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Schedule

2-Mar|Introduction

3-Mar|Systems Overview

9-MarSignals as Vectors & Systems as Maps
10-Mar|[Signals]
16-Mar|Sampling & Data Acquisition & Antialiasing Filters
17-Mar|[Sampling]
23-Mar|System Analysis & Convolution
24-Mar|[Convolution & FT]
30-Mar|Discrete Systems & Z-Transforms
31-Mar|[Z-Transforms]

13-Apr|Frequency Response & Filter Analysis
14-Apr[Filters]
20-AprDigital Filters
21-Apr|[Digital Filters]

S 27-AprDiscrete Systems Analysis

28-Apr|[Feedback]

Outline:

(1) FIR< Special case of DTFT < Special case of Z-Transform
(2) Signals Recap

(3) Discrete Systems Analysis (s <> z)
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Additional Reading
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» Z-Transform — Chapter 11

+ Digital Filters — Chapter 12
(pp. 723-726)

* p.543: s> z: (A > yplanes)

» Feedback & Control Equations
(8 6.7, p. 426)

Chapters: 2-6, 8
82.5 Signal Analysis
and Dynamic Response

85.2 Control System
Specifications

http://p2.elec3004.org

PS 3: Filters (Digital & Analog) - Platypus - Nightly
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(23:59:00)

Problem Set 3 is on Digital & Analog Filters (lIR and FIR)

your insight and understanding.

Question 1:

20%

Dancing Around Poles and Filters

Consider the filter functions (where |z|>|a], |z|>b respectively)

(1-a)(1+zY)
(1—az 1)

Ha(2) = —jiar sy

PS 3: Filters (Digital & Analog) pue 04/05/2015

For the following 5 questions, please explain your solutions as if you are trying to teach a peer. Demonstrate

Please remember that for all questions you should justify your solutions.
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2D DFT
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2D DFT

» Each DFT coefficient is a complex value
— There is a single DFT coefficient for each spatial sample
— A complex value is expressed by two real values in either

Cartesian or polar coordinate space.
+ Cartesian: R(u,v) is the real and I(u, v) the imaginary component
* Polar: |F(u,v)| is the magnitude and phi(u,v) the phase

Flu,v) = R(u,v) + jl(u,v)

630(1‘“?‘:)

F(u,v) =|F(u,v)




2D DFT

» Representing the DFT coefficients as magnitude and phase is a
more useful for processing and reasoning.
— The magnitude is a measure of strength or length
— The phase is a direction and lies in [-pi, +pi]

» The magnitude and phase are easily obtained from the real and
imaginary values

F(u,v)] = VR2(u,v) + 12(u,v)
I(u,v
o(u,v) = tan~! {M] :

Windowing for the DFT

fuld) = SOUE)  and Fu(w) = oF(0) s W)

Source: Lathi, p.303




Harmonics

addition of i

 Synthesis of a square pulse: periodic signal by successive
ts harmonics (Lathi, p. 202-3)
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Simple Controller Goes Digital

(Irf

-f+;l—* controller — plant d,

I— sensor

= |

T
—————————p ; = desiredFront
» I, = distanceFront

s

plant:  y[n] =y[n — 1] — Tu[n — 1]
sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]
Complex system behaviors, depending on K

Return to the discrete domain

series of samples with period T

X T x(kT)

TN T

« Recall that continuous signals can be represented by a

1 2 3 4 5 6 7 8 9 10 11 12 13 14




Zero Order Hold

» An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

Digitisation

 Continuous signals sampled with period T
« kth control value computed at t, = KT

") N+ < &K Ditference [UKT) [~ ]u(® R
: r(kT) E_ equations | DAC l > HE) -
|
|
| :
: |
: |
! KT
I y(kT) ADC K O\O :
: sampler
________ controlier ~ ~ ~ "~ 77"




Digitisation

+ Continuous signals sampled with period T
* kth control value computed at t, = KT

rt)! + ek u(kT) U@ /0
o P G s = o [T
1

KT N
y(kT) ADC € O o
sampler |

controller

O

- J =
7
- s-plane s-plane Symbol z-plane z-plane
R o [ .
| Real frequency axis . Unit. circle
s=o20 [ z=r>1
s=o%0 Q00 z=r0<r<i
o= —Cua +jun/T-C2  BAA 2 =reffwhere r = exp(—Cw,T)
[ =-a+jb =egoT,
| 8 =w,T\/1-(2 =bT
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s < z: Pulse Transfer Function Models

E(z) U(z) = D(z) E(z)
e(kT) ? u(kT) =7
 Pulse in Discrete is equivalent to Dirac-6

1 fork=0
Ef =
0 fork =0

u(t - ) ’
e o e SO e Y

G(z)

o[ Jre-en()

Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26

>

Gz)=01-2z"YH2Z

Difference equations

* How to represent differential equations in a computer?
Difference equations!

» The output of a difference equation system is a function of
current and previous values of the input and output:

y(ti) = D(x(tr), x(tr—1), oo, X (), Y(th—1), o0, Y(t—1))

» We can think of x and y as parameterised in k
— Useful shorthand: x(ty ;) = x(k + 1)




Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1) —x(k)
T

IR

X

« AsT — 0, approximation Xt/
error approaches 0

*Also known as the forward rectangle ruje
tJust an approximation — more on this later T

An example!
Convert the system % = ::—i into a difference equation with period

T, using Euler’s method.

1. Rewrite the function as a dynamic system:
sY(s) + Y(s) = sX(s) + 2X(s)
Apply inverse Laplace transform:
y(©) +y() = x(t) + 2x(t)

2. Replace continuous signals with their sampled domain equivalents,
and differentials with the approximating function

y(k + 1;— y(k) () = x(k + 1;— x(k) T 2x(l)
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An example!

Simplify:

y(k+1)—y(k) + Ty(k) = x(k +1) — x(k) + 2Tx(k)
yk+ 1)+ (T —-1Dyk) =x(k+1)+ Q2T — 1Dx(k)

yk+1)=x(k+ 1)+ Q2T — Dx(k) — (T — Dy(k)

We can implement this in a computer.

Cool, let’s try it!

Back to the future

A quick note on causality:
* Calculating the “(k+1)th” value of a signal using

y(k+1) =x(k+ 1)+ Ax(k) — By(k)

Y Y
future value current values

relies on also knowing the next (future) value of x(t).
(this requires very advanced technology!)

 Real systems always run with a delay:
y(k) = x(k) + Ax(k — 1) — By(k — 1)
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Back to the example!

T = 0.02; //period of 50 Hz, a number pulled from thin air

A = 2*T-1; //pre-calculated control constants
B = T-1;
while (1)
{
if(interrupt_flag) //this triggers every 20 ms
{
x0 = x; //save previous values
y0 = y;
x = update_input(); //get latest x value
v = X + A*x0 - B*y0; //do the difference eguations
update_output (v) ; //write out current value

(The actual maths bit)

z-Transforms for Difference Equations

« First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu|n]

h[n]

T n

W] = {ba n =0,

0 otherwise.

H(z) =Z ba*2F = bz (?)k =1 when |z| > |al.
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z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu[n]

y[n] — ay[n — 1] = bu[n]
)
Y(z)— az_lY(z) =bU(z)

Y(z) __ b i ?
0G)  1—a T when does it converge?

H(z)=

ELEC 3004: Systems

27 April 2015 - 25

Region of Convergence (ROC) Plots

HG) = gt = ——— 2] >la]

ELEC 3004: Systems

27 April 2015 - 26
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Properties of the ROC

=>The ROC is always defined by circles
centered around the origin.

h[k]r—* is absolutely summable, where r = |z|.

=>» Right-sided signals have “outsided” ROCs.

if 3ng such that h[n] = 0 ¥n < ng, then if g € ROC, then ¥r with
rg < r < oo are also in the ROC.

=> Left-sided signals have “insided” ROCs.
(with Vr within 0<r<r)

Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f (k —n)} = z7"F(2)
— Linear: Z{af (k) + bg(k)} =aF(z) + bG(2)
— Convolution: Z{f (k) * g(k)} = F(2)G(2)

So, all those block diagram manipulation tools you know and love
will work just the same!
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Combinations of Signals

m[n]z{b““ e m[ﬂ]Z{U "

0 n <0

a=.>

ROC for aqy1[n] + asya[n]

ELEC 3004: Systems 27 April 2015 - 29

Higher-order difference equations

y[n] = ary[n—1]4+asy[n—2]+asy[n—3]+bpu[n|+bjun—1]+. ..
Easy to take the Z-transform

Y(2)= a1z_1Y(z] + a0z %Y (2) + a;gz_SY(z) +boU(2) + ...

bo + bzl +bhoz—t 4 ...
1

H(z) =

11— a1z~ —aoz=2 —agz"3+ ...

ELEC 3004: Systems 27 April 2015 - 30
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Final value theorem

« An important question: what is the steady-state output

a stable system at t = ?

— For continuous systems, this is found by:
tlim x(t) = lir% sX(s)
—00 S—

— The discrete equivalent is:
Ilim x(k) = lin% (1-z"HX(2)
—00 zZ—

(Provided the system is stable)

An example!

+ Back to our difference equation:
y(k) =x(k) + Ax(k — 1) — By(k — 1)
becomes
Y(z2) =X(2) + Az71X(2) — Bz7'Y(2)
(z+B)Y(2) =(z+4A)X(2)

which yields the transfer function:
Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™"
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This looks familiar...

» Compare:
YG) _ stz @) _ z+A
X(s)  s+1 X(z)  z+B

How are the Laplace and z domain representations related?

Consider the simplest system

 Take a first-order response:

1
f(t) =e % = L{f ()} = “Ta
« The discrete version is:
fOT) = €77 = Z{f ()} = ——

The equivalent system poles are related by
z=eT

That sounds somewhat profound... but what does it mean?
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Damping and natural frequency

z=eSTwheres = —(w, + jw,/1 — {2

1.0

,,,,,,,

0.8~

06~

,,,,,,,,,,,,,

-0.6

-04 -0.2 0 0.2 0.4 0.6
[Adapted from Franklin, Powell and Emami-Naeini]
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