	http://elec3004.org
Introduction to (Digital) Control	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 9	
elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/	May 4, 2015

We	ek Date	Lecture Title	
1	2-Ma	Introduction	
Outline:			
(1) Conceptua	alizing fe	edback as a "special" recursive signal	
(2) Adding an	nd ADC:	Discrete Models of Sampled Data Sys	tems
(3) Discrete I	Design Ec	quivalents	
(4) PID			
Next Week:			
(1) Regulator	Design		
(1) Using	Emulatio	on troduction to (Digital) Control	
(2) Using	Root Loo	cus in the z-Plane	
(2) Tuning Co	ontrollers	Controllability & Observability	
(3) Least Squ	ares		
(4) Quantizati	ion Effec	ts (and Handling this via Least Square	s)
		System Identification & Information Theory + Communications	
4	2=J (II	poundary and course review	

Digital control

Once upon a time...

- Electromechanical systems were controlled by electromechanical compensators
 - Mechanical flywheel governors, capacitors, inductors, resistors, relays, valves, solenoids (fun!)
 - But also complex and sensitive!

→Idea: Digital computers in real-time control

- Transform approach (classical control)
 - Root-locus methods (pretty much the same as METR 3200)
 - Bode's frequency response methods (these change compared to METR 3200)
- State-space approach (modern control)

→ Model Making: Control of frequency response as well as Least Squares Parameter Estimation

How to Handle the Digitization?

(z-Transforms)

ELEC 3004: Systems

4 May 2015 - 11

$\mathcal{L}(ZOH) = ???$: What	t is it?
$\frac{1 - e^{-Ts}}{Ts}$	$\frac{1 - e^{-Ts}}{s}$
<complex-block></complex-block>	 Lathi Franklin, Powell, Workman Franklin, Powell, Emani-Naeini Dorf & Bishop Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) Matlab Proof!
ELEC 3004: Systems	4 May 2015 - 14

Transfer function of Zero-order-hold (ZOH)
... Continuing the
$$\mathcal{L}$$
 of h(t) ...
 $\mathcal{L}[h(t)] = \mathcal{L}[\sum_{k=0}^{\infty} x(kT)[1(t-kT) - 1(t-(k+1)T)]]$
 $= \sum_{k=0}^{\infty} x(kT)\mathcal{L}[1(t-kT) - 1(t-(k+1)T)] = \sum_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}]$
 $= \sum_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum_{k=0}^{\infty} x(kT)\frac{1-e^{-Ts}}{s}e^{-kTs} = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\rightarrow X(s) = \mathcal{L}\left[\sum_{k=0}^{\infty} x(kT)\delta(t-kT)\right] = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\therefore H(s) = \mathcal{L}[h(t)] = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1-e^{-Ts}}{s}X(s)$
 \Rightarrow Thus, giving the transfer function as:
 $\left[G_{ZOH}(s) = \frac{H(s)}{X(s)} = \frac{1-e^{-Ts}}{s}\right] \xrightarrow{Z} G_{ZOH}(z) = \frac{(1-e^{-aT})}{z-e^{-aT}}$

The *z*-transform

•	In practice, you'll use look-up tables or computer tools (ie. Matlab)
	to find the <i>z</i> -transform of your functions

F(s)	F(kt)	F(z)
1	1	
S		z-1
1	kT	Tz
$\overline{s^2}$		$(z-1)^2$
1	e^{-akT}	Z
$\overline{s+a}$		$z - e^{-aT}$
1	kTe^{-akT}	zTe^{-aT}
$(s + a)^2$		$(z - e^{-aT})^2$
1	sin(akT)	z sin aT
$\overline{s^2 + a^2}$		$\overline{z^2 - (2\cos aT)z + 1}$

If $F(s)$ has a pole at $s = a$		f(kT)	
then $F(z)$ has a pole at $z = e^{aT}$	$\frac{1}{\frac{1}{s}}$	1(kT)	$\frac{z}{z-1}$
\uparrow	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$
consistent with $z = e$	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z - e^{-aT}}$
What about transfer functions?	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
$G(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$	$\frac{a}{s(s+a)}$	$1 - e^{-akT}$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$
↓ ↓	$\frac{b-1}{(s+a)(s+b)}$	$e^{-akT} - e^{-bkT}$	$\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
If $G(s)$ has poles $s = a_i$ then $G(z)$ has poles $z = e^{a_i T}$	$\frac{a}{s^2 + a^2}$	$\sin akT$	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$
but the zeros are unrelated	$\frac{b}{(s+a)^2+b^2}$	$e^{-akT}\sin bkT$	$\frac{ze^{-aT}\sin bT}{z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}}$

The Root Locus (Quickly)

- Pole positions change with increasing gain
 - The trajectory of poles on the pole-zero plot with changing k is called the "root locus"
 - This is sometimes quite complex

Now in discrete

• Naturally, there are discrete analogs for each of these controller types:

Piecewise constant system

consider *time-varying* LDS $\dot{x} = A(t)x$, with

$$A(t) = \begin{cases} A_0 & 0 \le t < t_1 \\ A_1 & t_1 \le t < t_2 \\ \vdots & \end{cases}$$

where $0 < t_1 < t_2 < \cdots$ (sometimes called jump linear system)

for $t \in [t_i, t_{i+1}]$ we have

$$x(t) = e^{(t-t_i)A_i} \cdots e^{(t_3-t_2)A_2} e^{(t_2-t_1)A_1} e^{t_1A_0} x(0)$$

(matrix on righthand side is called state transition matrix for system, and denoted $\Phi(t)$)

ELEC 3004: System

Qualitative behaviour of $\mathbf{x}(t)$ suppose $\dot{x} = Ax$, $x(t) \in \mathbb{R}^n$ then $x(t) = e^{tA}x(0)$; $X(s) = (sI - A)^{-1}x(0)$ *i*th component $X_i(s)$ has form $X_i(s) = \frac{a_i(s)}{\mathcal{X}(s)}$ where a_i is a polynomial of degree < nthus the poles of X_i are all eigenvalues of A (but not necessarily the other way around) Succe Bod. Letter Nates for EE23, 10-24

Emulation vs Discrete Design

• Remember: polynomial algebra is the same, whatever symbol you are manipulating:

eg. $s^2 + 2s + 1 = (s+1)^2$

 $z^2 + 2z + 1 = (z + 1)^2$

Root loci behave the same on both planes!

• Therefore, we have two choices:

ELEC 3004: Systems

- Design in the s-domain and digitise (emulation)

- Design only in the z-domain (discrete design)

Emulation design process

- Handy rules of thumb:
 - Use a sampling period of 20 to 30 times faster than the closedloop system bandwidth
 - Remember that the sampling ZOH induces an effective T/2 delay
 - There are several approximation techniques:
 - Euler's method
 - Tustin's method

- Matched pole-zero
- Modified matched pole-zero

Tustin's method

- Tustin uses a trapezoidal integration approximation (compare Euler's rectangles)
- Integral between two samples treated as a straight line: $u(kT) = \frac{T}{2} [x(k-1) + x(k)]$

Taking the derivative, then z-transform yields:

Matched pole-zero If z = esT, why can't we just make a direct substitution and go home? ^{Y(s)}/_{X(s)} = s+a/(s+b) ^{Y(z)}/_{X(z)} = z-e^{-aT}/(z-e^{-bT}) Kind of! Still an approximation Produces quasi-causal system (hard to compute) Fortunately, also very easy to calculate.

The process:

1. Replace continuous poles and zeros with discrete equivalents:

(s+a) $(z-e^{-aT})$

- 2. Scale the discrete system DC gain to match the continuous system DC gain
- 3. If the order of the denominator is higher than the enumerator, multiply the numerator by (z + 1) until they are of equal order*

* This introduces an averaging effect like Tustin's method

Lead/lag compensation

• Serve different purposes, but have a similar dynamic structure:

$$D(s) = \frac{s+a}{s+b}$$

Note:

Lead-lag compensators come from the days when control engineers cared about constructing controllers from networks of op amps using frequency-phase methods. These days pretty much everybody uses PID, but you should at least know what the heck they are in case someone asks.

Derivative	
 Derivative uses the rate of change of the error signal to anticipate control action Increases system damping (when done right) Can be thought of as 'leading' the output error, applying correction predictively 	
 Almost always found with P control* 	
*What kind of system do you have if you use D, but don't care about position? Is it the same as P control in velocity space?	
ELEC 3004: Systems 4 Max	

Derivative

<section-header> PID Collectively, PID provides two zeros plus a pole at the origin Zeros provide phase lead Pole provides steady-state tracking Easy to implement in microprocessors Many tools exist for optimally tuning PID Zeigler-Nichols Cohen-Coon Automatic software processes

Discrete-time transfer function take Z-transform of system equations $x(t+1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$ yields $zX(z) - zx(0) = AX(z) + BU(z), \quad Y(z) = CX(z) + DU(z)$ solve for X(z) to get $X(z) = (zI - A)^{-1}zx(0) + (zI - A)^{-1}BU(z)$ (note extra z in first term!) hence $Y(z) = H(z)U(z) + C(zI - A)^{-1}zx(0)$ where $H(z) = C(zI - A)^{-1}B + D$ is the discrete-time transfer function note power series expansion of resolvent: $(zI - A)^{-1} = z^{-1}I + z^{-2}A + z^{-3}A^{2} + \cdots$ Surce: Boyl. Letter Notes for EE263, 13-9

