

DO NOT WRITE IN THIS MARGIN QUESTION No. _____ SECTION No. _____ STUDENT No. ____ D(Calculate derivates of L to find torque equations 154600 ICNOW 2 ECTRECAL E M AIV 4

Table 2.1	Summary of Thro	ough- and Acro	ss-Variables for F	Physical Systems
System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference θα
Fluid	Fluid volumetric rate of flow, <i>O</i>	Volume, V	Pressure difference, P ₂₁	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	

Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i>P</i>	Symbol
	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	
Inductive storage	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ \cdots \circ F$
	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \cdots \circ T$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ \cdots \circ P_1$
	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^{2}$	$v_2 \circ \xrightarrow{i} \stackrel{C}{\longrightarrow} v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \rightarrow v_2$ M $v_1 = constant$
Capacitive storage	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \xrightarrow{\omega_2} \overline{J} \xrightarrow{\omega_1} \omega_1 =$ constant
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}{}^2$	$Q \xrightarrow{P_2} C_1 \xrightarrow{P_1} P_1$
	Thermal capacitance	$q = C_t \frac{d\mathcal{I}_2}{dt}$	$E=C_{t}\mathcal{T}_{2}$	$q \xrightarrow{q} \overline{\mathcal{T}}_2 \xrightarrow{C_l} \overline{\mathcal{T}}_1 = $
	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} {v_{21}}^2$	$v_2 \circ - \stackrel{R}{\longrightarrow} \circ v_1$
	Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}^2$	$F \longrightarrow v_1$
Energy dissipators	Rotational damper	$T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}{}^2$	$T \longrightarrow \omega_2 \longrightarrow \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}{}^2$	$P_2 \circ - \stackrel{R_f}{\longrightarrow} \circ P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_{\rm f}} \mathcal{T}_{21}$	$\mathcal{T}_2 \circ \longrightarrow \mathcal{T}_1$
			Sourc	ce: Dorf & Bishop, Modern Control Systems, 12th Ed., p.

