
quite difficult. I haven’t been too tricky, though. Equations like Newton’s equations of
motion can be trivially computed for Kalman filter applications, and they make up the bulk
of the kind of problems that we want to solve. If you are a hobbyist, you can safely pass
by this chapter for now, and perhaps forever. Some of the later chapters will assume the
material in this chapter, but much of the work will still be accessible to you.

But, I urge everyone to at least read the first section, and to skim the rest. It is not much
harder than what you have done - the difficulty comes in finding closed form expressions for
specific problems, not understanding the math in this chapter.

8.1 Modeling a Dynmaic System that Has Noise

We need to start by understanding the underlying equations and assumptions that the
Kalman filter uses. We are trying to model real world phenomena, so what do we have
to consider?

First, each physical system has a process. For example, a car traveling at a certain
velocity goes so far in a fixed amount of time, and it’s velocity varies as a function of it’s
acceleration. We describe that behavior with the well known Newtonian equations we learned
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in high school.

v = at

x =
1

2
at2 + v0t+ d0

And once we learned calculus we saw them in this form:

v =
dx

dt
a =

dv

dt
=
d2x

dt2

A typical problem would have you compute the distance travelled given a constant ve-
locity or acceleration. But, of course we know this is not all that is happening. First, we do
not have perfect measures of things like the velocity and acceleration - there is always noise
in the measurements, and we have to model that. Second, no car travels on a perfect road.
There are bumps that cause the car to slow down, there is wind drag, there are hills that
raise and lower the speed. If we do not have explicit knowledge of these factors we lump
them all together under the term “process noise”.

Trying to model all of those factors explicitly and exactly is impossible for anything
but the most trivial problem. I could try to include equations for things like bumps in the
road, the behavior of the car’s suspension system, heck, the effects of hitting bugs with the
windshield, but the job would never be done - there would always be more effects to add.
What is worse, each of those models would in themselves be a simplification - do I assume
the wind is constant, that the drag of the car is the same for all angles of the wind, that the
suspension act as perfect springs, that the suspension for each wheel acts identically, and so
on.

So control theory makes a mathematically correct simplification. We acknowledge that
there are many factors that influence the system that we either do not know or that we don’t
want to have to model. At any time t we say that the actual value (say, the position of our
car) is the predicted value plus some unknown process noise:

x(t) = xpred(t) + noise(t)

This is not meant to imply that noise(t) is a function that we can derive analytically or
that it is well behaved. If there is a bump in the road at t = 10 then the noise factor will just
incorporate that effect. Again, this is not implying that we model, compute, or even know
the value of noise(t), it is merely a statement of fact - we can always describe the actual
value as the predicted value from our idealized model plus some other value.

Let’s express this in linear algebra. Using the same notation from previous chapters, we
can say that our model of the system (without noise) is:

f(x) = Fx

That is, we have a set of linear equations that describe our system. For our car, mathbfF
will be the coefficients for Newton’s equations of motion.

Now we need to model the noise. We will just call that w, and add it to the equation.

f(x) = Fx + w

181



Finally, we need to consider inputs into the system. We are dealing with linear problems
here, so we will assume that there is some input u into the system, and that we have some
linear model that defines how that input changes the system. For example, if you press down
on the accelerator in your car the car will accelerate. We will need a matrix B to convert u
into the effect on the system. We just add that into our equation:

f(x) = Fx + Bu + w

And that’s it. That is the equation that Kalman set out to solve, and he found a way to
compute an optimal solution if we assume certain properties of w.

However, we took advantage of something I left mostly unstated in the last chapter.
We were able to provide a definition for F because we were able to take advantage of the
exact solution that Newtonian equations provide us. However, if you have an engineering
background you will realize what a small class of problems that covers.If you don’t, I will
explain it next, and provide you with several ways to compute F.

8.2 Modelling Dynamic Systems

Modelling dynamic systems is properly the topic of at least one undergraduate course in
mathmatics; I took several. However, I can present enough of the theory to allow us to create
the system equations for many different Kalman filters, and give you enough background to
at least follow the mathematics in the literature. My goal is to get you to the stage where
you can read Brown, Zarchan, Bar-Shalom, or any other book and understand them well
enough to implement the algorithms. Even without reading those books, you should be able
to design many common forms of Filters by following the examples.

We model dynamic systems with a set of differential equations. For example, we already
presented the Newtonian equation

v = ẋ

where ẋ is the notation for the derivative of x, or dx
dt

.
In general terms we can then say that a dynamic system consists of equations of the form

g(t) = ẋ

if the behaviour of the system depends on time. However, if the system is time invariant
the equations are of the form

f(x) = ẋ

What does time invariant mean? Consider a home stereo. If you input a signal x into
it at time t, it will output some signal f(x) a moment later. If you instead make the input
at a later time the output signal will still be exactly the same, just shifted in time. This is
different from, say, an aircraft. If you make a control input to the aircraft at a later time it’s
behavior will be different because it will have burned additonal fuel (and thus lost weight),
drag may be different due to being at a different altitude, and so on.
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We can solve these equations by integrating each side. The time variant equation is very
straightforward. We essentially solved this problem with the Newtonian equations above,
but let’s be explicit and write it out. Starting with

ẋ = v

we get the expected ∫
ẋdt =

∫
vdtx = vt+ x0

However, integrating the time invariant equation is not so straightforward.

ẋ = f(x)
dx

dt
= f(x)

Using the separation of variables techniques, we divide by f(x) and move the dx term to
the right so we can integrate each side:∫ x

x0

1

f(x)
dx =

∫ t

t0

dt

If we let the solution to the left hand side by named F (x), we get

F (x)− f(x0) = t− t0
We then solve for x with

F (x) = t− t0 + F (x0)x = F−1[t− t0 + F (x0)]

In other words, we need to find the inverse of F . This is not at all trivial, and a significant
amount of course work in a STEM education is devoted to finding tricky, analytic solutions
to this problem, backed by several centuries of research.

In the end, however, they are tricks, and many simple forms of f(x) either have no
closed form solution, or pose extreme difficulties. Instead, the practicing engineer turns to
numerical methods to find a solution to her problems. I would suggest that students would
be better served by learning fewer analytic mathematical tricks and instead focusing on
learning numerical methods.

8.2.1 Finding the Fundamental Matrix for Time Invariant Sys-
tems

So let me leap over quite a bit of mathematics and present the typical numerical techniques
used in Kalman filter design.

First, we express the system equations in state-space form (i.e. using linear algebra equa-
tions) with

ẋ = Fx
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Now we can assert that we want to find the fundamental matrix Φ that propagates the
state with the equation

x(t) = Φ(t− t0)x(t0)

In other words, we just want to compute the value of x at time t by multipying its
previous value by some matrix Φ.

Broadly speaking there are three ways to find Φ. Linear Time Invarient Theory, known
as LTI System Theory, gives us a way to find Φ using the inverse Laplace transform. You
are either nodding your head now, or completely lost. Don’t worry, I will not be using the
Lapace transform in this book except in this paragraph, as the computation is quite difficult
to perform in practice, and there are better techniques we can avail ourselves to. LTI system
theory tells us that

Φ(t) = L−1[(sI− F)−1]

I have no intention of going into this other than to say that the inverse Lapace transform
converts a signal into the frequency (time) domain, but finding a solution to the equation
above is non-trivial. If you are interested, the Wikipedia article on LTI system theory
provides an introduction [1].

The second technique is to use a Taylor-series expansion:

Φ(t) = eFt = I + Ft+
(Ft)2

2!
+

(Ft)3

3!
+ ...

This is much easier to compute, and is the typical approach used in Kalman filter design
when the filter is reasonably small. If you are wondering where e came from, I again point
to wikipedia - this time the matrix exponential article [2]. Here the important point is to
recognize the very simple and regular form this equation takes.

Finally, there are numerical techniques to find Φ. As filters get larger finding analytical
solutions becomes very tedious (though packages like Sympy make it easier). C. F. van Loan
[3] has developed a technique that finds both Φ and Q numerically.

I have implemented van Loan’s method in filterpy. You may use it as follows:

from filterpy.common import van_loan_discretization

F = np.array([[0,1],[-1,0]], dtype=float)

G = np.array([[0.],[2.]]) # white noise scaling

phi, Q = van_loan_discretization(F, G, dt=0.1)

See the docstring documentation for van loan discretization for more information. In
IPython, or in this notebook, just type van loan discretization?? and press return.

8.3 Walking Through the Kalman Filter Equations

I promised that you would not have to understand how to derive Kalman filter equations,
and that is true. However, I do think it is worth walking through the equations one by one
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and becoming familiar with the variables. If this is your first time through the material feel
free to skip ahead to the next section. However, you will eventually want to work through
this material, so why not now? You will need to have passing familiarity with these equations
to read material written about the Kalman filter, as they all presuppose that you are familiar
with them. I will reiterate them here for easy reference.

Predict Step

x = Fx + Bu (1)

P = FPFT + Q (2)

Update Step

y = z−Hx (3)

S = HPHT + R (4)

K = PHTS−1 (5)

x = x + Ky (6)

P = (I−KH)P (7)

I will start with the update step, as that is what we started with in the one dimensional
Kalman filter case. Our first equation is

γ = z−Hx (3)

On the right we have Hx. That should be recognizable as the measurement function.
Multiplying H with x puts x into measurement space; in other words, the same basis and
units as the sensor’s measurements. The variable z is just the measurement; it is typical, but
not universal to use z to denote measurements in the literature (y is also sometimes used).
Do you remember this chart?

In [2]: import mkf_internal

mkf_internal.show_residual_chart()
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The blue point labeled “prediction” is the output of Hx, and the dot labeled “measure-
ment” is z. Therefore, γ = z −Hx is how we compute the residual, drawn in red, where γ
is the residual.

The next two lines are the formidable:

S = HPHT + R (4)

K = PHTS−1 (5)

Unfortunately it is a fair amount of linear algebra to derive this. The derivation can be
quite elegant, and I urge you to look it up if you have the mathematical education to follow
it. But K is just the Kalman gain - the ratio of how much measurement vs prediction we
should use to create the new estimate. R is the measurement noise, and P is our uncertainty
covariance matrix from the prediction step.

** author’s note: the following aside probably belongs elsewhere in the book**

As an aside, most textbooks are more exact with the notation, in Gelb[1] for
example, Pk(+) is used to denote the uncertainty covariance for the prediction
step, and Pk(-) for the uncertainty covariance for the update step. Other texts
use subscripts with ‘k|k-1’, superscipt −, and many other variations. As a pro-
grammer I find all of that fairly unreadable; I am used to thinking about variables
changing state as a program runs, and do not use a different variable name for
each new computation. There is no agreed upon format, so each author makes
different choices. I find it challenging to switch quickly between books an pa-
pers, and so have adopted this admittedly less precise notation. Mathematicians
will write scathing emails to me, but I hope the programmers and students will
rejoice.
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If you are a programmer trying to understand a paper’s math equations, I strongly
recommend just removing all of the superscripts, subscripts, and diacriticals,
replacing them with a single letter. If you work with equations like this every
day this is superflous advice, but when I read I am usually trying to understand
the flow of computation. To me it is far more understandable to remember that
P in this step represents the updated value of P computed in the last step, as
opposed to trying to remember what Pk−1(+) denotes, and what its relation to
Pk(−) is, if any.

For example, for the equation of S above, Wikipedia uses

Sk = HkPk|k−1H
T
k + Rk

Is that more exact? Absolutely. Is it easier or harder to read? You’ll need to
answer that for yourself.

For reference, the Appendix Symbols and Notations lists the symbology used
by the major authors in the field.

So let’s work through this expression by expression. Start with HPHT . The linear
equation ABAT can be thought of as changing the basis of B to A. So HPHT is taking
the covariance P and putting it in measurement (H) space.

In English, consider the problem of reading a temperature with a thermometer that
provices readings in volts. Our state is in terms of temperature, but we are now doing calcu-
lations in measurement space - volts. So we need to convert P from applying to temperatures
to volts. The linear algebra form HPH takes P to the basis used by H, namely volts.

Then, once in measurement space, we can add the measurement noise R to it. Hence,
the expression for the uncertainty once we include the measurement is:

S = HPHT + R

The next equation is
K = PHTS−1

K is the Kalman gain - the ratio that chooses how far along the residual to select between
the measurement and prediction in the graph above.

We can think of the inverse of a matrix as linear algebra’s way ofcomputing 1
x
. So we

can read the equation for K as

K =
PHT

S

K =
uncertaintyprediction
uncertaintymeasurement

In other words, the Kalman gain equation is doing nothing more than computing a ratio
based on how much we trust the prediction vs the measurement. If we are confident in our
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measurements and unconfident in our predictions K will favor the measurement, and vice
versa. The equation is complicated because we are doing this in multiple dimensions via
matrices, but the concept is simple - scale by a ratio.

Without going into the derivation of K, I’ll say that this equation is the result of finding
a value of K that optimizes the mean-square estimation error. It does this by finding the
minimal values for P along it’s diagonal. Recall that the diagonal of P is just the variance
for each state variable. So, this equation for K ensures that the Kalman filter output is
optimal. To put this in concrete terms, for our dog tracking problem this means that the
estimates for both position and velocity will be optimal - a value of K that made the position
extremely accurate but the velocity very inaccurate would be rejected in favor of a K that
made both position and velocity just somewhat accurate.

Our next line is:
x = x′ + Kγ (5)

This just multiplies the residual by the Kalman gain, and adds it to the state variable.
In other words, this is the computation of our new estimate.

Finally, we have:

P = (I−KH)P (6)

I is the identity matrix, and is the way we represent 1 in multiple dimensions. H is our
measurement function, and is a constant. So, simplified, this is simply P = (1− cK)P . K is
our ratio of how much prediction vs measurement we use. So, if K is large then (1− cK) is
small, and P will be made smaller than it was. If K is small, then (1− cK) is large, and P
will be made larger than it was. So we adjust the size of our uncertainty by some factor of
the Kalman gain. I would like to draw your attention back to the g-h filter, which included
this Python code:

# update filter

w = w * (1-scale_factor) + z * scale_factor

This multidimensional Kalman filter equation is partially implementing this calculation
for the variance instead of the state variable.

Now we have the measurement steps. The first equation is

x = Fx + Bu (1)

This is just our state transition equation which we have already discussed. Fx multiplies
x with the state transition matrix to compute the next state. B and u add in the contribution
of the control input u, if any.

The final equation is:
P = FPFT + Q (2)

FPFT is the way we put P into the process space using linear algebra so that we can
add in the process noise Q to it.

188



8.4 Design of the Process Noise Matrix

equations of continuous Wiener process acceleration model - just a cut paste being saved for
later use when I write this [

1
3
∆t3 1

2
∆t2

1
2
∆t2 ∆t

]
q̃

 1
20

∆t5 1
8
∆t4 1

6
∆t3

1
8
∆t8 1

3
∆t3 1

2
∆t2

1
6
∆t3 1

2
∆t2 ∆t

 q̃
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Chapter 9

Designing Kalman Filters

9.1 Introduction

In this chapter we will work through the design of several Kalman filters to gain experience
and confidence with the various equations and techniques.

For our first multidimensional problem we will track a robot in a 2D space, such as a
field. We will start with a simple noisy sensor that outputs noisy (x, y) coordinates which
we will need to filter to generate a 2D track. Once we have mastered this concept, we will
extend the problem significantly with more sensors and then adding control inputs. blah
blah

9.2 Tracking a Robot

This first attempt at tracking a robot will closely resemble the 1-D dog tracking problem of
previous chapters. This will allow us to ‘get our feet wet’ with Kalman filtering. So, instead
of a sensor that outputs position in a hallway, we now have a sensor that supplies a noisy
measurement of position in a 2-D space, such as an open field. That is, at each time T it
will provide an (x, y) coordinate pair specifying the measurement of the sensor’s position in
the field.

Implementation of code to interact with real sensors is beyond the scope of this book,
so as before we will program simple simulations in Python to represent the sensors. We will
develop several of these sensors as we go, each with more complications, so as I program
them I will just append a number to the function name. pos sensor1() is the first sensor
we write, and so on.

So let’s start with a very simple sensor, one that travels in a straight line. It takes as
input the last position, velocity, and how much noise we want, and returns the new position.

In [2]: import numpy.random as random

import copy

class PosSensor1(object):

def __init__(self, pos = [0,0], vel = (0,0), noise_scale = 1.):

self.vel = vel
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self.noise_scale = noise_scale

self.pos = copy.deepcopy(pos)

def read(self):

self.pos[0] += self.vel[0]

self.pos[1] += self.vel[1]

return [self.pos[0] + random.randn() * self.noise_scale,

self.pos[1] + random.randn() * self.noise_scale]

A quick test to verify that it works as we expect.

In [3]: pos = [4,3]

s = PosSensor1 (pos, (2,1), 1)

for i in range (50):

pos = s.read()

plt.scatter(pos[0], pos[1])

plt.show()

That looks correct. The slope is 1/2, as we would expect with a velocity of (2,1), and
the data seems to start at near (6,4).

Step 1: Choose the State Variables As always, the first step is to choose our state
variables. We are tracking in two dimensions and have a sensor that gives us a reading in
each of those two dimensions, so we know that we have the two observed variables x and y.
If we created our Kalman filter using only those two variables the performance would not
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be very good because we would be ignoring the information velocity can provide to us. We
will want to incorporate velocity into our equations as well. I will represent this as

x =


x
vx
y
vy


There is nothing special about this organization. I could have listed the (xy) coordinates

first followed by the velocities, and/or I could done this as a row matrix instead of a column
matrix. For example, I could have chosen:

x =
[
x y vx vy

]
All that matters is that the rest of my derivation uses this same scheme. However, it is

typical to use column matrices for state variables, and I prefer it, so that is what we will
use.

It might be a good time to pause and address how you identify the unobserved variables.
This particular example is somewhat obvious because we already worked through the 1D
case in the previous chapters. Would it be so obvious if we were filtering market data,
population data from a biology experiment, and so on? Probably not. There is no easy
answer to this question. The first thing to ask yourself is what is the interpretation of the
first and second derivatives of the data from the sensors. We do that because obtaining
the first and second derivatives is mathematically trivial if you are reading from the sensors
using a fixed time step. The first derivative is just the difference between two successive
readings. In our tracking case the first derivative has an obvious physical interpretation: the
difference between two successive positions is velocity.

Beyond this you can start looking at how you might combine the data from two or more
different sensors to produce more information. This opens up the field of sensor fusion, and
we will be covering examples of this in later sections. For now, recognize that choosing the
appropriate state variables is paramount to getting the best possible performance from your
filter.

Step 2: Design State Transition Function Our next step is to design the state
transition function. Recall that the state transition function is implemented as a matrix F
that we multipy with the previous state of our system to get the next state, like so.

x′ = Fx

I will not belabor this as it is very similar to the 1-D case we did in the previous chapter.
Our state equations for position and velocity would be:

x′ = (1 ∗ x) + (∆t ∗ vx) + (0 ∗ y) + (0 ∗ vy)
vx = (0 ∗ x) + (1 ∗ vx) + (0 ∗ y) + (0 ∗ vy)
y′ = (0 ∗ x) + (0 ∗ vx) + (1 ∗ y) + (∆t ∗ vy)
vy = (0 ∗ x) + (0 ∗ vx) + (0 ∗ y) + (1 ∗ vy)
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Laying it out that way shows us both the values and row-column organization required
for F. In linear algebra, we would write this as:

x
vx
y
vy


′

=


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1



x
vx
y
vy


So, let’s do this in Python. It is very simple; the only thing new here is setting dim z to

2. We will see why it is set to 2 in step 4.

In [4]: from filterpy.kalman import KalmanFilter

import numpy as np

f1 = KalmanFilter(dim_x=4, dim_z=2)

dt = 1. # time step

f1.F = np.array ([[1, dt, 0, 0],

[0, 1, 0, 0],

[0, 0, 1, dt],

[0, 0, 0, 1]])

Step 3: Design the Motion Function We have no control inputs to our robot (yet!),
so this step is trivial - set the motion input u to zero. This is done for us by the class when
it is created so we can skip this step, but for completeness we will be explicit.

In [5]: f1.u = 0.

Step 4: Design the Measurement Function The measurement function defines
how we go from the state variables to the measurements using the equation z = Hx. At first
this is a bit counterintuitive, after all, we use the Kalman filter to go from measurements to
state. But the update step needs to compute the residual between the current measurement
and the measurement represented by the prediction step. Therefore H is multiplied by the
state x to produce a measurement z.

In this case we have measurements for (x,y), so z must be of dimension 2× 1. Our state
variable is size 4× 1. We can deduce the required size for H by recalling that multiplying a
matrix of size m× n by n× p yields a matrix of size m× p. Thus,

(2× 1) = (a× b)(4× 1)

= (a× 4)(4× 1)

= (2× 4)(4× 1)

So, H is of size 2× 4.
Filling in the values for H is easy in this case because the measurement is the position of

the robot, which is the x and y variables of the state x. Let’s make this just slightly more
interesting by deciding we want to change units. So we will assume that the measurements
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are returned in feet, and that we desire to work in meters. Converting from feet to meters
is a simple as multiplying by 0.3048. However, we are converting from state (meters) to
measurements (feet) so we need to divide by 0.3048. So

H =

[
1

0.3048
0 0 0

0 0 1
0.3048

0

]
which corresponds to these linear equations

z′x = (
x

0.3048
) + (0 ∗ vx) + (0 ∗ y) + (0 ∗ vy)

z′y = (0 ∗ x) + (0 ∗ vx) + (
y

0.3048
) + (0 ∗ vy)

To be clear about my intentions here, this is a pretty simple problem, and we could have
easily found the equations directly without going through the dimensional analysis that I did
above. In fact, an earlier draft did just that. But it is useful to remember that the equations
of the Kalman filter imply a specific dimensionality for all of the matrices, and when I start
to get lost as to how to design something it is often extremely useful to look at the matrix
dimensions. Not sure how to design H? Here is the Python that implements this:

In [6]: f1.H = np.array ([[1/0.3048, 0, 0, 0],

[0, 0, 1/0.3048, 0]])

print(f1.H)

[[ 3.2808399 0. 0. 0. ]

[ 0. 0. 3.2808399 0. ]]

Step 5: Design the Measurement Noise Matrix In this step we need to mathe-
matically model the noise in our sensor. For now we will make the simple assumption that
the x and y variables are independent Gaussian processes. That is, the noise in x is not in
any way dependent on the noise in y, and the noise is normally distributed about the mean.
For now let’s set the variance for x and y to be 5 for each. They are independent, so there
is no covariance, and our off diagonals will be 0. This gives us:

R =

[
5 0
0 5

]
It is a 2×2 matrix because we have 2 sensor inputs, and covariance matrices are always

of size n×n for n variables. In Python we write:

In [7]: f1.R = np.array([[5,0],

[0, 5]])

print (f1.R)

[[ 5. 0.]

[ 0. 5.]]
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Step 6: Design the Process Noise Matrix Finally, we design the process noise. We
don’t yet have a good way to model process noise, so for now we will assume there is a small
amount of process noise, say 0.1 for each state variable. Later we will tackle this admittedly
difficult topic in more detail. We have 4 state variables, so we need a 4×4 covariance matrix:

Q =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


In Python I will use the numpy eye helper function to create an identity matrix for us,

and multipy it by 0.1 to get the desired result.

In [8]: f1.Q = np.eye(4) * 0.1

print(f1.Q)

[[ 0.1 0. 0. 0. ]

[ 0. 0.1 0. 0. ]

[ 0. 0. 0.1 0. ]

[ 0. 0. 0. 0.1]]

Step 7: Design Initial Conditions For our simple problem we will set the initial
position at (0,0) with a velocity of (0,0). Since that is a pure guess, we will set the covariance
matrix P to a large value.

x =


0
0
0
0

P =


500 0 0 0
0 500 0 0
0 0 500 0
0 0 0 500


In Python we implement that with

In [9]: f1.x = np.array([[0,0,0,0]]).T

f1.P = np.eye(4) * 500.

print(f1.x)

print()

print (f1.P)

[[ 0.]

[ 0.]

[ 0.]

[ 0.]]

[[ 500. 0. 0. 0.]

[ 0. 500. 0. 0.]

[ 0. 0. 500. 0.]

[ 0. 0. 0. 500.]]

195



9.3 Implement the Filter Code

Design is complete, now we just have to write the Python code to run our filter, and output
the data in the format of our choice. To keep the code clear, let’s just print a plot of the
track. We will run the code for 30 iterations.

In [10]: f1 = KalmanFilter(dim_x=4, dim_z=2)

dt = 1.0 # time step

f1.F = np.array ([[1, dt, 0, 0],

[0, 1, 0, 0],

[0, 0, 1, dt],

[0, 0, 0, 1]])

f1.u = 0.

f1.H = np.array ([[1/0.3048, 0, 0, 0],

[0, 0, 1/0.3048, 0]])

f1.R = np.eye(2) * 5

f1.Q = np.eye(4) * .1

f1.x = np.array([[0,0,0,0]]).T

f1.P = np.eye(4) * 500.

# initialize storage and other variables for the run

count = 30

xs, ys = [],[]

pxs, pys = [],[]

s = PosSensor1 ([0,0], (2,1), 1.)

for i in range(count):

pos = s.read()

z = np.array([[pos[0]],[pos[1]]])

f1.predict ()

f1.update (z)

xs.append (f1.x[0,0])

ys.append (f1.x[2,0])

pxs.append (pos[0]*.3048)

pys.append(pos[1]*.3048)

p1, = plt.plot (xs, ys, ’r--’)

p2, = plt.plot (pxs, pys)

plt.legend([p1,p2], [’filter’, ’measurement’], 2)
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plt.show()

I encourage you to play with this, setting Q and R to various values. However, we did a
fair amount of that sort of thing in the last chapters, and we have a lot of material to cover,
so I will move on to more complicated cases where we will also have a chance to experience
changing these values.

Now I will run the same Kalman filter with the same settings, but also plot the covariance
ellipse for x and y. First, the code without explanation, so we can see the output. I print the
last covariance to see what it looks like. But before you scroll down to look at the results,
what do you think it will look like? You have enough information to figure this out but this
is still new to you, so don’t be discouraged if you get it wrong.

In [27]: import stats

f1 = KalmanFilter(dim_x=4, dim_z=2)

dt = 1.0 # time step

f1.F = np.array ([[1, dt, 0, 0],

[0, 1, 0, 0],

[0, 0, 1, dt],

[0, 0, 0, 1]])

f1.u = 0.

f1.H = np.array ([[1/0.3048, 0, 0, 0],

[0, 0, 1/0.3048, 0]])

f1.R = np.eye(2) * 5

f1.Q = np.eye(4) * .1
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f1.x = np.array([[0,0,0,0]]).T

f1.P = np.eye(4) * 500.

# initialize storage and other variables for the run

count = 30

xs, ys = [],[]

pxs, pys = [],[]

s = PosSensor1 ([0,0], (2,1), 1.)

for i in range(count):

pos = s.read()

z = np.array([[pos[0]],[pos[1]]])

f1.predict ()

f1.update (z)

xs.append (f1.x[0,0])

ys.append (f1.x[2,0])

pxs.append (pos[0]*.3048)

pys.append(pos[1]*.3048)

# plot covariance of x and y

cov = np.array([[f1.P[0,0], f1.P[2,0]],

[f1.P[0,2], f1.P[2,2]]])

#e = stats.sigma_ellipse (cov=cov, x=f1.x[0,0], y=f1.x[2,0])

#stats.plot_sigma_ellipse(ellipse=e)

stats.plot_covariance_ellipse((f1.x[0,0], f1.x[2,0]), cov=cov,

facecolor=’g’, alpha=0.2)

p1, = plt.plot (xs, ys, ’r--’)

p2, = plt.plot (pxs, pys)

plt.legend([p1,p2], [’filter’, ’measurement’], 2)

plt.show()

print("final P is:")

print(f1.P)
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final P is:

[[ 0.30660483 0.12566239 0. 0. ]

[ 0.12566239 0.24399092 0. 0. ]

[ 0. 0. 0.30660483 0.12566239]

[ 0. 0. 0.12566239 0.24399092]]

Did you correctly predict what the covariance matrix and plots would look like? Perhaps
you were expecting a tilted ellipse, as in the last chapters. If so, recall that in those chapters
we were not plotting x against y, but x against ẋ. x is correlated to ẋ, but x is not correlated
or dependent on y. Therefore our ellipses are not tilted. Furthermore, the noise for both x
and y are modeled to have the same value, 5, in R. If we were to set R to, for example,

R =

[
10 0
0 5

]
we would be telling the Kalman filter that there is more noise in x than y, and our ellipses

would be longer than they are tall.
The final P tells us everything we need to know about the correlation between the state

variables. If we look at the diagonal alone we see the variance for each variable. In other
words P0,0 is the variance for x, P1,1 is the variance for ẋ, P2,2 is the variance for y, and P3,3

is the variance for ẏ. We can extract the diagonal of a matrix using numpy.diag().

In [12]: print(np.diag(f1.P))

[ 0.30660483 0.24399092 0.30660483 0.24399092]

The covariance matrix contains four 2×2 matrices that you should be able to easily pick
out. This is due to the correlation of x to ẋ, and of y to ẏ. The upper left hand side shows
the covariance of x to ẋ. Let’s extract and print, and plot it.
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In [26]: c = f1.P[0:2,0:2]

print(c)

stats.plot_covariance_ellipse((0,0), cov=c, facecolor=’g’, alpha=0.2)

[[ 0.08204134 0.02434904]

[ 0.02434904 0.00955614]]

The covariance contains the data for x and ẋ in the upper left because of how it is
organized. Recall that entries Pi,j and Pj,i contain pσ1σ2.

Finally, let’s look at the lower left side of P, which is all 0s. Why 0s? Consider P3,0. That
stores the term pσ3σ0, which is the covariance between ẏ and x. These are independent, so
the term will be 0. The rest of the terms are for similarly independent variables.

9.4 Tracking a Ball

Now let’s turn our attention to a situation where the physics of the object that we are
tracking is constrained. A ball thrown in a vacuum must obey Newtonian laws. In a
constant gravitational field it will travel in a parabola. I will assume you are familiar with
the derivation of the formula:

y =
g

2
t2 + vy0t+ y0

x = vx0t+ x0

where g is the gravitional constant, t is time, vx0 and vy0 are the initial velocities in the x
and y plane. If the ball is thrown with an initial velocity of v at angle θ above the horizon,
we can compute vx0 and vy0 as
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vx0 = v cos θ

vy0 = v sin θ

Because we don’t have real data we will start by writing a simulator for a ball. As always,
we add a noise term independent of time so we can simulate noise sensors.

In [14]: from math import radians, sin, cos

import math

def rk4(y, x, dx, f):

"""computes 4th order Runge-Kutta for dy/dx.

y is the initial value for y

x is the initial value for x

dx is the difference in x (e.g. the time step)

f is a callable function (y, x) that you supply to compute dy/dx for

the specified values.

"""

k1 = dx * f(y, x)

k2 = dx * f(y + 0.5*k1, x + 0.5*dx)

k3 = dx * f(y + 0.5*k2, x + 0.5*dx)

k4 = dx * f(y + k3, x + dx)

return y + (k1 + 2*k2 + 2*k3 + k4) / 6.

def fx(x,t):

return fx.vel

def fy(y,t):

return fy.vel - 9.8*t

class BallTrajectory2D(object):

def __init__(self, x0, y0, velocity, theta_deg=0., g=9.8, noise=[0.0,0.0]):

self.x = x0

self.y = y0

self.t = 0

theta = math.radians(theta_deg)

fx.vel = math.cos(theta) * velocity

fy.vel = math.sin(theta) * velocity

self.g = g

self.noise = noise
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def step (self, dt):

self.x = rk4 (self.x, self.t, dt, fx)

self.y = rk4 (self.y, self.t, dt, fy)

self.t += dt

return (self.x +random.randn()*self.noise[0], self.y+random.randn()*self.noise[1])

So to create a trajectory starting at (0,15) with a velocity of 60m
s

and an angle of 65◦ we
would write:

traj = BallTrajectory2D (x0=0, y0=15, velocity=100, theta_deg=60)

and then call traj.position(t) for each time step. Let’s test this

In [15]: def test_ball_vacuum(noise):

y = 15

x = 0

ball = BallTrajectory2D(x0=x, y0=y, theta_deg=60., velocity=100., noise=noise)

t = 0

dt = 0.25

while y >= 0:

x,y = ball.step(dt)

t += dt

if y >= 0:

plt.scatter(x,y)

plt.axis(’equal’)

plt.show()

test_ball_vacuum([0,0]) # plot ideal ball position

test_ball_vacuum([1,1]) # plot with noise
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This looks reasonable, so let’s continue (excercise for the reader: validate this simulation
more robustly).

Step 1: Choose the State Variables We might think to use the same state variables
as used for tracking the dog. However, this will not work. Recall that the Kalman filter
state transition must be written as x′ = Fx, which means we must calculate the current
state from the previous state. Our assumption is that the ball is traveling in a vacuum, so
the velocity in x is a constant, and the acceleration in y is solely due to the gravitational
constant g. We can discretize the Newtonian equations using the well known Euler method
in terms of ∆t are:

xt = vx(t−1)∆t

vxt = vxt−1

yt = −g
2

∆t2 + vyt−1∆t+ yt−1

vyt = −g∆t+ vy(t−1)

> sidebar: Euler’s method integrates a differential equation stepwise by assuming the slope
(derivative) is constant at time t. In this case the derivative of the position is velocity. At
each time step ∆t we assume a constant velocity, compute the new position, and then update
the velocity for the next time step. There are more accurate methods, such as Runge-Kutta
available to us, but because we are updating the state with a measurement in each step Euler’s
method is very accurate.

This implies that we need to incorporate acceleration for y into the Kalman filter, but
not for x. This suggests the following state variables.
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x =


x
ẋ
y
ẏ
ÿ


Step 2: Design State Transition Function Our next step is to design the state tran-
sistion function. Recall that the state transistion function is implemented as a matrix F that
we multipy with the previous state of our system to get the next statex′ = Fx.

I will not belabor this as it is very similar to the 1-D case we did in the previous chapter.
Our state equations for position and velocity would be:

x′ = (1 ∗ x) + (∆t ∗ vx) + (0 ∗ y) + (0 ∗ vy) + (0 ∗ ay)
vx = (0 ∗ x) + (1 ∗ vx) + (0 ∗ y) + (0 ∗ vy) + (0 ∗ ay)

y′ = (0 ∗ x) + (0 ∗ vx) + (1 ∗ y) + (∆t ∗ vy) + (
1

2
∆t2 ∗ ay)

vy = (0 ∗ x) + (0 ∗ vx) + (0 ∗ y) + (1 ∗ vy) + (∆t ∗ ay)
ay = (0 ∗ x) + (0 ∗ vx) + (0 ∗ y) + (0 ∗ vy) + (1 ∗ ay)

Note that none of the terms include g, the gravitational constant. This is because the
state variable ÿ will be initialized with g, or -9.81. Thus the function F will propagate g
through the equations correctly.

In matrix form we write this as:

F =


1 ∆t 0 0 0
0 1 0 0 0
0 0 1 ∆t 1

2
∆t2

0 0 0 1 ∆t
0 0 0 0 1


Interlude: Test State Transition The Kalman filter class provides us with useful de-
faults for all of the class variables, so let’s take advantage of that and test the state transistion
function before continuing. Here we construct a filter as specified in Step 2 above. We com-
pute the initial velocity in x and y using trigonometry, and then set the initial condition for
x.

In [16]: from math import sin,cos,radians

def ball_kf(x, y, omega, v0, dt):

g = 9.8 # gravitational constant

f1 = KalmanFilter(dim_x=5, dim_z=2)
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ay = .5*dt**2

f1.F = np.array ([[1, dt, 0, 0, 0], # x = x0+dx*dt

[0, 1, 0, 0, 0], # dx = dx

[0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2

[0, 0, 0, 1, dt], # dy = dy0 + ddy*dt

[0, 0, 0, 0, 1]]) # ddy = -g.

# compute velocity in x and y

omega = radians(omega)

vx = cos(omega) * v0

vy = sin(omega) * v0

f1.Q *= 0.

f1.x = np.array([[x, vx, y, vy, -g]]).T

return f1

Now we can test the filter by calling predict until y = 0, which corresponds to the ball
hitting the ground. We will graph the output against the idealized computation of the ball’s
position. If the model is correct, the Kalman filter prediction should match the ideal model
very closely. We will draw the ideal position with a green circle, and the Kalman filter’s
output with ‘+’ marks.

In [17]: y = 15.

x = 0.

theta = 20. # launch angle

v0 = 100.

dt = 0.1 # time step

ball = BallTrajectory2D(x0=x, y0=y, theta_deg=theta, velocity=v0, noise=[0,0])

f1 = ball_kf(x,y,theta,v0,dt)

t = 0

while f1.x[2,0] > 0:

t += dt

f1.predict()

x,y = ball.step(dt)

p1 = plt.scatter(f1.x[0,0], f1.x[2,0], color=’black’, marker=’+’, s=75)

p2 = plt.scatter(x, y, color=’green’, marker=’o’, s=75, alpha=0.5)

plt.legend([p1,p2], [’Kalman filter’, ’idealized’])

plt.show()

205



As we can see, the Kalman filter agrees with the physics model very closely. If you are
interested in pursuing this further, try altering the initial velocity, the size of dt, and θ, and
plot the error at each step. However, the important point is to test your design as soon as
possible; if the design of the state transistion is wrong all subsequent effort may be wasted.
More importantly, it can be extremely difficult to tease out an error in the state transition
function when the filter incorporates measurment updates.

Step 3: Design the Motion Function We have no control inputs to the ball flight, so
this step is trivial - set the motion transition function B = 0. This is done for us by the
class when it is created so we can skip this step.

Step 4: Design the Measurement Function The measurement function defines how
we go from the state variables to the measurements using the equation z = Hx. We will
assume that we have a sensor that provides us with the position of the ball in (x,y), but
cannot measure velocities or accelerations. Therefore our function must be:

[
zx
zy

]
=

[
1 0 0 0 0
0 0 1 0 0

]
∗


x
ẋ
y
ẏ
ÿ


where

H =

[
1 0 0 0 0
0 0 1 0 0

]
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Step 5: Design the Measurement Noise Matrix As with the robot, we will assume
that the error is independent in x and y. In this case we will start by assuming that the
measurement error in x and y are 0.5 meters. Hence,

R =

[
0.5 0
0 0.5

]
Step 6: Design the Process Noise Matrix Finally, we design the process noise.

As with the robot tracking example, we don’t yet have a good way to model process noise.
However, we are assuming a ball moving in a vacuum, so there should be no process noise.
For now we will assume the process noise is 0 for each state variable. This is a bit silly - if we
were in a perfect vacuum then our predictions would be perfect, and we would have no need
for a Kalman filter. We will soon alter this example to be more realistic by incorporating
air drag and ball spin.

We have 5 state variables, so we need a 5×5 covariance matrix:

Q =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Step 7: Design the Initial Conditions We already performed this step when we

tested the state transistion function. Recall that we computed the initial velocity for x and
y using trigonometry, and set the value of x with:

omega = radians(omega)

vx = cos(omega) * v0

vy = sin(omega) * v0

f1.x = np.mat([x, vx, y, vy, -g]).T

With all the steps done we are ready to implement our filter and test it. First, the
implementation:

In [18]: from math import sin,cos,radians

def ball_kf(x, y, omega, v0, dt, r=0.5, q=0.):

g = 9.8 # gravitational constant

f1 = KalmanFilter(dim_x=5, dim_z=2)

ay = .5*dt**2

f1.F = np.mat ([[1, dt, 0, 0, 0], # x = x0+dx*dt

[0, 1, 0, 0, 0], # dx = dx

[0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
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[0, 0, 0, 1, dt], # dy = dy0 + ddy*dt

[0, 0, 0, 0, 1]]) # ddy = -g.

f1.H = np.mat([

[1, 0, 0, 0, 0],

[0, 0, 1, 0, 0]])

f1.R *= r

f1.Q *= q

omega = radians(omega)

vx = cos(omega) * v0

vy = sin(omega) * v0

f1.x = np.mat([x,vx,y,vy,-9.8]).T

return f1

Now we will test the filter by generating measurements for the ball using the ball simu-
lation class.

In [19]: y = 1.

x = 0.

theta = 35. # launch angle

v0 = 80.

dt = 1/10. # time step

ball = BallTrajectory2D(x0=x, y0=y, theta_deg=theta, velocity=v0, noise=[.2,.2])

f1 = ball_kf(x,y,theta,v0,dt)

t = 0

xs = []

ys = []

while f1.x[2,0] > 0:

t += dt

x,y = ball.step(dt)

z = np.mat([[x,y]]).T

f1.update(z)

xs.append(f1.x[0,0])

ys.append(f1.x[2,0])

f1.predict()

p1 = plt.scatter(x, y, color=’green’, marker=’.’, s=75, alpha=0.5)
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p2, = plt.plot (xs, ys,lw=2)

plt.legend([p2,p1], [’Kalman filter’, ’Measurements’])

plt.show()

We see that the Kalman filter reasonably tracks the ball. However, as already explained,
this is a silly example; we can predict trajectories in a vacuum with arbitrary precision; using
a Kalman filter in this example is a needless complication.

9.5 Tracking a Ball in Air

We are now ready to design a practical Kalman filter application. For this problem we assume
that we are tracking a ball traveling through the Earth’s atmosphere. The path of the ball
is influenced by wind, drag, and the rotation of the ball. We will assume that our sensor
is a camera; code that we will not implement will perform some type of image processing
to detect the position of the ball. This is typically called blob detection in computer vision.
However, image processing code is not perfect; in any given frame it is possible to either
detect no blob or to detect spurious blobs that do not correspond to the ball. Finally,
we will not assume that we know the starting position, angle, or rotation of the ball; the
tracking code will have to initiate tracking based on the measurements that are provided.
The main simplification that we are making here is a 2D world; we assume that the ball
is always traveling orthogonal to the plane of the camera’s sensor. We have to make that
simplification at this point because we have not yet discussed how we might extract 3D
information from a camera, which necessarily provides only 2D data.
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9.5.1 Implementing Air Drag

Our first step is to implement the math for a ball moving through air. There are several
treatments available. A robust solution takes into account issues such as ball roughness
(which affects drag non-linearly depending on velocity), the Magnus effect (spin causes one
side of the ball to have higher velocity relative to the air vs the opposite side, so the coefficient
of drag differs on opposite sides), the effect of lift, humidity, air density, and so on. I assume
the reader is not interested in the details of ball physics, and so will restrict this treatment to
the effect of air drag on a non-spinning baseball. I will use the math developed by Nicholas
Giordano and Hisao Nakanishi in Computational Physics [1997].

Important: Before I continue, let me point out that you will not have to understand this
next piece of physics to proceed with the Kalman filter. My goal is to create a reasonably
accurate behavior of a baseball in the real world, so that we can test how our Kalman
filter performs with real-world behavior. In real world applications it is usually impossible
to completely model the physics of a real world system, and we make do with a process
model that incorporates the large scale behaviors. We then tune the measurement noise and
process noise until the filter works well with our data. There is a real risk to this; it is easy
to finely tune a Kalman filter so it works perfectly with your test data, but performs badly
when presented with slightly different data. This is perhaps the hardest part of designing a
Kalman filter, and why it gets referred to with terms such as ‘black art’.

I dislike books that implement things without explanation, so I will now develop the
physics for a ball moving through air. Move on past the implementation of the simulation if
you are not interested.

A ball moving through air encounters wind resistance. This imparts a force on the wall,
called drag, which alters the flight of the ball. In Giordano this is denoted as

Fdrag = −B2v
2

where B2 is a coefficient derived experimentally, and v is the velocity of the object. Fdrag
can be factored into x and y components with

Fdrag,x = −B2vvxFdrag,y = −B2vvy

If m is the mass of the ball, we can use F = ma to compute the acceleration as

ax = −B2

m
vvxay = −B2

m
vvy

Giordano provides the following function for B2

m
, which takes air density, the cross section

of a baseball, and its roughness into account. Understand that this is an approximation based
on wind tunnel tests and several simplifying assumptions. It is in SI units: velocity is in
meters/sec and time is in seconds.

B2

m
= 0.0039 +

0.0058

1 + exp [(v − 35)/5]
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Starting with this Euler discretation of the ball path in a vacuum:

x = vx∆t

y = vy∆t

vx = vx

vy = vy − 9.8∆t

We can incorporate this force (acceleration) into our equations by incorporating accel∗∆t
into the velocity update equations. We should subtract this component because drag will
reduce the velocity. The code to do this is quite straightforward, we just need to break out
the Force into x and y components.

I will not belabor this issue further because the computational physics is beyond the scope
of this book. Recognize that a higher fidelity simulation would require incorporating things
like altitude, temperature, ball spin, and several other factors. My intent here is to impart
some real-world behavior into our simulation to test how our simpler prediction model used
by the Kalman filter reacts to this behavior. Your process model will never exactly model
what happens in the world, and a large factor in designing a good Kalman filter is carefully
testing how it performs against real world data.

The code below computes the behavior of a baseball in air, at sea level, in the pres-
ence of wind. I plot the same initial hit with no wind, and then with a tail wind at 10
mph. Baseball statistics are universally done in US units, and we will follow suit here
(http://en.wikipedia.org/wiki/United States customary units). Note that the velocity of
110 mph is a typical exit speed for a baseball for a home run hit.

In [20]: from math import sqrt, exp, cos, sin, radians

def mph_to_mps(x):

return x * .447

def drag_force(velocity):

""" Returns the force on a baseball due to air drag at

the specified velocity. Units are SI"""

return (0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))) * velocity

v = mph_to_mps(110.)

y = 1

x = 0

dt = .1

theta = radians(35)

def solve(x, y, vel, v_wind, launch_angle):

xs = []

ys = []

v_x = vel*cos(launch_angle)
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v_y = vel*sin(launch_angle)

while y >= 0:

# Euler equations for x and y

x += v_x*dt

y += v_y*dt

# force due to air drag

velocity = sqrt ((v_x-v_wind)**2 + v_y**2)

F = drag_force(velocity)

# euler’s equations for vx and vy

v_x = v_x - F*(v_x-v_wind)*dt

v_y = v_y - 9.8*dt - F*v_y*dt

xs.append(x)

ys.append(y)

return xs, ys

x,y = solve(x=0, y=1, vel=v, v_wind=0, launch_angle=theta)

p1 = plt.scatter(x, y, color=’blue’)

x,y = solve(x=0, y=1,vel=v, v_wind=mph_to_mps(10), launch_angle=theta)

p2 = plt.scatter(x, y, color=’green’, marker="v")

plt.legend([p1,p2], [’no wind’, ’10mph wind’])

plt.show()
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We can easily see the difference between the trajectory in a vacuum and in the air. I
used the same initial velocity and launch angle in the ball in a vacuum section above. We
computed that the ball in a vacuum would travel over 240 meters (nearly 800 ft). In the air,
the distance is just over 120 meters, or roughly 400 ft. 400ft is a realistic distance for a well
hit home run ball, so we can be confident that our simulation is reasonably accurate.

Without further ado we will create a ball simulation that uses the math above to create
a more realistic ball trajectory. I will note that the nonlinear behavior of drag means that
there is no analytic solution to the ball position at any point in time, so we need to compute
the position step-wise. I use Euler’s method to propagate the solution; use of a more accurate
technique such as Runge-Kutta is left as an exercise for the reader. That modest complication
is unnecessary for what we are doing because the accuracy difference between the techniques
will be small for the time steps we will be using.

In [21]: from math import radians, sin, cos, sqrt, exp

class BaseballPath(object):

def __init__(self, x0, y0, launch_angle_deg, velocity_ms, noise=(1.0,1.0)):

""" Create 2D baseball path object

(x = distance from start point in ground plane, y=height above ground)

x0,y0 initial position

launch_angle_deg angle ball is travelling respective to ground plane

velocity_ms speeed of ball in meters/second

noise amount of noise to add to each reported position in (x,y)

"""

omega = radians(launch_angle_deg)

self.v_x = velocity_ms * cos(omega)

self.v_y = velocity_ms * sin(omega)

self.x = x0

self.y = y0

self.noise = noise

def drag_force (self, velocity):

""" Returns the force on a baseball due to air drag at

the specified velocity. Units are SI

"""

B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))

return B_m * velocity

def update(self, dt, vel_wind=0.):
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""" compute the ball position based on the specified time step and

wind velocity. Returns (x,y) position tuple.

"""

# Euler equations for x and y

self.x += self.v_x*dt

self.y += self.v_y*dt

# force due to air drag

v_x_wind = self.v_x - vel_wind

v = sqrt (v_x_wind**2 + self.v_y**2)

F = self.drag_force(v)

# Euler’s equations for velocity

self.v_x = self.v_x - F*v_x_wind*dt

self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt

return (self.x + random.randn()*self.noise[0],

self.y + random.randn()*self.noise[1])

Now we can test the Kalman filter against measurements created by this model.

In [22]: y = 1.

x = 0.

theta = 35. # launch angle

v0 = 50.

dt = 1/10. # time step

ball = BaseballPath(x0=x, y0=y, launch_angle_deg=theta, velocity_ms=v0, noise=[.3,.3])

f1 = ball_kf(x,y,theta,v0,dt,r=1.)

f2 = ball_kf(x,y,theta,v0,dt,r=10.)

t = 0

xs = []

ys = []

xs2 = []

ys2 = []

while f1.x[2,0] > 0:

t += dt

x,y = ball.update(dt)

z = np.mat([[x,y]]).T

f1.update(z)

f2.update(z)

xs.append(f1.x[0,0])
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ys.append(f1.x[2,0])

xs2.append(f2.x[0,0])

ys2.append(f2.x[2,0])

f1.predict()

f2.predict()

p1 = plt.scatter(x, y, color=’green’, marker=’o’, s=75, alpha=0.5)

p2, = plt.plot (xs, ys, lw=2)

p3, = plt.plot (xs2, ys2, lw=4, c=’#e24a33’)

plt.legend([p1,p2, p3],

[’Measurements’, ’Kalman filter(R=0.5)’, ’Kalman filter(R=10)’],

loc=’best’)

plt.show()

I have plotted the output of two different Kalman filter settings. The measurements are
depicted as green circles, a Kalman filter with R=0.5 as a thin blue line, and a Kalman
filter with R=10 as a thick red line. These R values are chosen merely to show the effect of
measurement noise on the output, they are not intended to imply a correct design.

We can see that neither filter does very well. At first both track the measurements well,
but as time continues they both diverge. This happens because the state model for air drag
is nonlinear and the Kalman filter assumes that it is linear. If you recall our discussion about
nonlinearity in the g-h filter chapter we showed why a g-h filter will always lag behind the
acceleration of the system. We see the same thing here - the acceleration is negative, so
the Kalman filter consistently overshoots the ball position. There is no way for the filter to
catch up so long as the acceleration continues, so the filter will continue to diverge.
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What can we do to improve this? The best approach is to perform the filtering with a
nonlinear Kalman filter, and we will do this in subsequent chapters. However, there is also
what I will call an ‘engineering’ solution to this problem as well. Our Kalman filter assumes
that the ball is in a vacuum, and thus that there is no process noise. However, since the ball
is in air the atmosphere imparts a force on the ball. We can think of this force as process
noise. This is not a particularly rigorous thought; for one thing, this force is anything but
Gaussian. Secondly, we can compute this force, so throwing our hands up and saying ‘it’s
random’ will not lead to an optimal solution. But let’s see what happens if we follow this
line of thought.

The following code implements the same Kalman filter as before, but with a non-zero
process noise. I plot two examples, one with Q=.1, and one with Q=0.01.

In [23]: def plot_ball_with_q(q, r=1., noise=0.3):

y = 1.

x = 0.

theta = 35. # launch angle

v0 = 50.

dt = 1/10. # time step

ball = BaseballPath(x0=x,

y0=y,

launch_angle_deg=theta,

velocity_ms=v0,

noise=[noise,noise])

f1 = ball_kf(x,y,theta,v0,dt,r=r, q=q)

t = 0

xs = []

ys = []

while f1.x[2,0] > 0:

t += dt

x,y = ball.update(dt)

z = np.mat([[x,y]]).T

f1.update(z)

xs.append(f1.x[0,0])

ys.append(f1.x[2,0])

f1.predict()

p1 = plt.scatter(x, y, color=’green’, marker=’o’, s=75, alpha=0.5)

p2, = plt.plot (xs, ys,lw=2)

plt.legend([p1,p2], [’Measurements’, ’Kalman filter’])

plt.show()
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plot_ball_with_q(0.01)

plot_ball_with_q(0.1)

The second filter tracks the measurements fairly well. There appears to be a bit of lag,
but very little.

Is this a good technique? Usually not, but it depends. Here the nonlinearity of the force
on the ball is fairly constant and regular. Assume we are trying to track an automobile -
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the accelerations will vary as the car changes speeds and turns. When we make the process
noise higher than the actual noise in the system the filter will opt to weigh the measurements
higher. If you don’t have a lot of noise in your measurements this might work for you.
However, consider this next plot where I have increased the noise in the measurements.

In [24]: plot_ball_with_q(0.01, r=3, noise=3.)

plot_ball_with_q(0.1, r=3, noise=3.)
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This output is terrible. The filter has no choise but to give more weight to the measure-
ments than the process (prediction step), but when the measurements are noisy the filter
output will just track the noise. This inherent limitation of the linear Kalman filter is what
lead to the development of nonlinear versions of the filter.

With that said, it is certainly possible to use the process noise to deal with small non-
linearities in your system. This is part of the ‘black art’ of Kalman filters. Our model of
the sensors and of the system are never perfect. Sensors are non-Gaussian and our process
model is never perfect. You can mask some of this by setting the measurement errors and
process errors higher than their theoretically correct values, but the trade off is a non-optimal
solution. Certainly it is better to be non-optimal than to have your Kalman filter diverge.
However, as we can see in the graphs above, it is easy for the output of the filter to be very
bad. It is also very common to run many simulations and tests and to end up with a filter
that performs very well under those conditions. Then, when you use the filter on real data
the conditions are slightly different and the filter ends up performing terribly.

For now we will set this problem aside, as we are clearly misapplying the Kalman filter in
this example. We will revisit this problem in subsequent chapters to see the effect of using
various nonlinear techniques. In some domains you will be able to get away with using a
linear Kalman filter for a nonlinear problem, but usually you will have to use one or more
of the techniques you will learn in the rest of this book.

9.5.2 Tracking Noisy Data

If we are applying a Kalman filter to a thermometer in an oven in a factory then our task
is done once the Kalman filter is designed. The data from the thermometer may be noisy,
but there is never doubt that the thermometer is reading the temperature of some other
oven. Contrast this to our current situation, where we are using computer vision to detect
ball blobs from a video camera. For any frame we may detect or may not detect the ball,
and we may have one or more spurious blobs - blobs not associated with the ball at all.
This can occur because of limitations of the computer vision code, or due to foreign objects
in the scene, such as a bird flying through the frame. Also, in the general case we may
have no idea where the ball starts from. A ball may be picked up, carried, and thrown
from any position, for example. A ball may be launched within view of the camera, or the
initial launch might be off screen and the ball merely travels through the scene. There is
the possibility of bounces and deflections - the ball can hit the ground and bounce, it can
bounce off a wall, a person, or any other object in the scene.

Consider some of the problems that can occur. We could be waiting for a ball to appear,
and a blob is detected. We initialize our Kalman filter with that blob, and look at the next
frame to detect where the ball is going. Maybe there is no blob in the next frame. Can we
conclude that the blob in the previous frame was noise? Or perhaps the blob was valid, but
we did not detect the blob in this frame.

author’s note: not sure if I want to cover this. If I do, not sure I want to
cover this here.

219



Chapter 10

The Extended Kalman Filter

Author’s note: this is still being heavily edited - there is a lot of duplicate
material, incomplete material, and so on

The Kalman filter that we have developed to this point is extremely good, but it is also
limited. Its derivation is in the linear space, and hence it only works for linear problems.
Let’s be a bit more rigorous here. You can, and we have in this book, apply the Kalman
filter to nonlinear problems. For example, in the g-h filter chapter we explored using a g-h
filter in a problem with constant acceleration. It ‘worked’, in that it remained numerically
stable and the filtered output did track the input, but there was always a lag. It is easy to
prove that there will always be a lag when ẍ > 0. The filter no longer produces an optimal
result. If we make our time step arbitrarily small we can still handle many problems, but
typically we are using Kalman filters with physical sensors and solving real-time problems.
Either fast enough sensors do not exist, are prohibitively expensive, or the computation time
required is excessive. It is not a workable solution.

The early adopters of Kalman filters were the radar people, and this fact was not lost
on them. Radar is inherently nonlinear. Radars measure the slant range to an object, and
we are typically interested in the aircraft’s position over the ground. We invoke Pythagoras
and get the nonlinear equation:

x =
√
slant2 − altitude2

So shortly after the Kalman filter was enthusiastically taken up by the radar industry
people began working on how to extend the Kalman filter into nonlinear problems. It is still
an area of ongoing research, and in the Unscented Kalman filter chapter we will implement a
powerful, recent result of that research. But in this chapter we will cover the most common
form, the Extended Kalman filter, or EKF. Today, most real world “Kalman filters” are
actually EKFs. The Kalman filter in your car’s and phone’s GPS is an EKF, for example.

10.1 The Problem with Nonlinearity

You may not realize it, but the only math you really know how to do is linear math. Equations
of the form

Ax = b
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.
That may strike you as hyperbole. After all, in this book we have integrated a polynomial

to get distance from velocity and time: We know how to integrate a polynomial, for example,
and so we are able to find the closed form equation for distance given velocity and time:∫

(vt+ v0) dt =
a

2
t2 + v0t+ d0

That’s nonlinear. But it is also a very special form. You spent a lot of time, probably
at least a year, learning how to integrate various terms, and you still can not integrate some
arbitrary equation - no one can. We don’t know how. If you took freshman Physics you
perhaps remember homework involving sliding frictionless blocks on a plane and other toy
problems. At the end of the course you were almost entirely unequipped to solve real world
problems because the real world is nonlinear, and you were taught linear, closed forms of
equations. It made the math tractable, but mostly useless.

The mathematics of the Kalman filter is beautiful in part due to the Gaussian equation
being so special. It is nonlinear, but when we add and multipy it using linear algebra we get
another Gaussian equation as a result. That is very rare. sin x ∗ sin y does not yield a sin(·)
as an output.

If you are not well versed in signals and systems there is a perhaps startling fact that
you should be aware of. A linear system is defined as a system whose output is linearly
proportional to the sum of all its inputs. A consequence of this is that to be linear if the
input is zero than the output must also be zero. Consider an audio amp - if a sing into a
microphone, and you start talking, the output should be the sum of our voices (input) scaled
by the amplifier gain. But if amplifier outputs a nonzero signal for a zero input the additive
relationship no longer holds. This is because you can say amp(roger) = amp(roger + 0)
This clearly should give the same output, but if amp(0) is nonzero, then

amp(roger) = amp(roger + 0)

= amp(roger) + amp(0)

= amp(roger) + non zero value

which is clearly nonsense. Hence, an apparently linear equation such as

L(f(t)) = f(t) + 1

is not linear because L(0) = 1! Be careful!

10.2 The Effect of Nonlinear Transfer Functions on

Gaussians

Unfortunately Gaussians are not closed under an arbitrary nonlinear function. Recall the
equations of the Kalman filter - at each step of its evolution we do things like pass the
covariances through our process function to get the new covariance at time k. Our process
function was always linear, so the output was always another Gaussian. Let’s look at that
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on a graph. I will take an arbitrary Gaussian and pass it through the function f(x) = 2x+ 1
and plot the result. We know how to do this analytically, but lets do this with sampling. I
will generate 500,000 points on the Gaussian curve, pass it through the function, and then
plot the results. I will do it this way because the next example will be nonlinear, and we
will have no way to compute this analytically.

In [2]: import numpy as np

from numpy.random import normal

data = normal(loc=0.0, scale=1, size=500000)

ys = 2*data + 1

plt.hist(ys,1000)

plt.show()

This is an unsuprising result. The result of passing the Gaussian through f(x) = 2x+ 1
is another Gaussian centered around 1. Let’s look at the input, transfer function, and output
at once.

In [3]: from nonlinear_plots import plot_transfer_func

def g(x):

return 2*x+1

plot_transfer_func (data, g, lims=(-10,10), num_bins=300)
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The plot labelled ‘input’ is the histogram of the original data. This is passed through the
transfer function f(x) = 2x + 1 which is displayed in the chart to the upper right. The red
lines shows how one value, x = 0 is passed through the function. Each value from input is
passed through in the same way to the output function on the left. The output looks like a
Gaussian, and is in fact a Gaussian. We can see that it is altered -the variance in the output
is larger than the variance in the input, and the mean has been shifted from 0 to 1, which is
what we would expect given the transfer function f(x) = 2x+ 1 The 2x affects the variance,
and the +1 shifts the mean.

Now let’s look at a nonlinear function and see how it affects the probability distribution.

In [4]: from nonlinear_plots import plot_transfer_func

def g(x):

return (np.cos(4*(x/2+0.7)))*np.sin(0.3*x)-1.6*x

plot_transfer_func (data, g, lims=(-4,4), num_bins=300)
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This result may be somewhat suprising to you. The transfer function looks “fairly”
linear - it is pretty close to a straight line, but the probability distribution of the output is
completely different from a Gaussian. Recall the equations for multiplying two univariate
Gaussians:

µ =
σ2

1µ2 + σ2
2µ1

σ2
1 + σ2

2

, σ =
1

1
σ2
1

+ 1
σ2
2

These equations do not hold for non-Gaussians, and certainly do not hold for the prob-
ability distribution shown in the ‘output’ chart above.

Think of what this implies for the Kalman filter algorithm of the previous chapter. All of
the equations assume that a Gaussian passed through the process function results in another
Gaussian. If this is not true then all of the assumptions and guarantees of the Kalman filter
do not hold. Let’s look at what happens when we pass the output back through the function
again, simulating the next step time step of the Kalman filter.

In [5]: y=g(data)

plot_transfer_func (y, g, lims=(-4,4), num_bins=300)
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As you can see the probability function is futher distorted from the original Gaussian.
However, the graph is still somewhat symmetric around 0, let’s see what the mean is.

In [6]: print (’input mean, variance: %.4f, %.4f’% (np.average(data), np.std(data)**2))

print (’output mean, variance: %.4f, %.4f’% (np.average(y), np.std(y)**2))

input mean, variance: 0.0006, 1.0019

output mean, variance: -0.0286, 2.2455

Let’s compare that to the linear function that passes through (-2,3) and (2,-3), which is
very close to the nonlinear function we have plotted. Using the equation of a line we have

m =
−3− 3

2− (−2)
= −1.5

In [7]: def h(x): return -1.5*x

plot_transfer_func (data, h, lims=(-4,4), num_bins=300)

out = h(data)

print (’output mean, variance: %.4f, %.4f’% (np.average(out), np.std(out)**2))
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output mean, variance: -0.0009, 2.2544

Although the shapes of the output are very different, the mean and variance of each are
almost the same. This may lead us to reasoning that perhaps we can ignore this problem
if the nonlinear equation is ‘close to’ linear. To test that, we can iterate several times and
then compare the results.

In [8]: out = h(data)

out2 = g(data)

for i in range(10):

out = h(out)

out2 = g(out2)

print (’linear output mean, variance: %.4f, %.4f’% (np.average(out), np.std(out)**2))

print (’nonlinear output mean, variance: %.4f, %.4f’% (np.average(out2), np.std(out2)**2))

linear output mean, variance: -0.0532, 7496.3696

nonlinear output mean, variance: -1.9719, 26248.5350

Unfortunately we can see that the nonlinear version is not stable. We have drifted
significantly from the mean of 0, and the variance is half an order of magnitude larger.

10.3 The Extended Kalman Filter

The extended Kalman filter (EKF) works by linearizing the system model at each update.
For example, consider the problem of tracking a cannonball in flight. Obviously it follows
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a curved flight path. However, if our update rate is small enough, say 1/10 second, then
the trajectory over that time is nearly linear. If we linearize that short segment we will
get an answer very close to the actual value, and we can use that value to perform the
prediction step of the filter. There are many ways to linearize a set of nonlinear differential
equations, and the topic is somewhat beyond the scope of this book. In practice, a Taylor
series approximation is frequently used with EKFs, and that is what we will use.

Consider the function f(x) = x2 − 2x, which we have plotted below.

In [9]: xs = np.arange(0,2,0.01)

ys = [x**2 - 2*x for x in xs]

plt.plot (xs, ys)

plt.xlim(1,2)

plt.show()

We want a linear appoximation of this function so that we can use it in the Kalman filter.
We will see how it is used in the Kalman filter in the next section, so don’t worry about that
yet. We can see that there is no single linear function (line) that gives a close approximation
of this function. However, during each innovation (update) of the Kalman filter we know its
current state, so if we linearize the function at that value we will have a close approximation.
For example, suppose our current state is x = 1.5. What would be a good linearization for
this function?

We can use any linear function that passes through the curve at (1.5,-0.75). For example,
consider using f(x)=8x−12.75 as the linearization, as in the plot below.

In [10]: def y(x):

return 8*x - 12.75

plt.plot (xs, ys,c=’k’)
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plt.plot ([1.25, 1.75], [y(1.25), y(1.75)], c=’r’)

plt.xlim(1,2)

plt.ylim([-1.5, 1])

plt.show()

This is not a good linearization for f(x). It is exact for x = 1.5, but quickly diverges
when x varies by a small amount.

A much better approach is to use the slope of the function at the evaluation point as the
linearization. We find the slope by taking the first derivative of the function:

f(x) = x2 − 2x
df

dx
= 2x− 2

,
so the slope at 1.5 is 2 ∗ 1.5− 2 = 1. Let’s plot that.

In [11]: def y(x):

return x - 2.25

plt.plot (xs, ys,c=’k’)

plt.plot ([1,2], [y(1),y(2)], c=’r’)

plt.xlim(1,2)

plt.ylim([-1.5, 1])

plt.show()
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Here we can see that this linearization is much better. It is still exactly correct at x = 1.5,
but the errors are very small as x varies. Compare the tiny error at x = 1.4 vs the very large
error at x = 1.4 in the previous plot. This does not constitute a formal proof of correctness,
but this sort of geometric depiction should be fairly convincing. Certainly it is easy to see
that in this case if the line had any other slope the errors would accumulate more quickly.

To implement the extended Kalman filter we will leave the linear equations as they are,
and use partial derivatives to evaluate the system matrix F and the measurement matrix H
at the state at time t (xt). Since F also depends on the control input vector u we will need
to include that term:

F ≡ ∂f

∂x

∣∣∣∣
xt,ut

H ≡ ∂h

∂x

∣∣∣∣
xt

All this means is that at each update step we compute F as the partial derivative of our
function f() evaluated at x.

We approximate the state transition function F by using the Taylor-series expansion
** orphan text This approach has many issues. First, of course, is the fact that the

linearization does not produce an exact answer. More importantly, we are not linearizing
the actual path, but our filter’s estimation of the path. We linearize the estimation because
it is statistically likely to be correct; but of course it is not required to be. So if the filter’s
output is bad that will cause us to linearize an incorrect estimate, which will almost certainly
lead to an even worse estimate. In these cases the filter will quickly diverge. This is where
the ‘black art’ of Kalman filter comes in. We are trying to linearize an estimate, and there
is no guarantee that the filter will be stable. A vast amount of the literature on Kalman
filters is devoted to this problem. Another issue is that we need to linearize the system using
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analytic methods. It may be difficult or impossible to find an analytic solution to some
problems. In other cases we may be able to find the linearization, but the computation is
very expensive. **

In the next chapter we will spend a lot of time on a new development, the unscented
Kalman filter(UKF) which avoids many of these problems. I think that as it becomes better
known it will supplant the EKF in most applications, though that is still an open question.
Certainly research has shown that the UKF performs at least as well as, and often much
better than the EKF.

I think the easiest way to understand the EKF is to just start off with an example.
Perhaps the reason for some of my mathmatical choices will not be clear, but trust that the
end result will be an EKF.

10.3.1 Example: Tracking a Flying Airplane

We will start by simulating tracking an airplane by using ground based radar. Radars work
by emitting a beam of radio waves and scanning for a return bounce. Anything in the beam’s
path will reflects some of the signal back to the radar. By timing how long it takes for the
reflected signal to get back to the radar the system can compute the slant distance - the
straight line distance from the radar installation to the object.

For this example we want to take the slant range measurement from the radar and com-
pute the horizontal position (distance of aircraft from the radar measured over the ground)
and altitude of the aircraft, as in the diagram below.

In [12]: import ekf_internal

ekf_internal.show_radar_chart()
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As discussed in the introduction, our measurement model is the nonlinear function x =√
slant2 − altitude2. Therefore we will need a nonlinear

Predict step:
Linear Nonlinear
x = Fx x = f(x)

P = FPF T +Q P = FPF T +Q

Update step:

Linear Nonlinear
K = PHT (HPHT +R)−1 K = PHT (HPHT +R)−1

x = x+K(z −Hx) x = x+K(z − h(x))

P = P (I −KH) P = P (I −KH)

As we can see there are two minor changes to the Kalman filter equations, which I have
underlined. The first change replaces the equation x = Fx with x = f(x). In the Kalman
filter, Fx is how we compute the new state based on the old state. However, in a nonlinear
system we cannot use linear algebra to compute this transition. So instead we hypothesize
a nonlinear function f() which performs this function. Likewise, in the Kalman filter we
convert the state to a measurement with the linear function Hx. For the extended Kalman
filter we replace this with a nonlinear function h(), giving zx = h(x).

The only question left is how do we implement use f() and h() in the Kalman filter if
they are nonlinear? We reach for the single tool that we have available for solving nonlinear
equations - we linearize them at the point we want to evaluate the system. For example,
consider the function f(x) = x2 − 2x

The rest of the equations are unchanged, so f() and h() must produce a matrix that
approximates the values of the matrices F and H at the current value for x. We do this by
computing the partial derivatives of the state and measurements functions:
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F ≡ ∂f

∂x

∣∣∣∣
x

, H ≡ ∂h

∂x

∣∣∣∣
x

All this means is that at each update step we compute F as the partial derivative of our
function f() evaluated at the point of f.

In [13]: xs = np.arange(0,2,0.01)

ys = [x**2 - 2*x for x in xs]

plt.plot (xs, ys)

plt.show()

Suppose we want to linearlize this equation so we can evaluate it’s value at 1.5. In other
words, we want to create a linear function of the form yl(x) = ax+ b such that yl(1.5) gives
the same value as y(1.5). Obviously there is not single linear equation that will do this. But
if we linearize y(x) at 1.5, then we will have a perfect answer for yl(1.5), and a progressively
worse answer as our evaluation point gets further away from 1.5.

The simplest way to linearize a function is to take a partial derivative of it. In geometic
terms, the derivative of a function at a point is just the slope of the function. Let’s just look
at that, and then reason about why this is a good choice.

The derivative of f(x) = x2 − 2x is ∂f
∂x

= 2x − 2, so the slope at 1.5 is 2 ∗ 1.5 − 2 = 1.
Let’s plot that.

In [14]: def y(x):

return x - 2.25

plt.plot (xs, ys)

plt.plot ([1,2], [y(1),y(2)], c=’r’)
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plt.ylim([-1.5, 1])

plt.show()

This is a nice visual demonstration of how the slope of the function gives the ideal linear
approximation of the function near a point. We could use any linear function such that
f(1.5) = −0.75, here, but as x varies the value computed by the function would potentially
be very far from the functions value. For example, consider using f(x) = 8x− 12.75 as the
linearization, as in the plot below.

In [15]: def y(x):

return 8*x - 12.75

plt.plot (xs, ys)

plt.plot ([1.25, 1.75], [y(1.25), y(1.75)], c=’r’)

plt.ylim([-1.5, 1])

plt.show()
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We can see that the linearization is exactly correct for x = 1.5, but very quickly diverges
as x varies from 1.5. This does not constitute a proof that taking the derivative is a good
linearization, but it should be fairly convincing.

We will begin by writing a simulation for the radar.

In [16]: import random

import math

class Radar(object):

def __init__(self, pos, vel, alt, dt):

self.pos = pos

self.vel = vel

self.alt = alt

self.dt = dt

def get(self):

""" Simulate radar range to object at 1K altidue and moving at 100m/s.

Adds about 5% measurement noise. Returns slant range to the object.

Call once for each new measurement at dt time from last call.

"""

# add some process noise to the system

vel = self.vel + 5*random.gauss(0,1)

alt = self.alt + 10*random.gauss(0,1)

self.pos = self.pos + vel*self.dt

# add measurment noise
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err = self.pos * 0.05*random.gauss(0,1)

return math.sqrt(self.pos**2 + alt**2) + err

F = I +

0 1 0
0 0 0
0 0 0

 dt
H =

[
∂h

∂xpos
∂h
∂xvel

∂h
∂xalt

]
=
[

xpos√
x2pos+x2alt

0 xalt√
x2pos+x2alt

]
10.3.2 Example: A falling Ball

In the Designing Kalman Filters chapter I first considered tracking a ball in a vacuum,
and then in the atmosphere. The Kalman filter performed very well for vacuum, but diverged
from the ball’s path in the atmosphere. Let us look at the output; to avoid littering this
chapter with code from that chapter I have placed it all in the file ‘ekf internal.py’.

In [17]: import ekf_internal

ekf_internal.plot_ball()

We can artifically force the Kalman filter to track the ball by making Q large. That
would cause the filter to mistrust its prediction, and scale the kalman gain K to strongly
favor the measurments. However, this is not a valid approach. If the Kalman filter is correctly
predicting the process we should not ‘lie’ to the filter by telling it there are process errors
that do not exist. We may get away with that for some problems, in some conditions, but
in general the Kalman filter’s performance will be substandard.
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Recall from the Designing Kalman Filters chapter that the acceleration is

ax = (0.0039 +
0.0058

1 + exp [(v − 35)/5]
) ∗ v ∗ vxay = (0.0039 +

0.0058

1 + exp [(v − 35)/5]
) ∗ v ∗ vy − g

These equations will be very unpleasant to work with while we develop this subject, so
for now I will retreat to a simpler one dimensional problem using this simplified equation for
acceleration that does not take the nonlinearity of the drag coefficient into account:

ẍ =
0.0034ge−x/20000ẋ2

2β
− g

Here β is the ballistic coefficient, where a high number indicates a low drag.

In [17]:
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Chapter 11

Unscented Kalman Filters

In the previous chapter we developed the Extended Kalman Filter to allow us to use the
Kalman filter with nonlinear problems. It is by far the most commonly used Kalman filter.
However, it requires that you be able to analytically derive the Jacobian blah blah limp
prose.

However, for many problems finding the Jacobian is either very difficult or impossible.
Furthermore, being an approximation, the EKF can diverge. For all these reasons there is
a need for a different way to approximate the Gaussian being passed through a nonlinear
transfer function. In the last chapter I showed you this plot:

author’s note - need to add calculation of mean/var to the output.

In [2]: from nonlinear_plots import plot_transfer_func

from numpy.random import normal

import numpy as np

data = normal(loc=0.0, scale=1, size=500000)

def g(x):

return (np.cos(4*(x/2+0.7)))*np.sin(0.3*x)-1.6*x

plot_transfer_func (data, g, lims=(-4,4), num_bins=300)
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I generated this by taking 500,000 samples from the input, passing it through the non-
linear transform, and building a histogram of the result. From that histogram we can then
compute a mean and a variance that we compared to the output of the EKF.

It has perhaps occurred to you that this sampling process constitutes a solution to our
problem. This is called a ‘monte carlo’ approach, and it used by some Kalman filter designs,
such as the Ensemble filter. Sampling requires no specialized knowledge programming, and
does not require a closed form solution. No matter how nonlinear or poorly behaved the
transfer function is, as long as we sample with enough points we will build an accurate output
distribution.

“Enough points” is the rub. The graph above was created with 500,000 points, and the
output is still not smooth. You wouldn’t need to use that many points to get a reasonable
estimate of the mean and variance, but it will require many points. What’s worse, this is
only for 1 dimension. In general, the number of points required increases by the power of
the number of dimensions. If you need 50 points for 1 dimension, you need 502 for two
dimensions, 503 for three dimensions, and so on. So while this approach does work, it is very
computationally expensive. The Unscented Kalman filter uses a somewhat similar technique
but reduces the amount of computation needed by a drastic amount.

It is somewhat hard to understand some aspects of this problem by looking at the his-
togram, so consider this alternative representation, this time for 2 variables/dimensions.

In [3]: import ukf_internal

ukf_internal.show_2d_transform()
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Here on the left we show an ellipse depicting the 1σ distribution of two variables. The
arrows show how three randomly sampled points might be transformed by some arbitrary
nonlinear function to a new distribution. The ellipse on the right is drawn semi-transparently
to indicate that it is an estimate of the mean and variance of this collection of points - if
we were to sample, say, a million points the shape of the points might be very far from an
ellipse.

11.1 Choosing Sigma Points

So what would be fewest number of sampled points that we can use, and what kinds of
constraints does this problem formulation put on the points? We will assume that we
have no special knowledge about the nonlinear transform as we want to find a generalized
algorithm. For reasons that come clear in the next section, we will call these points sigma
points.

Let’s consider the simplest possible case, and see if it offers any insight. The simplest
possible system is identity - the transformation does not alter the input. It should be clear
that if our algorithm does not work for the identity transformation then the filter will never
converge. In other words, if the input is 1 (for a one dimensional system), the output must
also be 1. If the output was different, such as 1.1, then when we fed 1.1 into the transform
at the next time step, we’d get out yet another number, maybe 1.23. The filter would run
away (diverge).

The fewest number of points that we can use is one per dimension. This is the number
that the linear Kalman filter uses. The input to a Kalman filter for the distribution N (µ, σ2)
is just µ itself. So while this works for the linear case, it is not a good answer for the nonlinear
case.

If we were to pass some value µ+ ∆ instead, the identity system would not converge, so
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this is not a possible algorithm. Since we cannot set our one point sample to µ, or any value
that is not µ, we must conclude that a one point sample will not work.

So, what is the next lowest number we can choose? Consider the fact that Gaussians
are symmetric, and that we probably want to always have one of our sample points be the
mean of the input. Two points would require us to select the mean, and then one other
point. That one other point would introduce an asymmetry in our input that we probably
don’t want. I recognize that this is rather vague, but I don’t want to spend a lot of time on
a scheme that doesn’t work.

The next lowest number is 3 points. 3 points allows us to select the mean, and then one
point on each side of the mean, as depicted on the chart below.

In [4]: ukf_internal.show_3_sigma_points()

For this to work for identity we will want the sums of the weights to equal one. We can
always come up with counterexamples, but in general if the sum is greater or less than one
the sampling will not yield the correct output. Given that, we then have to select sigma
points X and their corresponding weights so that they compute to the mean and variance
of the input Gaussian. So we can write

1 =
∑
i

wi (1)

µ =
∑
i

wiXi (2)

Σ =
∑
i

wi(Xi − µ)(Xi − µ)T (3)

If we look at this is should be clear that there is no one unique answer - the problem is
unconstrained. For example, if you choose a smaller weight for the point at the mean for
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the input, you could compensate by choosing larger weights for the rest of the X , and vice
versa if you chose a larger weight for it. Indeed, these equations do not require that any of
the points be the mean of the input at all, though it seems ‘nice’ to do so, so to speak.

Methods for selecting these sigma points is it own topic. In the next section I will develop
the most typically used method in practice. It has the virtue of requiring only 3 sigma points
per dimension, which is far lower than we might expect to provide good results. Despite the
low number of points, the computations for the weight selections are very easy and efficient,
and the numerical performance of the filter is as good as, and usually better than the EKF.

But before we go on I want to make sure the idea is clear. We are choosing 3 points for
each dimension in our covariances. That choice is entirely deterministic. Below are three
different examples for the same covariance ellipse.

In [5]: ukf_internal.show_sigma_selections()

Note that while I chose the points to lie along the major and minor axis of the ellipse,
nothing in the constraints above require me to do that; however, it is fairly typical to do this.
Furthermore, in each case I show the points evenly spaced; again, the constraints above do
not require that. However, the technique that we develop in the next section does do this.
It is a reasonable choice, after all; if we want to accurately sample our input it makes sense
to sample in a symmetric manner.

There are many published ways for selecting the sigma points. For now I will stick with
the original implementation by Julier and Uhlmann. This method defines a constant kappa
(κ) which controls how spread out the sigma points are. Their equations for the sigma points
are
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11.2 The Unscented Transform

So our desire is to have an algorithm for selecting sigma points based on some criteria.
Maybe we know something about our nonlinear problem, and we know we want our sigma
points to be very close together, or very far apart. Or through experimentation we decide
that a certain choice of basis vectors from our hyperellipse are the best axis to choose our
sigma points from. But we want this to be an algorithm - we don’t want to have to hard
code in a specific selection algorithm for each different problem. So we are going to want to
be able to set some parameters to tell the algorithm how to automatically select the points
and weights for us. That may seem a bit abstract, so let’s just launch into it, and try to
develop an intuitive understanding as we go.

Assume a n-dimensional state variable x with mean µ and covariance Σ. We want to
choose 2n+ 1 sigma points to approximate the Gaussian distribution of x.

Our first sigma point is always going to be the mean of our input. We will call this X0.
So,

X0 = µ

Tne corresponding weight for this sigma point is

W0 =
κ

n+ κ

where n is the dimension of the problem, and κ is a scaling factor that will be discussed in
a moment.

So for each dimension we need to select 2 more points. We want them to be symmetric
around the mean so that for the linear case they cancel out and we are just left with the
mean as the result. Here is how we are going to do that:

Xi = µ+ (
√

(n+ κ)Σ)i for i=1 .. n

Xi = µ− (
√

(n+ κ)Σ)i−n for i=(n+1) .. 2n

and the corresponding weights are

Wi =
1

2(n+ κ)
for i=1,2..2n

κ (kappa) is a scaling factor that controls how far away from the mean we want the
points to be. A larger kappa will choose points further away from the mean, and a smaller
kappa will choose points nearer the mean. Julier and Uhlmann suggest using κ+n = 3 if the
distribution is Gaussian, and perhaps choosing a different value if it is not Gaussian. So in
one dimension we get something like the following. Here I have plotted two different choices
for kappa to show how kappa affects the distribution of the points.

In [6]: ukf_internal.show_sigmas_for_2_kappas()
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The remainder of the algorithm follows from our equations above:

µ =
∑
i

wiXi (2)

Σ =
∑
i

wi(Xi − µ)(Xi − µ)T (3)

In other words, we generate sigma points from an existing state variable from its mean
and covariance matrix. We pass those sigma points through the nonlinear function that we
are trying to filter. Then we use equations (2) and (3) to regenerate an approximation for
the mean and covariance of the output.

11.3 Implementation

So let’s just implement this algorithm. First, let’s write the code to compute the mean and
covariance given the sigma points.

So we will store the sigma points and weights in matrices, like so:

weights =
[
w1 w2 . . . w2n+1

]
sigmas =


X0,0 X0,1 X0,2

X1,0 X1,1 X1,2
...

...
...

X2n+1,0 X2n+1,1 X2n+1,2


In other words, each column contains the 2n + 1 sigma points for one dimension in our

problem. The 0th sigma point is always the mean, so first row of sigma’s contains the mean
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of each of our dimensions. The second through nth row contains the µ+
√

(n+ λ)Σ terms,

and the n+ 1 to 2n rows contains the µ−
√

(n+ λ)Σ terms.
Computing the weights in numpy is extremely simple. Recall that

W0 =
κ

n+ κ

Wi =
1

2(n+ κ)
for i=1,2..2n

These two lines of code implenent these equations with the np.full() method, which
creates and fills an array with the same value. Then the value for the mean(W0) is computed
and overwrites the filled in value. We make W a (2n+1)×1 dimension array simply because
linear algebra with numpy proceeds much more smoothly when all arrays are 2 dimensional,
so the one dimensional array [1,2,3] is better expressed in numpy as [[1,2,3]].

W = np.full((2*n+1,1), .5 / (n+kappa))

W[0] = kappa / (n+kappa)

The equations for the sigma points are:

X0 = µ

Xi = µ+

[√
(n+ κ)Σ

]
i

for i=1 .. n

Xi = µ−
[√

(n+ κ)Σ

]
i−n

for i=(n+1) .. 2n

The Python for this is not much more difficult once we wrap our heads around the
[
√

(n+ κ)Σ]i term.

The term [
√

(n+ κ)Σ]i has to be a matrix because Σ is a matrix. The subscript i is
choosing the column vector of the matrix. What is the ‘square root of a matrix’? The usual
definition is that the square root of a matrix Σ is just the matrix S that, when multiplied
by itself, yields Σ.

if Σ = SS

then S =
√

Σ

However there is an alternative definition, and we will chose that because it has numerical
properties that makes it much easier for us to compute its value. We can alternatively define
the square root as the matrix S, which when multiplied by its transpose, returns Σ:

Σ = SST

This latter method is typically chosen in computational linear algebra because this ex-
pression is easy to compute using something called the Cholesky decomposition. Numpy
provides this with the numpy.linalg.cholesky() method. If your language of choice is
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Fortran, C, C++, or the like standard libraries such as LAPACK also provide this routine.
And, of course, matlab provides chol(), which does the same thing.

This method returns a lower triangular matrix, so we will take the transpose of it so
that in our for loop we can access it row-wise as U[i], rather than the more cumbersome
column-wise notation U[i,:].

Xi = np.zeros((2*n+1, n))

Xi[0] = X

U = linalg.cholesky((n+kappa)*P).T

for k in range (n):

Xi[k+1] = X + U[k]

Xi[n+k+1] = X - U[k]

The full listing from the filterpy.kalman library follows.

In [7]: def sigma_points (X, P, kappa):

""" Computes the sigma points and weights for an unscented Kalman filter

given the mean and covariance of the filter.

kappa is an arbitrary constant

constant. Returns tuple of the sigma points and weights.

Works with both scalar and array inputs:

sigma_points (5, 9, 2) # mean 5, covariance 9

sigma_points ([5, 2], 9*eye(2), 2) # means 5 and 2, covariance 9I

Parameters

----------

X An array of the means for each dimension in the problem space.

Can be a scalar if 1D.

examples: 1, [1,2], np.array([1,2])

P : scalar, or

Returns

-------

sigmas : np.array, of size (n, 2n+1)

Two dimensional array of sigma points. Each column contains all of

the sigmas for one dimension in the problem space.

Ordered by Xi_0, Xi_{1..n}, Xi_{n+1..2n}

weights : 1D np.array, of size (2n+1)

"""
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if np.isscalar(X):

X = np.array([X])

if np.isscalar(P):

P = np.array([[P]])

""" Xi - sigma points

W - weights

"""

n = np.size(X) # dimension of problem

W = np.full((2*n+1,1), .5 / (n+kappa))

Xi = np.zeros((2*n+1, n))

# handle values for the mean separately as special case

Xi[0] = X

W[0] = kappa / (n+kappa)

# implements U’*U = (n+kappa)*P. Returns lower triangular matrix.

# Take transpose so we can access with U[i]

U = linalg.cholesky((n+kappa)*P).T

for k in range (n):

Xi[k+1] = X + U[k]

Xi[n+k+1] = X - U[k]

return (Xi, W)

Now let’s implement the unscented transform. Recall the equations

µ =
∑
i

wiXi (2)

Σ =
∑
i

wi(Xi − µ)(Xi − µ)T (3)

We implement the sum of the means with

X = np.sum (Xi*W, axis=0)

If you are not a heavy user of numpy this may look foreign to you. Numpy is not just a
library that make linear algebra possible; under the hood it is written in C to achieve much
faster speeds than Python can reach. A typical speedup is 100x. To get that speedup we must
avoid using for loops, and instead use numpy’s built in functions to perform calculations. So,
instead of writing a for loop to compute the sum, we call the built in numpy.sum() method

246



which takes an entire array and computes the sum in C. The axis parameter tells sum over
which axis to sum the array. For example, if

Xi =

1 2 3
1 2 3
1 2 3


then

sum(Xi) == 18

sum(Xi,axis=0) == [3,6,9]

sum(Xi,axis=1) == [6,6,6]

All that is left is to compute Σ =
∑

iwi(Xi − µ)(Xi − µ)T

P = np.zeros((n,n))

for k in range (2*n+1):

s = (Xi[k]-X)[np.newaxis] # needs to be 2D to perform transform

P += W[k]*s*s.T

This introduces another new feature of numpy. The state variable X is one dimensional,
as is Xi[k], so the difference Xi[k] − X is also one dimensional. numpy will not compute
the transpose of a 1-D array; it considers the transpose of [1,2,3] to be [1,2,3]. I
consider that a deficiency of numpy, but you have to live with it. So we need to make
the array two dimensional, with the second dimension of size 1. You do this in numpy
by appending [np.newaxis] to the array. For example, np.array([1,2])[np.newaxis]

returns array([[1, 2]]).
The following code is the implementation from the filterpy.kalman library. The func-

tion includes the ability to sum a noise covariance into the covariance matrix; this feature
will be used to implement the full blown unscented Kalman filter.

In [8]: def unscented_transform (Xi, W, NoiseCov=None):

""" computes the unscented transform of a set of signma points and weights.

returns the mean and covariance in a tuple

"""

kmax,n = Xi.shape

X = np.sum (Xi*W, axis=0)

P = np.zeros((n,n))

for k in range (kmax):

s = (Xi[k]-X)[np.newaxis] # needs to be 2D to perform transform

P += W[k]*s*s.T

if NoiseCov is not None:

P += NoiseCov

return (X, P)
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11.4 Unscented Kalman Filter

We are now ready to consider implementing a Kalman filter using the approximations for
the mean and covariances afforded by the unscented transform.
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Chapter 12

Designing Nonlinear Kalman Filters

12.1 Introduction

blah blah
We see that the Kalman filter reasonably tracks the ball. However, as already explained,

this is a silly example; we can predict trajectories in a vacuum with arbitrary precision; using
a Kalman filter in this example is a needless complication.

12.1.1 Kalman Filter with Air Drag

I will dispense with the step 1, step 2, type approach and proceed in a more natural style
that you would use in a non-toy engineering problem. We have already developed a Kalman
filter that does excellently at tracking a ball in a vacuum, but that does not incorporate the
effects of air drag into the model. We know that the process model is implemented with F,
so we will turn our attention to that immediately.

Notionally, the computation that F computes is

x′ = Fx

With no air drag, we had

F =


1 ∆t 0 0 0
0 1 0 0 0
0 0 1 ∆t 1

2
∆t2

0 0 0 1 ∆t
0 0 0 0 1


which corresponds to the equations
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x = x+ vx∆t

vx = vx

y = y + vy∆t+
ay
2

∆t2

vy = vy + ay∆t

ay = ay

From the section above we know that our new Euler equations must be

x = x+ vx∆t

vx = vx

y = y + vy∆t+
ay
2

∆t2

vy = vy + ay∆t

ay = ay

12.2 Realistic 2D Position Sensors

The position sensor in the last example are not very realistic. In general there is no ‘raw’
sensor that provides (x,y) coordinates. We have GPS, but GPS already uses a Kalman
filter to create a filtered output; we should not be able to improve the signal by passing it
through another Kalman filter unless we incorporate additional sensors to provide additional
information. We will tackle that problem later.

Consider the following set up. In an open field we put two transmitters at a known
location, each transmitting a signal that we can detect. We process the signal and determine
how far we are from that signal, with some noise. First, let’s look at a visual depiction of
that.

In [2]: circle1=plt.Circle((-4,0),5,color=’#004080’,fill=False,linewidth=10, alpha=.7)

circle2=plt.Circle((4,0),5,color=’#E24A33’, fill=False, linewidth=5, alpha=.7)

fig = plt.gcf()

ax = fig.gca()

plt.axis(’equal’)

plt.xlim((-10,10))

plt.ylim((-10,10))

plt.plot ([-4,0], [0,3], c=’#004080’)

plt.plot ([4,0], [0,3], c=’#E24A33’)

plt.text(-4, -.5, "A", fontsize=16, horizontalalignment=’center’)
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plt.text(4, -.5, "B", fontsize=16, horizontalalignment=’center’)

#plt.scatter ([-4],[0], ’r’)

ax.add_artist(circle1)

ax.add_artist(circle2)

plt.show()

Here I have attempted to show transmitter A, drawn in red, at (-4,0) and a second one
B, drawn in blue, at (4,0). The red and blue circles show the range from the transmitters to
the robot, with the width illustrating the effect of the 1σ angular error for each transmitter.
Here I have given the red transmitter more error than the blue one. The most probable
position for the robot is where the two circles intersect, which I have depicted with the red
and blue lines. You will object that we have two intersections, not one, but we will see how
we deal with that when we design the measurement function.

This is a very common sensor set up. Aircraft still use this system to navigate, where
it is called DME (Distance Measuring Equipment). Today GPS is a much more common
navigation sytem, but I have worked on an aircraft where we integrated sensors like this into
our filter along with the GPS, INS, altimeters, etc. We will tackle what is called multi-sensor
fusion later; for now we will just address this simple configuration.

The first step is to design our state variables. We will assume that the robot is travelling
in a straight direction with constant velocity. This is unlikely to be true for a long period
of time, but is acceptable for short periods of time. This does not differ from the previous
problem - we will want to track the values for the robot’s position and velocity. Hence,

x =


x
vx
y
vy
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The next step is to design the state transistion function. This also will be the same as
the previous problem, so without further ado,

x′ =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

x

The next step is to design the control inputs. We have none, so we set B = 0.
The next step is to design the measurement function z = Hx. We can model the

measurement using the Pythagorean theorem.

za =
√

(x− xA)2 + (y − yA)2 + vazb =
√

(x− xB])2 + (y − yB)2 + vb

where va and vb are white noise.
We see an immediate problem. The Kalman filter is designed for linear equations, and

this is obviously nonlinear. In the next chapters we will look at several ways to handle
nonlinear problems in a robust way, but for now we will do something simpler. If we know
the approximate position of the robot than we can linearize these equations around that
point. I could develop the generalized mathematics for this technique now, but instead let
me just present the worked example to give context to that development.

Instead of computing H we will compute the partial derivative of H with respect to the
robot’s position x. You are probably familiar with the concept of partial derivative, but if
not, it just means how H changes with respect to the robot’s position. It is computed as
the partial derivative of H as follows:

∂h

∂x
=


∂h1
∂x1

∂h1
∂x2

. . .
∂h2
∂x1

∂h2
∂x2

. . .
...

...


Let’s work the first partial derivative. We want to find

∂

∂x

√
(x− xA)2 + (y − yA)2

Which we compute as

∂h1

∂x
= ((x− xA)2 + (y − yA)2))

1
2

=
1

2
× 2(x− xa)× ((x− xA)2 + (y − yA)2))−

1
2

=
xr − xA√

(xr − xA)2 + (yr − yA)2

We continue this computation for the partial derivatives of the two distance equations
with respect to x, y, dx and dy, yielding
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∂h

∂x
=

 xr−xA√
(xr−xA)2+(yr−yA)2

0 yr−yA√
(xr−xA)2+(yr−yA)2

0

xr−xB√
(xr−xB)2+(yr−yB)2

0 yr−yB√
(xr−xB)2+(yr−yB)2

0


That is pretty painful, and these are very simple equations. Computing the Jacobian

can be extremely difficult or even impossible for more complicated systems. However, there
is an easy way to get Python to do the work for you by using the sympy module [1]. sympy

is a Python library for symbolic mathematics. The full scope of its abilities are beyond
this book, but it can perform algebra, integrate and differentiate equations, find solutions to
differential equations, and much more. We will use it to compute our Jabobian!

First, a simple example. We will import sympy, initialize its pretty print functionality
(which will print equations using LaTeX). We will then declare a symbol for numpy to use.

In [3]: import sympy

from sympy import init_printing

#from sympy.interactive import printing

init_printing(use_latex=’mathjax’)

phi, x = sympy.symbols(’\phi, x’)

phi

Out[3]:

φ

Notice how we use a latex expression for the symbol phi. This is not necessary, but if you
do it will render as LaTeX when output. Now let’s do some math. What is the derivative of√
φ?

In [4]: sympy.diff(’sqrt(phi)’)

Out[4]:

1

2
√
φ

We can factor equations.

In [5]: sympy.factor(’phi**3 -phi**2 + phi - 1’)

Out[5]:

(φ− 1)
(
φ2 + 1

)
sympy has a remarkable list of features, and as much as I enjoy exercising its features we

cannot cover them all here. Instead, let’s compute our Jacobian.
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In [6]: phi = sympy.symbols(’\phi’)

phi

x, y, xa, xb, ya, yb, dx, dy = sympy.symbols(’x, y, x_a, x_b, y_a, y_b, dx, dy’)

H = sympy.Matrix([[sympy.sqrt((x-xa)**2 + (y-ya)**2)],

[sympy.sqrt((x-xb)**2 + (y-yb)**2)]])

state = sympy.Matrix([x, dx, y, dy])

H.jacobian(state)

Out[6]:  x−xa√
(x−xa)2+(y−ya)2

0 y−ya√
(x−xa)2+(y−ya)2

0

x−xb√
(x−xb)2+(y−yb)2

0 y−yb√
(x−xb)2+(y−yb)2

0


In a nutshell, the entry (0,0) contains the difference between the x coordinate of the robot

and transmitter A’s x coordinate divided by the distance between the robot and A. (2,0)
contains the same, except for the y coordintates of the robot and transmitters. The bottom
row contains the same computations, except for transmitter B. The 0 entries account for
the velocity components of the state variables; naturally the range does not provide us with
velocity.

The values in this matrix change as the robot’s position changes, so this is no longer a
constant; we will have to recompute it for every time step of the filter.

If you look at this you may realize that this is just a computation of x/dist and y/dist,
so we can switch this to a trigometic form with no loss of generality:

∂h

∂x
=

[
− cos θA 0 − sin θA 0
− cos θB 0 − sin θB 0

]
However, this raises a huge problem. We are no longer computing H, but ∆H, the

change of H. If we passed this into our Kalman filter without altering the rest of the design
the output would be nonsense. Recall, for example, that we multiply Hx to generate the
measurements that would result from the given estimate of x But now that H is linearized
around our position it contains the change in the measurement function.

We are forced, therefore, to use the change in x for our state variables. So we have to go
back and redesign our state variables.

Please note this is a completely normal occurance in designing Kalman filters.
The textbooks present examples like this as fait accompli, as if it is trivially obvi-
ous that the state variables needed to be velocities, not positions. Perhaps once
you do enough of these problems it would be trivially obvious, but at that point
why are you reading a textbook? I find myself reading through a presentation
multiple times, trying to figure out why they made a choice, finally to realize
that it is because of the consequences of something on the next page. My presen-
tation is longer, but it reflects what actually happens when you design a filter.
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You make what seem reasonable design choices, and as you move forward you
discover properties that require you to recast your earlier steps. As a result, I am
going to somewhat abandon my step 1, step 2, etc., approach, since so many
real problems are not quite that straightforward.

If our state variables contain the velocities of the robot and not the position then how do
we track where the robot is? We can’t. Kalman filters that are linearized in this fashion use
what is called a nominal trajectory - i.e. you assume a position and track direction, and then
apply the changes in velocity and acceleration to compute the changes in that trajectory.
How could it be otherwise? Recall the graphic showing the intersection of the two range
circles - there are two areas of intersection. Think of what this would look like if the two
transmitters were very close to each other - the intersections would be two very long cresent
shapes. This Kalman filter, as designed, has no way of knowing your true position from only
distance measurements to the transmitters. Perhaps your mind is already leaping to ways of
working around this problem. If so, stay engaged, as later sections and chapters will provide
you with these techniques. Presenting the full solution all at once leads to more confusion
than insight, in my opinion.

So let’s redesign our state transition function. We are assuming constant velocity and no
acceleration, giving state equations of

ẋ′ = ẋẍ′ = 0ẏ′ = ẏẏ′ = 0

This gives us the the state transition function of

F =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


A final complication comes from the measurements that we pass in. Hx is now computing

the change in the measurement from our nominal position, so the measurement that we pass
in needs to be not the range to A and B, but the change in range from our measured range
to our nomimal position.

There is a lot here to take in, so let’s work through the code bit by bit. First we will
define a function to compute ∂h

∂x
for each time step.

In [7]: from math import sin, cos, atan2

def H_of (pos, pos_A, pos_B):

""" Given the position of our object at ’pos’ in 2D, and two transmitters

A and B at positions ’pos_A’ and ’pos_B’, return the partial derivative

of H

"""

theta_a = atan2(pos_a[1]-pos[1], pos_a[0] - pos[0])

theta_b = atan2(pos_b[1]-pos[1], pos_b[0] - pos[0])
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return np.array([[0, -cos(theta_a), 0, -sin(theta_a)],

[0, -cos(theta_b), 0, -sin(theta_b)]])

Now we need to create our simulated sensor.

In [8]: from numpy.random import randn

class DMESensor(object):

def __init__(self, pos_a, pos_b, noise_factor=1.0):

self.A = pos_a

self.B = pos_b

self.noise_factor = noise_factor

def range_of (self, pos):

""" returns tuple containing noisy range data to A and B

given a position ’pos’

"""

ra = math.sqrt((self.A[0] - pos[0])**2 + (self.A[1] - pos[1])**2)

rb = math.sqrt((self.B[0] - pos[0])**2 + (self.B[1] - pos[1])**2)

return (ra + randn()*self.noise_factor,

rb + randn()*self.noise_factor)

Finally, we are ready for the Kalman filter code. I will position the transmitters at x=-
100 and 100, both with y=-20. This gives me enough space to get good triangulation from
both as the robot moves. I will start the robot at (0,0) and move by (1,1) each time step.

In [9]: import math

from filterpy.kalman import KalmanFilter

import numpy as np

pos_a = (100,-20)

pos_b = (-100, -20)

f1 = KalmanFilter(dim_x=4, dim_z=2)

f1.F = np.array ([[0, 1, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 1],

[0, 0, 0, 0]], dtype=float)

f1.R *= 1.

f1.Q *= .1
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f1.x = np.array([[1,0,1,0]], dtype=float).T

f1.P = np.eye(4) * 5.

# initialize storage and other variables for the run

count = 30

xs, ys = [],[]

pxs, pys = [],[]

# create the simulated sensor

d = DMESensor (pos_a, pos_b, noise_factor=3.)

# pos will contain our nominal position since the filter does not

# maintain position.

pos = [0,0]

for i in range(count):

# move (1,1) each step, so just use i

pos = [i,i]

# compute the difference in range between the nominal track and measured

# ranges

ra,rb = d.range_of(pos)

rx,ry = d.range_of((pos[0]+f1.x[0,0], pos[1]+f1.x[2,0]))

z = np.array([[ra-rx],[rb-ry]])

# compute linearized H for this time step

f1.H = H_of (pos, pos_a, pos_b)

# store stuff so we can plot it later

xs.append (f1.x[0,0]+i)

ys.append (f1.x[2,0]+i)

pxs.append (pos[0])

pys.append(pos[1])

# perform the Kalman filter steps

f1.predict ()

f1.update(z)

p1, = plt.plot (xs, ys, ’r--’)

p2, = plt.plot (pxs, pys)

plt.legend([p1,p2], [’filter’, ’ideal’], 2)

plt.show()
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12.3 Linearizing the Kalman Filter

Now that we have seen an example of linearizing the Kalman filter we are in a position to
better understand the math.

We start by assuming some function f

12.4 References

[1] http://sympy.org
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Chapter 13

Appendix: Installation, Python,
Numpy, and filterpy

This book is written in IPython Notebook, a browser based interactive Python environment
that mixes Python, text, and math. I choose it because of the interactive features - I
found Kalman filtering nearly impossible to learn until I started working in an interactive
environment. It is difficult to form an intuition of the effect of many of the parameters
that you can tune until you can change them rapidly and immediately see the output. An
interactive environment also allows you to play ‘what if’ scenarios out. “What if I set Q to
zero?” It is trivial to find out with Ipython Notebook.

Another reason I choose it is because I find that a typical textbook leaves many things
opaque. For example, there might be a beautiful plot next to some pseudocode. That plot
was produced by software, but software that is not available to me as a reader. I want
everything that went into producing this book to be available to the reader. How do you
plot a covariance ellipse? You won’t know if you read most books. With IPython Notebook
all you have to do is look at the source code.

A downside to this format is that you have to install IPython onto your machine if you
want the book’s interactive features. This is normally not an onerous burden as if you are
interested in programming in Python you should already have Python installed on your
system.

Still, I know I have not downloaded some IPython Notebooks that are of interest to me.
There is the free nbviewer.org site which will statically render a notebook that is hosted
elsewhere. My book is hosted on github, so you can always read my book for free by going
to
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Chapter 14

Appendix I : Symbology

This is just notes at this point.

State

x (Brookner, Zarchan, Brown)
x Gelb)

State at step n

xn (Brookner)
xk (Brown, Zarchan)
xk (Gelb)

Prediction

x−

xn,n−1 (Brookner)
xk+1,k

14.0.1 measurement

x∗

Y n (Brookner)

14.0.2 control transition Matrix

G (Zarchan)
Not used (Brookner)
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14.1 Nomenclature

14.1.1 Equations

Brookner

X∗n+1,n = ΦX∗n,n

X∗n,n = X∗n,n−1 +Hn(Yn −MX∗n,n−1)

Hn = S∗n,n−1M
T [Rn +MS∗n,n−1M

T ]−1

S∗n,n−1 = ΦS∗n−1,n−1ΦT +Qn

S∗n−1,n−1 = (I −Hn−1M)S∗n−1,n−2

Gelb

x̂k(−) = Φk−1x̂k−1(+)

x̂k(+) = x̂k(−) +Kk[Zk −Hkx̂k(−)]

Kk = Pk(−)HT
k [HkPk(−)HT

k +Rk]
−1

Pk(+) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1

Pk(−) = (I −KkHk)Pk(−)

Brown

x̂−k+1 = φkx̂k

x̂k = x̂−k + Kk[zk −Hkx̂
−
k ]

Kk = P−k HT
k [HkP

−
k HT

k + Rk]
−1

P−k+1 = φkPkφ
T
k + Qk

Pk = (I−KkHk)P
−
k

##

Zarchan

x̂k = Φkx̂k−1 +Gkuk−1 +Kk[zk −HΦkx̂k−1 −HGkuk−1]

Mk = ΦkPk−1φ
T
k +Qk

Kk = MkH
T [HMkH

T +Rk]
−1

Pk = (I −KkH)Mk
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Wikipedia

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

ỹk = zk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k + Rk

Kk = Pk|k−1H
T
kS−1

k

x̂k|k = x̂k|k−1 + Kkỹk
Pk|k = (I −KkHk)Pk|k−1

Labbe

x̂−k+1 = Fkx̂k + Bkuk

P−k+1 = FkPkF
T
k + Qk

yk = zk −Hkx̂
−
k

Sk = HkP
−
k HT

k + Rk

Kk = P−k HT
kS−1

k

x̂k = x̂−k + Kky

Pk = (I−KkHk)P
−
k

##
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