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Feedback on the Peer Review/Flagged Answers

Please Note
Q) «-17
+ Isan indicator in Platypus, that nothing was calculated.
» It does not effect grades at all (it’s treated as a NAN)
(2) Flag “serious and egregious” oversights in the marking
*  “why so low”, “give me mark plz”
is not an egregious oversight
(3) If a peer or tutor gave you a lower than expected mark, then it
might mean that you didn’t communicate it clearly to them.
» Ask your self how you can do better?
* Remember: “Seeing is forgetting the name ...”
(4) Keep in mind the big picture here
» Focus on the learning, not the marks

Digital control

Once upon a time...
 Electromechanical systems were controlled by
electromechanical compensators
— Mechanical flywheel governors, capacitors, inductors, resistors,
relays, valves, solenoids (fun!)
— But also complex and sensitive!

» Humans developed sophisticated tools for designing reliable

analog controllers




Many advantages

« Practical improvement over analog control:
— Flexible; reprogrammable to implement different control laws
for different systems

— Adaptable; control algorithms can be changed on-line, during
operation

— Insensitive to environmental conditions;
(heat, EMI, vibration, etc)

— Compact; handful of components on a PCB

— Cheap

Ok, so how do we do this?

We already know about control, right?




Feedback Control

(Simple) control systems have three parts:
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{ >—~ controller — plant Y

l— sensor
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» The plant is the system to be controlled (e.g. the robot).
» The sensor measures the output of the plant.

» The controller sends an input command to the plant based on
the difference from the actual output and the desired output.

Archetypical control system

» Consider a continuous control system:

r(t) C(s) S H(s) > Y(b)

controller plant

 The functions of the controller can be entirely
represented by a discretised computer system




Digital control

Once upon a time...
» Electromechanical systems were controlled by
electromechanical compensators
— Mechanical flywheel governors, capacitors, inductors, resistors,
relays, valves, solenoids (fun!)
— But also complex and sensitive!

=> |dea: Digital computers in real-time control

— Transform approach (classical control)
» Root-locus methods (pretty much the same as METR 3200)
» Bode’s frequency response methods (these change compared to METR 3200)

— State-space approach (modern control)

- Model Making: Control of frequency response as well as
Least Squares Parameter Estimation

Simple Controller Goes Digital

-\I

(ff

+;'—* controller — plant do

I— sensor
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I
— % d; = desiredFront

» , = distanceFront
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plant: y[n] =y[n — 1] — Tu[n — 1]
sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]

Complex system behaviors, depending on K




How to Handle the Digitization?

(z-Transforms)

ELEC 3004: Systems 4May 2015 - 11

Return to the discrete domain

 Recall that continuous signals can be represented by a
series of samples with period T

X LR (3))

.
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Zero Order Hold

» An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

L(ZOH)=??? : Whatis it?

1-— ﬁ’il‘s 1 _ e*TS
Ts <
»  Wikipedia * Lathi

—— | + Franklin, Powell, Workman
|| » Franklin, Powell, Emani-Naeini
* Dorf & Bishop

« Oxford Discrete Systems:
(Mark Cannon)

« MIT 6.002 (Russ Tedrake)
+ Matlab
Proof!




Zero-order-hold (ZOH)

M X(KT) [ Zero-order | h(t)

Sampler Hold _—

» Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0, the output
h(t) = z(0)[1(t) — 1(t —T)] +=(T)[1(t —T) — 1(t — 2T)] +

= Z X(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

Transfer function of Zero-order-hold (ZOH)

» Recall the Laplace Transforms (£) of:
LIEMW) =1 L[f(t —kT)] = F(s)e *Ts

) efkTs
LE(t—kT)] = "5 L1t —kT)] =
» Thus the £ of h(t) becomes:
C[R(1)] = E[fi X(KT)L(t - kT) - 1(t - (k+1)T)]]
k=0
o0 00 —RT& —(k+1)Ts
— Z z(ET)L[1(t - kT) - 1(t - (k+1)T)] = Z m(kT)[ _¢ S ]
“?:—OO e—kTs _ e—(k+1)Ts 00 k:OT 1_eTs = )
= S 2(kT) - =3 ;r(ch) e HTs — — 3 a(kT)e *Ts
k=0 S k=0 k=0




Transfer function of Zero-order-hold (ZOH)

... Continuing the £ of h(t) ...

ClR(D)] = L[> x(kKT)[1(t - kT) - 1(t - (k+1)T)]]
Qo k=0 o0 E—R:Tﬁ‘ e—(k'-{-l)Ts
— z(ET)L[1(t - kT) - 1(t - (k+1)T)] = Z z(kT)[- — ]
k=0 k=0 s E]

L 5 x(k:T)e_kTS —e DT f m(kT)ﬂe—kTs I i o(KT)e T3
k=0 ® k=0 ¢ 5 k=0
= X(s) =L | a(kT)6t —kT)| = Y a(kT)e *s
k=0 k=0
_ ,—Ts > _ —Ts
CH(s) = LID)] =Y wkT)e T = 2T x(s)
k=0
=>» Thus, giving the transfer function as: ( )
_H(s)_l—e_Ts Z 1—e ol
Gzon(s) = X(s) = s > Gzom (2) = S
Digitisation
 Continuous signals sampled with period T
« kth control value computed at t, = KT
. T TTTT- T T === ====" 1
re! + ek u(kT Lu(t) y(t)
% s (kT) Dlﬁergnce ( )> DAC > H(s) >
r(kT) A equations

y(kT) O\O :

sampler |

>
O
O

A

controller




The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(2)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT z
s+a z—e T
1 kTe~akT zTe T
(s+a)? (z — e-aT)2
1 sin(akT) zsinal
s2 4 g2 z2—(2cosal)z+1

Difference equations

» How to represent differential equations in a computer?
Difference equations!

» The output of a difference equation system is a
function of current and previous values of the input
and output:

y(tk) = D(x(tk)rx(tk—l)r ---;x(tk—n)' }’(tk—1)' 'y(tk—n))

— We can think of x and y as parameterised in k

Useful shorthand: x(t, ;) = x(k + i)

10



Example:

* Is this system stable?

u(k) =09u(k—1) —0.2ulk —2)
o Time-shift it:
2) =0.9 2u (k)
e z-Tra f?’( /
1)z — 0.9z + =
« Characteristic Roots:
z=0.5,7z=0.4 = STABLE!
Recall dynamic responses
« Ditto the z-plane:
Img(z) More @
_ Oscillatory >“<
More damped 2( )
/ e P . \'3Pure integrator
\ _7 —_ ' I Faster Re)
. “More unstable”
/ ____________ X \

11



S-Plane to z-Plane [1/2]

s-plane
Im(s)
ha
0
s=0 4+ jw
o = constanjt S I
I z =
|z| = ¢”T = constant
Alm(s)
0 : I Re(2)
s =04+ jw
w = constant jw
arg(z) = w1 constant

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio ¢ < 1
Im(s)

24 Cwos + wd=0

4 0
s =—Cwo£j/1—(Cwo %0 'Re(s)
cosl = ¢

=05 Alm(s)

C=0.7 -

C=05
s = —C(wo + j\/1 — (2wp: ¢ = constant 2 = e~SwoT =i/ 1=¢PwoT




Relationship with s-plane poles and z-plane transforms

If F'(s) has a poleat s =a F(s) FRT) F(2)
then F(z) has a pole at z = ¢"? -
- (kT R
s z—1
L kT ( “l B
consistent with z = ¢*? ; N
1 e—akT z
s+a R
1 . P 4 Tze=oT .
. (s+a)? (z —e—aT)2
What about transfer functions?
2(1 —e™2T)
] G(s “ 1 —e akT 2 =er)
(;(z):(l—z*')z{—' ( )} s(s +a) ' (z =1z —eoT)
S
b—1 —akT —bkT (“7”7 e M )z
S e
+ (s+a)(s+b) (z— e aT)(z — e~ bT)
If GG(s) has poles s = a; a kT zsinal
then G(z) has poles z = e*' s* + a? e 22 — (2cosal)z + 1
[). . —akT G b T . ,tz.‘ '”Txirlw‘[)"." _
but the zeros are unrelated (s +a)2+ b2 z2 2e=T(cos bT)z + e—2aT

Two cases for control design

The system...
— Isn’t fast enough
— Isn’t damped enough
— Overshoots too much
— Requires too much control action
(“Performance”)

— Attempts to spontaneously disassemble itself
(“Stability”)

13



Dynamic compensation

» We can do more than just apply gain!
— We can add dynamics into the controller that alter the open-loop
response

compensator plant

-y u 1 y Im
s+2 s(s+1)

gy Lo o
\_/

Increasing k

combined system
-y s+2 y
s(s+1)

S
>

But what dynamics to add?

* Recognise the following:
— A root locus starts at poles, terminates at zeros
“Holes eat poles”
— Closely matched pole and zero dynamics cancel
— The locus is on the real axis to the left of an odd number of poles
(treat zeros as ‘negative’ poles)

Img(s)

Re(s)

Lo
N

14



The Root Locus (Quickly)

 The transfer function for a closed-loop system can be easily
calculated:
y=CH(r—y)
y+ CHy = CHr
'y CH
“r 1+CH

v

T
v
<

r C

controller plant

The Root Locus (Quickly)

» We often care about the effect of increasing gain of a control
compensator design:

y  kCH
r  1+kCH
Multiplying by denominator: characteristic
y kCan polynomial

15



The Root Locus (Quickly)

 Pole positions change with increasing gain
— The trajectory of poles on the pole-zero plot with changing k is
called the “root locus”
— This is sometimes quite complex

Increasing k Img(s)

6 Re(S)

(In practice you’d plot these with computers)

Designing in the Purely Discrete...

Analyse/design a discrete controller D(z):

7

o~ Gk D) “ké DAC | u(1) Gls) }’(I)'samp\e i},k=

+ +hold +ADC :
- G(2) i
by considering the purely discrete time system:
Ty & Uy g Y
- » ) D(z) »  Glz) >

Y(z) _ _G(2)D(z)
R(z) ~ 14+ G(z)D(z)

Closed loop system tranfer function:

How do the closed loop poles relate to — stability?

— performance?

16



Now in discrete

types:
Leadlag: 2
ead/lag.
J 1-Bz~1
. 1 1
PID: k(1+ m+1'd(1—2 ))

But, where do we get the control design parameters from?
The s-domain?

 Naturally, there are discrete analogs for each of these controller

Sampling a continuous-time system

suppose & = Axr

sample = at times t; < to < ... define z(k) = =(y)
then z(k + 1) = elter1=t)A (L)

for uniform sampling t3.11 — t = h, so
2(k+1) = "2 (k),

a discrete-time LDS (called discretized version of continuous-time system)

Source: Boyd, Lecture Notes for EE263, 10-22

17



Piecewise constant system

consider time-varying LDS & = A({)x, with

Ay 0<t <ty

44(f) Al 1 <t <y

where 0 << 1 << {3 < - -+ (sometimes called jump linear system)
for t € [ti,ti11] we have
z(t) = =t A E(tS_fZ)AZt-.(tQ_tl)Alt—_.tlAO‘E(U)

(matrix on righthand side is called state transition matrix for system, and
denoted (%))

Source: Boyd, Lecture Notes for EE263, 10-23

Qualitative behaviour of x(t)

suppose & = Ax, x(t) € R®
then x(t) = etx(0); X(s) = (s — A)~z(0)
ith component X;(s) has form

a;(s)

X(s)

Xi(s) =
where a; is a polynomial of degree < n

thus the poles of X; are all eigenvalues of A (but not necessarily the other
way around)

Source: Boyd, Lecture Notes for EE263, 10-24

18



Qualitative behaviour of x(t) [2]

first assume eigenvalues A; are distinct, so X;(s) cannot have repeated

poles

then z;(t) has form
.ll(f) = Z ,:'BiJE‘)\Ji
i=1

where 3;; depend on x(0) (linearly)
eigenvalues determine (possible) qualitative behavior of

e cigenvalues give exponents that can occur in exponentials

¢ real eigenvalue A corresponds to an exponentially decaying or growing

term e in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term ¢7% cos(wt + ¢) in solution
Source: Boyd, Lecture Notes for EE263, 10-25

Qualitative behaviour of x(t) [3]

first assume eigenvalues \; are distinct, so X,;(s) cannot have repeated
poles

then z;(t) has form
Ii(ﬂ = Z ,:"'J}ij(")\)f
j=1

where 3;; depend on x(0) (linearly)
eigenvalues determine (possible) qualitative behavior of x:

e eigenvalues give exponents that can occur in exponentials

e real eigenvalue A corresponds to an exponentially decaying or growing

term ¢ in solution

e complex eigenvalue A = o + jw corresponds to decaying or growing

sinusoidal term %! cos(wt + &) in solution
Source: Boyd, Lecture Notes for EE263, 10-26

19



Qualitative behaviour of x(t) [4]

e R\, gives exponential growth rate (if > 0), or exponential decay rate (if
< 0) of term

e J)\; gives frequency of oscillatory term (if # 0)

. (&8
eigenvalues S8
- .
Y
X
- Rs
X
X

Source: Boyd, Lecture Notes for EE263, 10-27

Qualitative behaviour of x(t) [5]

now suppose A has repeated eigenvalues, so X; can have repeated poles

express eigenvalues as Aq...., A, (distinct) with multiplicities ny, ..., n,,
respectively (ny +--- +n, =n)

then x;(t) has form

r

x(t) = Z}-’z’j(ﬂe/\jt

j=1
where p;;(t) is a polynomial of degree < n; (that depends linearly on x(0))

Source: Boyd, Lecture Notes for EE263, 10-28

20



Emulation vs Discrete Design

» Remember: polynomial algebra is the same, whatever symbol
you are manipulating:
eg. s2+2s+1=(s+1)?
24+ 2z+1=(z+1)>
Root loci behave the same on both planes!
» Therefore, we have two choices:
— Design in the s-domain and digitise (emulation)
— Design only in the z-domain (discrete design)

Emulation design process

Derive the dynamic system model ODE
Convert it to a continuous transfer function
Design a continuous controller

Convert the controller to the z-domain
Implement difference equations in software

o s e

Img(s) [ Img(s) ot mg)

Re(s) @

21



Emulation design process

» Handy rules of thumb:
— Use a sampling period of 20 to 30 times faster than the closed-
loop system bandwidth
— Remember that the sampling ZOH induces an effective T/2 delay

— There are several approximation techniques:
* Euler’s method
* Tustin’s method
 Matched pole-zero
» Modified matched pole-zero

Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1)—x(k)
T

R

X

X(tk+1) /Z/

« AsT — 0, approximation (k) /
error approaches 0 g

*Also known as the forward rectangle ruje
tJust an approximation — more on this later T

22



Back to the future

A quick note on causality:
* Calculating the “(k+1)th” value of a signal using
y(k+1) =x(k + 1) + Ax(k) — By (k)
futureV value curren{ values

relies on also knowing the next (future) value of x(t).
(this requires very advanced technology!)

* Real systems always run with a delay:
y(k) =x(k) + Ax(k — 1) — By(k — 1)

~ Euler’s Method =» Two Discrete Equivalents

« Forward Difference (or Forward Rectangular Rule):

_Z—1
ST
2> z=1+Ts

» Backward Difference (or Backward Rectangular Rule):

_Z—l
> = Tz

2> z=

1-Ts

23



Tustin’s method

 Tustin uses a trapezoidal integration approximation (compare
Euler’s rectangles)
* Integral between two samples treated as a straight line:
u(kT) = Z [x(k — 1) + x(k)]
Taking the derivative, then z-transform yields:

_2z71 X(tet) 2
S T z+1 K 4
which can be substituted into continuous models
X(t)
(k — 1T kT

Matched pole-zero

 If z = 5T, why can’t we just make a direct substitution and go
home?

Y(s) _ s+a i> Y(z) z—e 9T
X(s)  s+b X(z)  z—e-bT
« Kind of!
— Still an approximation
— Produces quasi-causal system (hard to compute)
— Fortunately, also very easy to calculate.

24



Matched pole-zero

The process:
1. Replace continuous poles and zeros with discrete equivalents:

(s + a)g> (z — e~T)

2. Scale the discrete system DC gain to match the continuous
system DC gain

3. If the order of the denominator is higher than the enumerator,

multiply the numerator by (z + 1) until they are of equal
order*

* This introduces an averaging effect like Tustin’s method

Modified matched pole-zero

» We’re prefer it if we didn’t require instant calculations to
produce timely outputs

* Modify step 2 to leave the dynamic order of the numerator one
less than the denominator
— Can work with slower sample times, and at higher frequencies

25



Discrete design process

» Handy rules of thumb:

— Sample rates can be as low as twice the system bandwidth
* but 5 to 10x for “stability”
« 20 to 30 x for better performance

— A zero at z = —1 makes the discrete root locus pole behaviour
more closely match the s-plane

— Beware “dirty derivatives”
e dy/dt terms derived from sequential digital values are called ‘dirty
derivatives’ — these are especially sensitive to noise!
» Employ actual velocity measurements when possible

Discrete design process

Derive the dynamic system model ODE
Convert it to a discrete transfer function
Design a digital compensator

Implement difference equations in software
Platypus Is Divine!

ok E

4 Img(2) 4 Img(@)

Re(z) Re(z)

Re(z)

26



Some standard approaches

 Control engineers have developed time-tested strategies for
building compensators
« Three classical control structures:
— Lead
— Lag
— Proportional-Integral-Derivative (P1D)
(and its variations: P, I, PI, PD)

How do they work?

Lead/lag compensation

s+a
s+b

D(s) =

Note:

Lead-lag compensators come from the days when control engineers
cared about constructing controllers from networks of op amps using
frequency-phase methods. These days pretty much everybody uses
PID, but you should at least know what the heck they are in case
someone asks.

« Serve different purposes, but have a similar dynamic structure:

27



Lead compensation: a<b

Faster than
system dynamics Img(s)
Falee ‘

'/ — Re(s)
-a Slow open-loop
plant dynamics

-b
s-plane (A-plane)

« Acts to decrease rise-time and overshoot
— Zero draws poles to the left; adds phase-lead
— Pole decreases noise

+ Set a near desired w,,; setb at ~3 to 20x a

Lag compensation: a> b

Close to pole \‘\‘

FSlN! ~
1 A
plant -a -
dynamics

Very slow ‘ Img(s)

Re(s)
b

s-plane (A-plane)

» Improves steady-state tracking
— Near pole-zero cancellation; adds phase-lag
— Doesn’t break dynamic response (too much)

 Set b near origin; setaat ~3to 10x b

28



PID — the Good Stuff

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

Proportional i‘j
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©

PID — the Good Stuff

« PID control performance is driven by three parameters:
- k: system gain
- 7, integral time-constant
- 1,4 derivative time-constant

You’re already familiar with the effect of gain.
What about the other two?

29



Integral

Integral applies control action based on accumulated output
error

— Almost always found with P control

Increase dynamic order of signal tracking
— Step disturbance steady-state error goes to zero
— Ramp disturbance steady-state error goes to a constant offset

Let’s try it!

Integral: P Control only

(never truly goes away) w
+ o~ € u 1
r k —>Y
s+a

 Consider a first order system with a constant load
disturbance, w; (recall as t = oo, s = 0)

y=ks+a(r—y)+w
_ k N (s+a)
y_s+k+ar s+k+aW
Steady state gain = a/(k+a) |

A\ 4

30



Now with added integral action

1\ 1
=k(1+— -
y ( +ris>s+a(r y)+W

Same dynamics

k(s +7,1) s(s + a)

= r R R w
Must go to zero Y (s*+ (k+a)s +=- k(s -I-'Lrl.-l)

for constant w!

w
+ - € 1 u 1
r k<1+—> -> —>Y
us st+a

Derivative

 Derivative uses the rate of change of the error signal to
anticipate control action
— Increases system damping (when done right)
— Can be thought of as ‘leading’ the output error, applying
correction predictively
— Almost always found with P control*

*What kind of system do you have if you use D, but don 't care
about position? Is it the same as P control in velocity space?

31



Derivative

» Itis easy to see that PD control simply adds a zero at s = —

with expected results ’
— Decreases dynamic order of the system by 1
— Absorbs a pole as k —» o

 Not all roses, though: derivative operators are sensitive to
high-frequency noise

ICGw)l /

Bode plot of
a zero

PID

 Collectively, PID provides two zeros plus a pole at the origin
— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors
« Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

32



Be alert

« If gains and time-constants are chosen poorly, all of these
compensators can induce oscillation or instability.

» However, when used properly, PID can stabilise even very
complex unstable third-order systems

Discrete-time transfer function

take Z-transform of system equations

r(t 4+ 1) = Ax(t) + Bu(t), y(t) = Ca(t) + Du(t)

yields

=X (2) —za(0) = AX(2) + BU(2), Y(2)=CX(2)+ DU(z)

solve for X (z) to get
X(2) = (2 — Ay '2(0) + (2] — A)"'BU(2)

(note extra z in first term!)

hence
Y(z)= H(z)U(z) + C(zI — A)7Lzz(0)
where H(z) = C'(z] — A)=YB + D is the discrete-time transfer function

note power series expansion of resolvent:

ST Ayl -1 =2 =3 A2
(”I ‘4) =2+ AL TAR Source: Boyd, Lecture Notes for EE263, 13-39
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Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e”* cos(bt) U(t) (U(t) = unit step)
+ sample:  y(kT) = r* cos(k8) U(ET) with r = e T & § =0T

1 z 1 z

2 (z — rei?) *3 (z —re—d¥)
z(z —rcosf)

T (z—rei?)(z — re—i?)

* transform: Y'(z) =

Im(z)A
* e.g. yi is the pulse response of G(z): ) .
z(z — rcosf) '
G(z) = - . X
() (z —rei?)(z — re—i9) : re
oo [ 7= rei? ﬁé;—.‘g—e—]b Re(z)
poles: { z=re I !
zeros: { = 0 *
’ { z =rcosl
Response of 2nd order system [1/3]
Responses for varying r: 1
r=0."7
oor<l 05y 6=m/4]
+ of ) e ——
exponentially decaying T T
envelope 05 2 2 6 8 10
sample k
bor=1 S '

A
- ~
0.5 \
+
= Of

sinusoidal response

. r=1.0
with 27 /6 samples o5t e
. ) P #=m/4
per period 4 . e . .
0 2 4 6 8 10
sample k
= r>1 10
A
N N ) 5 A \
exponentially increasing - \
P N
envelope of T r=13%
-
e 6=m/4
0 2 4 6 8 10
sample k
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Response of 2nd order system [2/3]

Responses for varying 8: 1
r=0.7
> #=0 = 05} S =0
4 \q‘---'-""ﬂ--.,__r_
decaying exponential 0 ‘ ‘ +""‘f--f—+_7_*_ |
0 2 4 6 8 10
sample k
g o 1 \ T
> H=m/2 \ r=0.7
[} ) 0.5r \_\ 0= ?T,"Q_
2r /0 =4 samples. ok . /K\P ]
per period -
05 2 1 6 8 10
sample k
=3 f=m ! I
05t *
A / .
- x \ / . _
2 samples per period = 0p // \/\\L,f‘ " "’"E]-’T“
r=0.
—05f N/
¥ f=m
o 2 8 10

sample k

Response of 2nd order system [3/3]

Some special cases:

> for # =0, Y(z) simplifies to:

Y(z) =
— exponentially decaying response

> whenf#=0and r=1:

— unit step

> when r =0:

— unit pulse

> whenf=0and -1 <r<0:

samples of alternating signs
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2" Order System Response
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 Response of a 2" order system to increasing levels of damping:

Damping and natural frequency

z=eSTwheres = —(w, + jwp/1 — {2
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06/
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[Adapted from Franklin, Powell and Emami-Naeini]

36



Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle
unstable

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r

2" Order System Specifications

Characterizing the step response:

N

"4 xﬂ(7777:-,‘—=— _____ T__

v

+ Rise time (10% - 90%): mf

e

. . My =
Overshoot: v -

* Settling time (to 1%): ¢, = ﬂ
Cwo

+ Steady state error to unit step:
eSS
+ Phase margin:

dppr =~ 100¢
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2" Order System Specifications

Characterizjng the step response:

v *1%

u,& "4 \—T‘(_—_—H_ __:-_—T—::

0.1

>

* Risetime (10% -> 90%) & Overshoot:
t, M, 2 { o, : Locations of dominant poles
» Settling time (to 1%):
t, = radius of poles: |- <co1%
» Steady state error to unit step:
e, > final value theorem ¢, = lim (=~ 1) F(2)}

Ex: System Specifications = Control Design [1/4]

Design a controller for a system with:
« A continuous transfer function: & (s) =
» A discrete ZOH sampler
« Sampling time (T,): T,=1s
+ Controller:
UL = —O.5uk71 + 13 (ek - 0.8861{:71)

0.1
s(s+0.1)

The closed loop system is required to have:
« M, <16%

+ t,<10s

¢ eSS< 1
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Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G/(s) plus the ZOH

¥ e Uy | ) ) 3L 0)) y
o o P e L g [
- i G@) i

o) === 2{ S0 = B2 )

e.g. look up Z{a/s*(s +a)} in tables:

) = (= —1) z((().l —14+e 0 (1 — e — 0.1670'1))
z 0.1(z—1)2(z — e 01)
0.0484(z 4 0.9672)
T (z=1)(z = 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z)
E(z)

(1-088z71) 4 (z—088)

= D) =13 (1+052-1) — 7 (z+0.5)

Ex: System Specifications = Control Design [3/4]

2. Check the steady state error e, when 7, = unit ramp

ess = lim ep = lim (2 — 1)E(z)
k— oo z—1

R E U Y E@z) _ LI
4_'_.?_, D(z) G(z2) » R(z) 1+ D(2)G(»)
- Tz
B(‘:) - (2 _ 1)2
Tz 1 T
s = li z—1 = lim ———
0 e =l (E DT e T D(;)G(;)} 2GS 1D)D(R)GR)
= 111m =
z 0.0484(z + 0.9672 @
(= — 1)(z — 0.9048) 5
T 6f-
1 —0.9048 =
= = 0.96 ]
0.0484(1 + 0.9672)D(1) ’ B
s of-
—> ess <1 (as required) ©
0

5
Time (sec)
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Ex: System Specifications = Control Design [4/4]

3.

Output y and input u/10

Step response: overshoot M, < 16% = ¢ > 0.5

settling time t, < 10 = |z] < 0.01"/*° = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
(2 — 0.88) 0.0484(z + 0.9672)
(z+0.5) (z—1)(» —0.9048)
z=10.88, —0.050 £ ;0.304

1+13

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
{ r=031, =173
¢ =0.56

2= —0.050 £ j0.304 = re*7’

4 all specs satisfied!

5
Time (sec)
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