	http://elec3004.org
Digital Filters	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 7	
elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/	April 20, 2015

Week	Date	Lecture Title
1		Introduction
1	3-Mar	Systems Overview
2	9-Mar	Signals as Vectors & Systems as Maps
2		[Signals]
3	16-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	17-Mar	[Sampling]
4	23-Mar	System Analysis & Convolution
4	24-Mar	[Convolution & FT]
5	30-Mar	Discrete Systems & Z-Transforms
3	31-Mar	[Z-Transforms]
6	13-Apr	Frequency Response & Filter Analysis
0	14-Apr	[Filters]
7		Digital Filters
		[Digital Filters]
8		Introduction to Digital Control
0		[Feedback]
9	~ ~ ~	Digital Control Design
,		[Digitial Control]
10		Stability of Digital Systems
10		[Stability]
11		State-Space
11	19-May	Controllability & Observability
12	25-May	PID Control & System Identification
12	26-May	Digitial Control System Hardware
13	31-May	Applications in Industry & Information Theory & Communicatio
1.5	0 I	Summary and Course Review

→ Digital Filters

• Wikipedia Says:

A **digital filter** is a system that performs mathematical operations on a <u>sampled</u>, <u>discrete-time signal</u> to reduce or enhance certain aspects of that signal.

• Basically we have a transfer function or ... a difference equation

In the Z-domain:

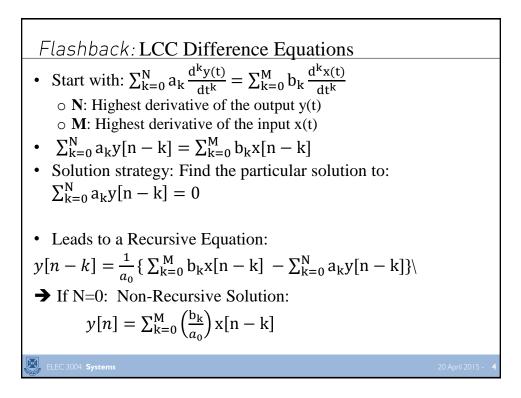
$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-N}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_M z^{-M}}$$

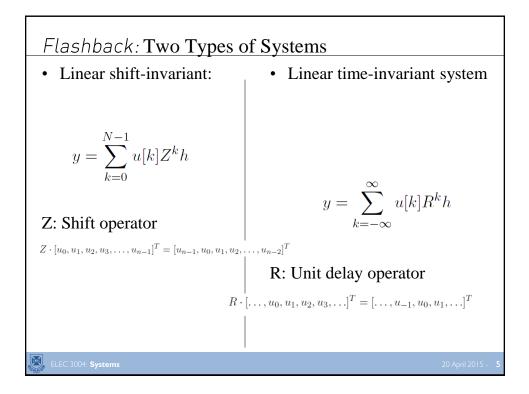
This is a recursive form with inputs (Numerator) and outputs (Denominator)
 "IIR infinite impulse response" behaviour

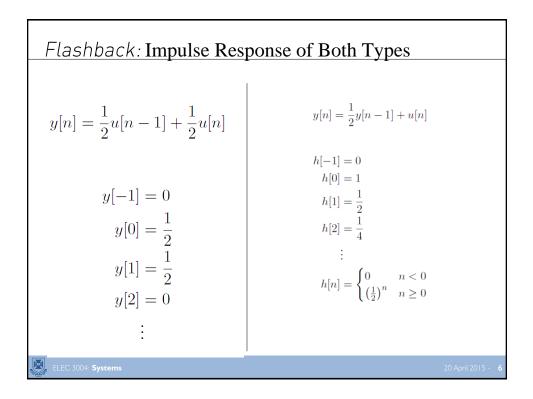
• If the denominator is made equal to unity (i.e. no feedback)

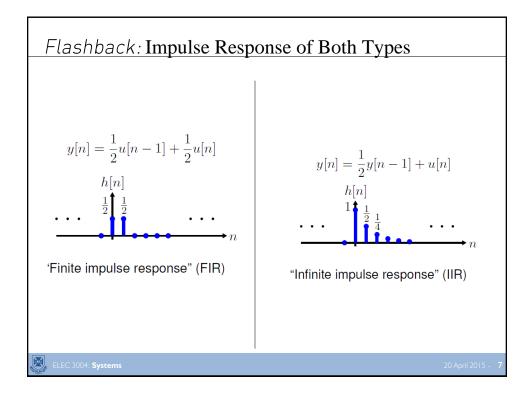
 \rightarrow then this becomes an FIR or finite impulse response filter.

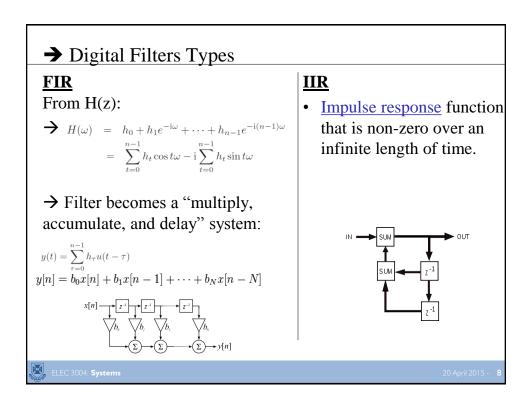
ELEC 3004: Systems











FIR Properties

- Require no feedback.
- Are inherently stable.
- They can easily be designed to be <u>linear phase</u> by making the coefficient sequence symmetric
- Flexibility in shaping their magnitude response
- Very Fast Implementation (based around FFTs)
- The main disadvantage of FIR filters is that considerably more computation power in a general purpose processor is required compared to an IIR filter with similar sharpness or <u>selectivity</u>, especially when low frequency (relative to the sample rate) cutoffs are needed.

ELEC 3004: Systems

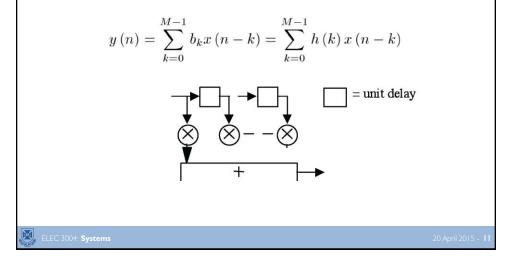
FIR as a class of LTI Filters
Transfer function of the filter is $H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$ Finite Impulse Response (FIR) Filters: (N = 0, no feedback)
From H(z): $H(\omega) = h_0 + h_1 e^{-i\omega} + \dots + h_{n-1} e^{-i(n-1)\omega} = \sum_{t=0}^{n-1} h_t \cos t\omega - i \sum_{t=0}^{n-1} h_t \sin t\omega$ H(ω) is periodic and conjugate

Consider ω ∈ [0, π]

FIR Filters

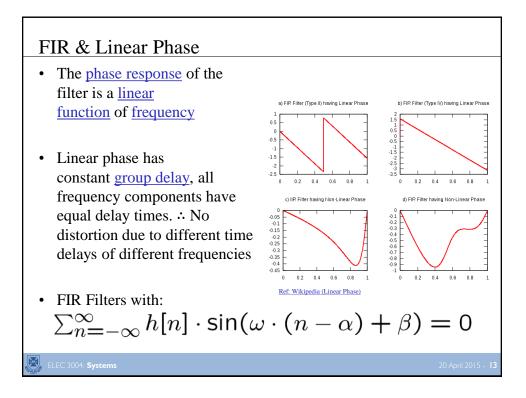
ELEC 3004: Systems

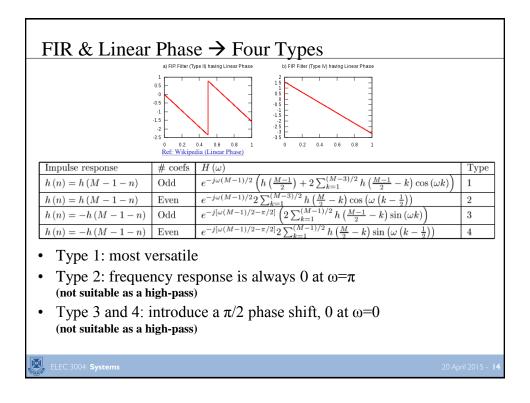
- Let us consider an FIR filter of length M
- Order *N*=*M*-1 (watch out!)
- Order \rightarrow number of delays



FIR Impulse Response
Obtain the impulse response immediately with x(n)= δ(n):
h(n) = y(n) = ∑_{k=0}^{M-1} b_kδ(n - k) = b_n
The impulse response is of finite length *M* (good!)
FIR filters have only zeros (no poles) (as they must, N=0 !!) – Hence known also as all-zero filters
FIR filters also known as feedforward or non-recursive, or transversal filters

6





FIR Filter Design

• How to get all these coefficients?

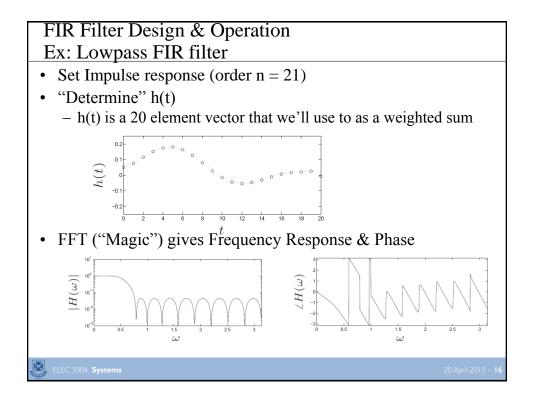
 $H(\omega) = h_0 + h_1 e^{-i\omega} + \dots + h_{n-1} e^{-i(n-1)\omega}$

$\begin{array}{c} & & \\ & &$

FIR Design Methods:

- 1. Impulse Response Truncation
 - + Simplest
 - Undesirable frequency domain-characteristics, not very useful
- 2. Windowing Design Method
 - + Simple
 - Not optimal (not minimum order for a given performance level)
- 3. Optimal filter design methods
 - + "More optimal"
 - Less simple...

ELEC 3004: Systems



Why is this "hard"? Looking at the Low-Pass Example

$$H_{d}(\omega) = \begin{cases} 1 \text{ if } |\omega| \leq \omega_{c} \\ 0 \text{ if } \omega_{c} < |\omega| < \pi \end{cases}$$

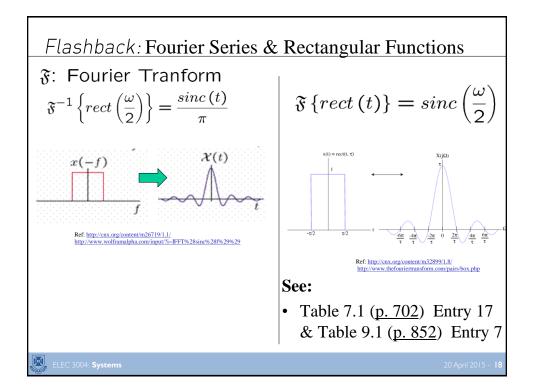
• Why is this hard?

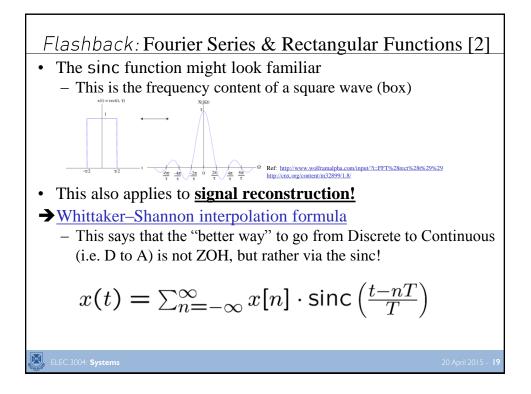
ELEC 3004: Systems

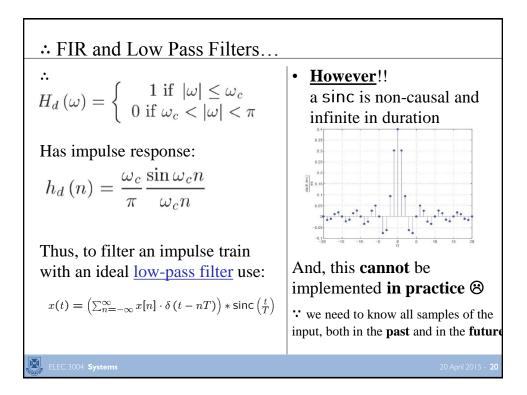
Shouldn't it be "easy" ??
 ... just hit it with some FFT "magic" and then keep the bands we want and then hit it with some Inverse-FFT "supermagic"???

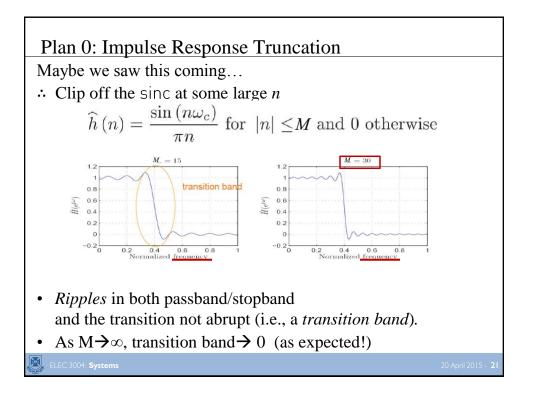
- Remember we need a "system" that does this "rectangle function" in frequency
- Let's consider what that means...
 It basically suggests we need an <u>Inverse FFT</u> of a <u>"rectangle function"</u>

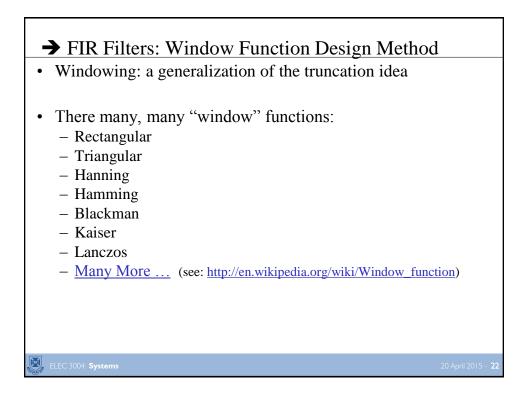
20 April 2015 - 1

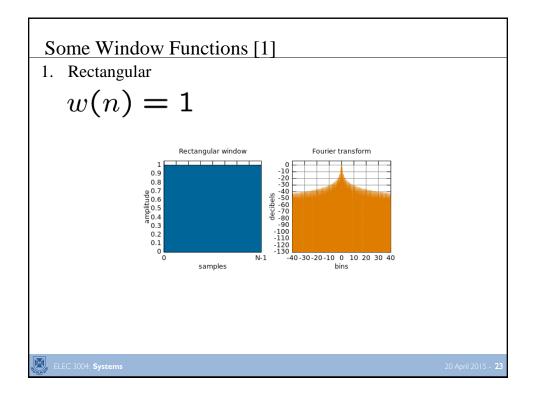


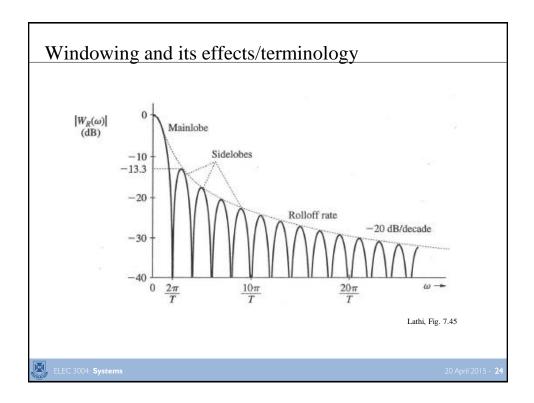


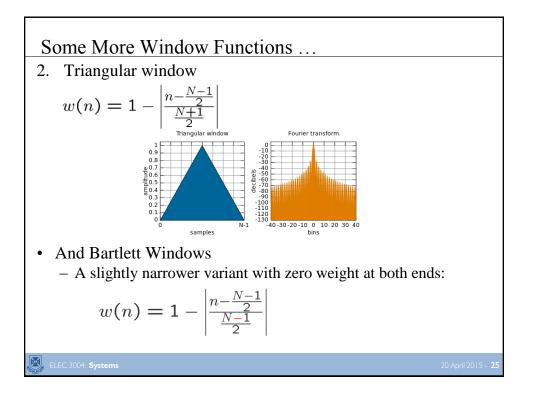


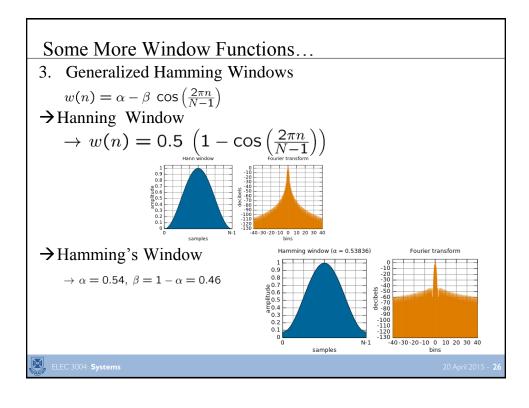


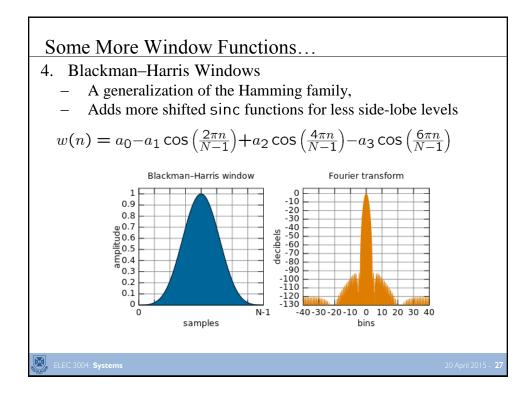


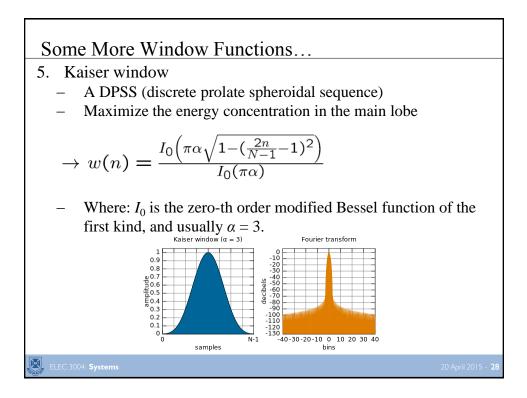


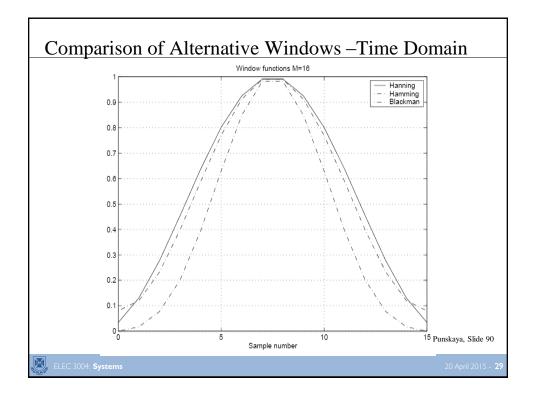


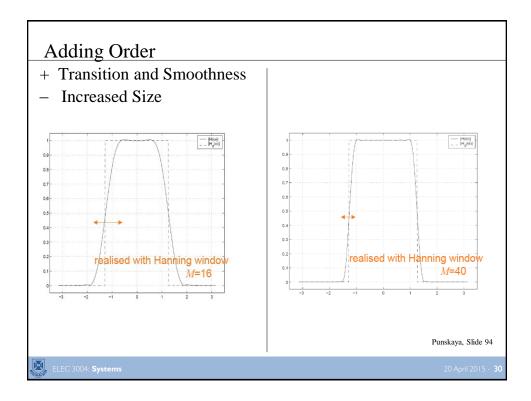


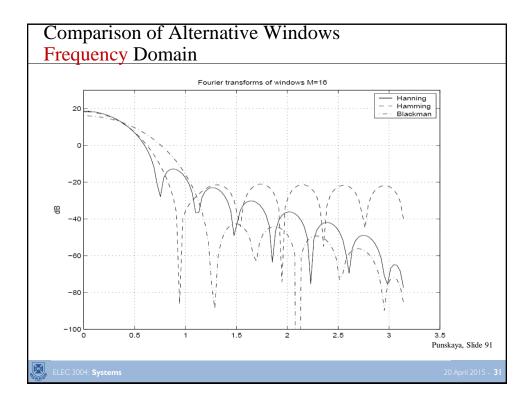




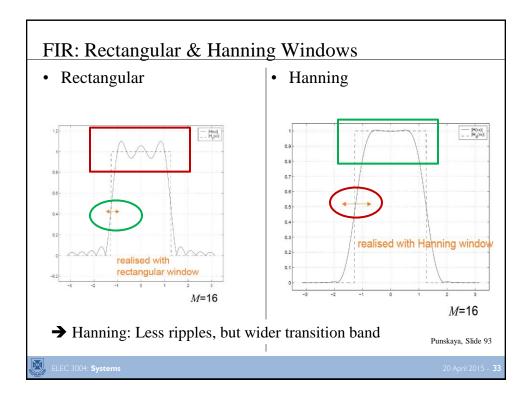


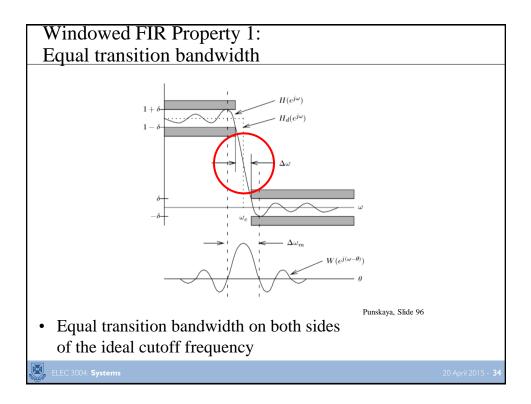


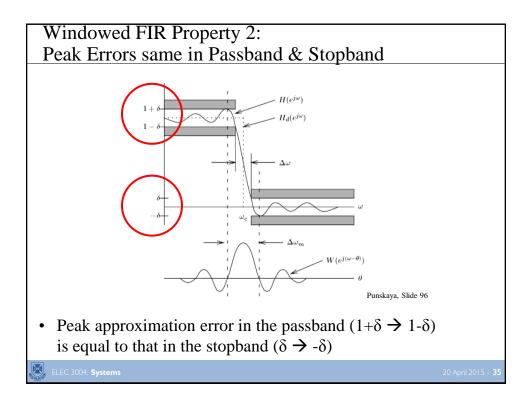


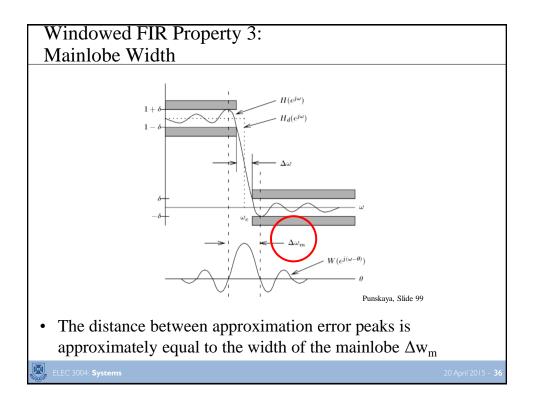


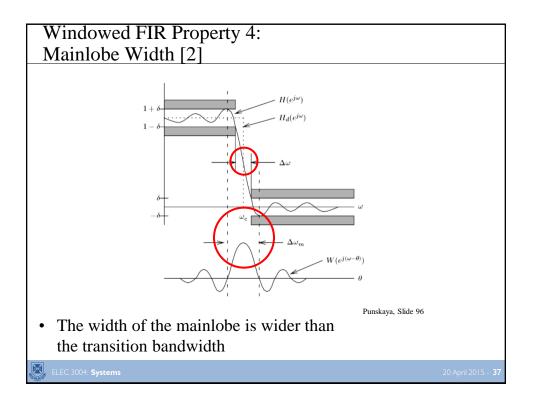
10.	Window w(t)	Mainlobe Width	Rolloff Rate (dB/oct)	Peak Sidelobe level (dB)	Peak 20log ₁₀
	Rectangular: rect $\left(\frac{t}{T}\right)$	$\frac{4\pi}{T}$	-6	-13.3	-21 dB
	Bartlett: $\Delta\left(\frac{t}{2T}\right)$	$\frac{8\pi}{T}$	-12	-26.5	
	Hanning: 0.5 $\left[1 + \cos\left(\frac{2\pi t}{T}\right)\right]$	$\frac{8\pi}{T}$	-18	-31.5	-44dB
	Hamming: $0.54 + 0.46 \cos\left(\frac{2\pi t}{T}\right)$	$\frac{8\pi}{T}$	-6	-42.7	$-53 \mathrm{dB}$
	Blackman: $0.42 + 0.5 \cos\left(\frac{2\pi t}{T}\right) + 0.08 \cos\left(\frac{4\pi t}{T}\right)$	$\frac{12\pi}{T}$	-18	-58.1	-74dB
	Kaiser: $\frac{I_0 \left[\alpha \sqrt{1 - 4 \left(\frac{t}{T}\right)^2} \right]}{I_0(\alpha)} 0 \le \alpha \le 10$	$\frac{11.2\pi}{T}$	-6	-59.9 (α = 8.168)	

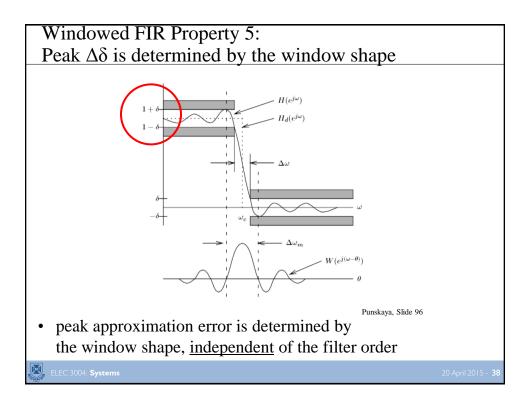












FIR Filter Design

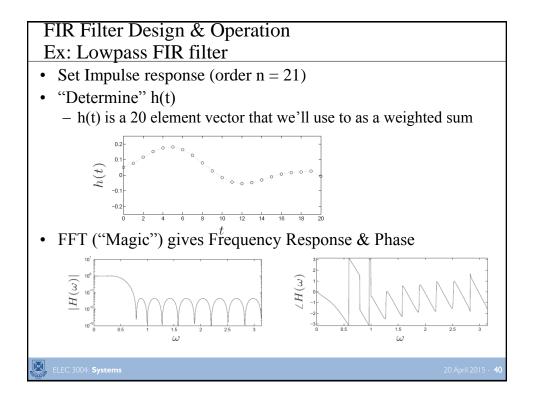
• How to get all these coefficients?

 $H(\omega) = h_0 + h_1 e^{-i\omega} + \dots + h_{n-1} e^{-i(n-1)\omega}$

FIR Design Methods:

- 1. Impulse Response Truncation
 - + Simplest
 - Undesirable frequency domain-characteristics, not very useful
- 2. Windowing Design Method
 - + Simple
 - Not optimal (not minimum order for a given performance level)
- 3. Optimal filter design methods
 - + "More optimal"
 - Less simple...

ELEC 3004: Systems



Why is this "hard"? Looking at the Low-Pass Example

$$H_{d}(\omega) = \begin{cases} 1 \text{ if } |\omega| \leq \omega_{c} \\ 0 \text{ if } \omega_{c} < |\omega| < \pi \end{cases}$$

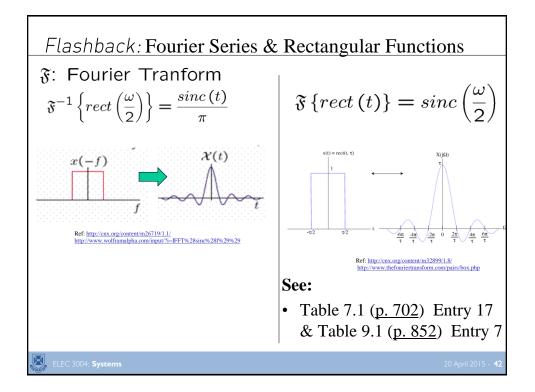
• Why is this hard?

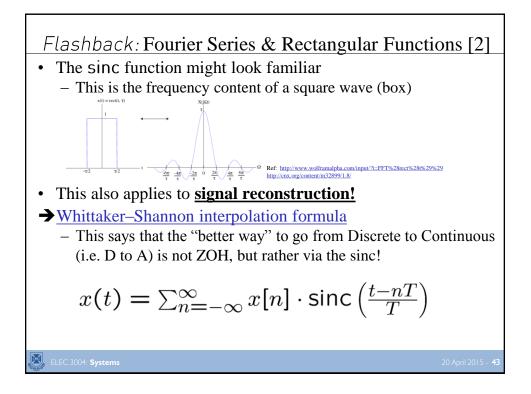
ELEC 3004: Systems

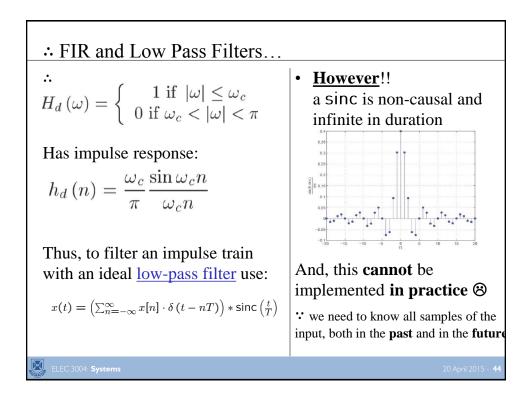
Shouldn't it be "easy" ??
... just hit it with some FFT "magic" and then keep the bands we want and then hit it with some Inverse-FFT "supermagic"???

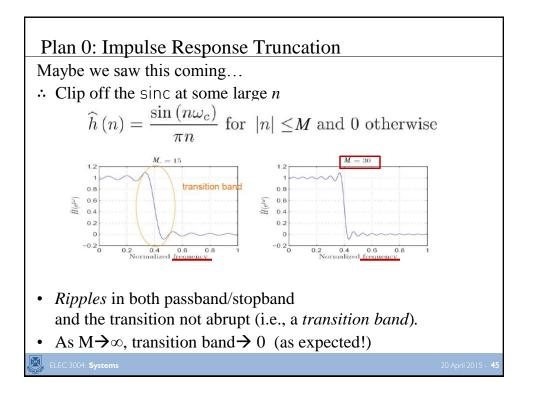
- Remember we need a "system" that does this "rectangle function" in frequency
- Let's consider what that means...
 It basically suggests we need an <u>Inverse FFT</u> of a <u>"rectangle function"</u>

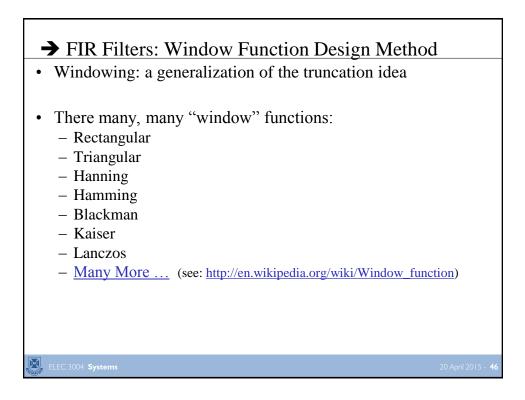
20 April 2015 - 4

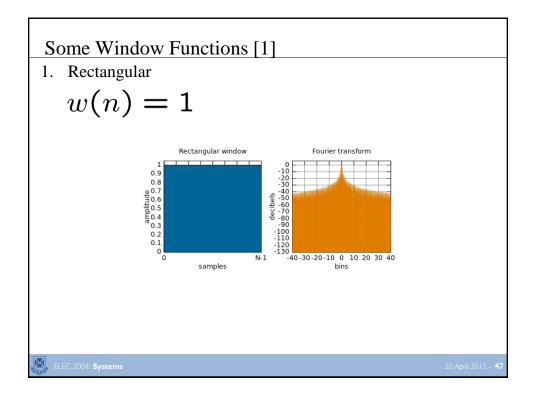


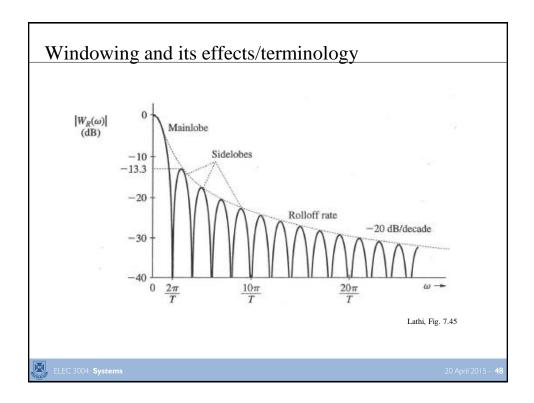


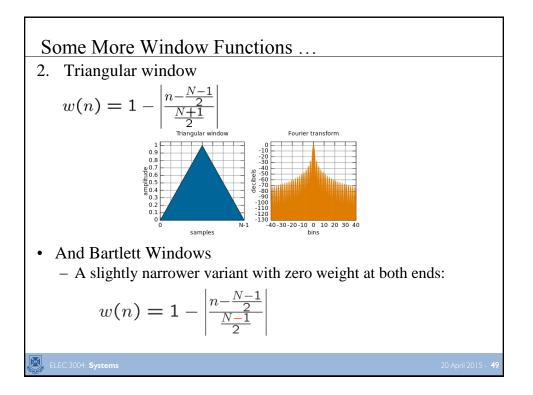


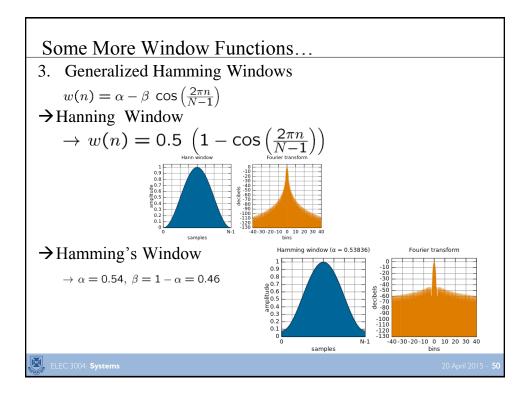


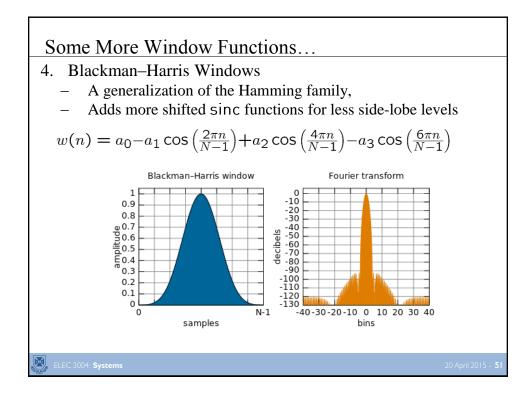


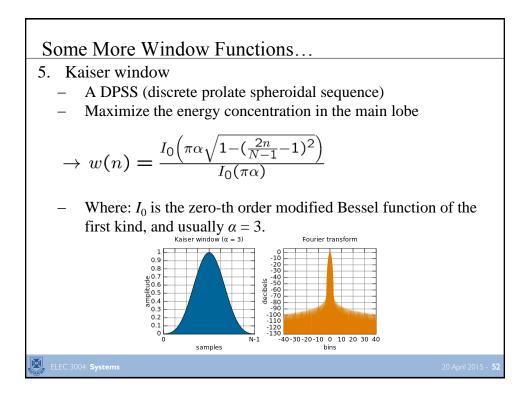


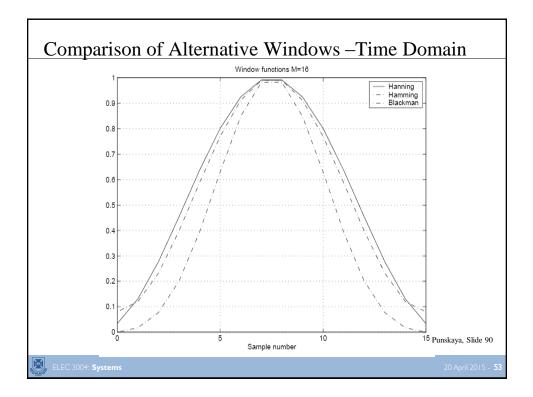


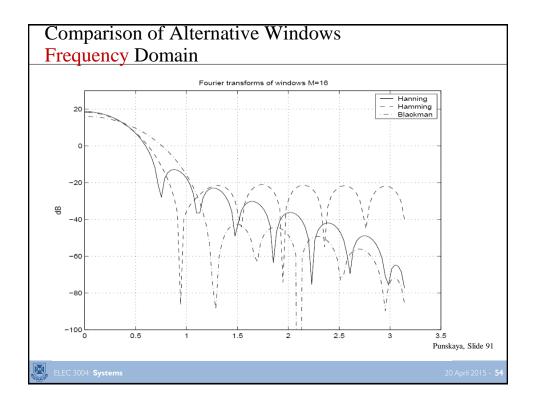


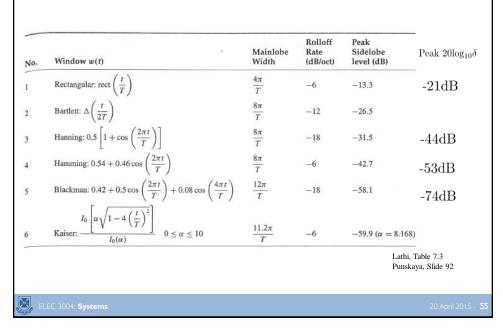




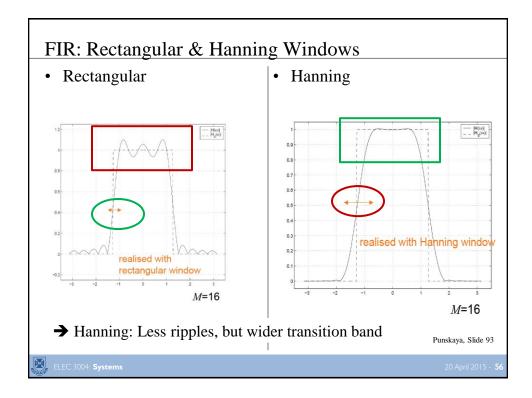


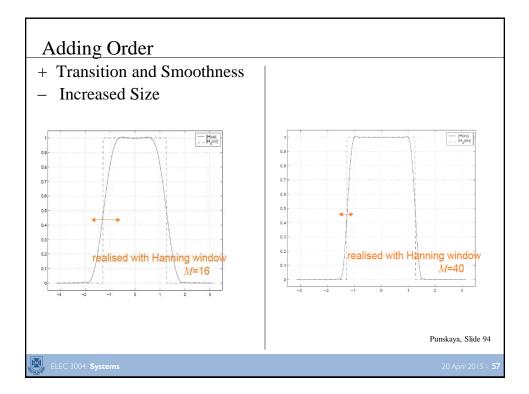


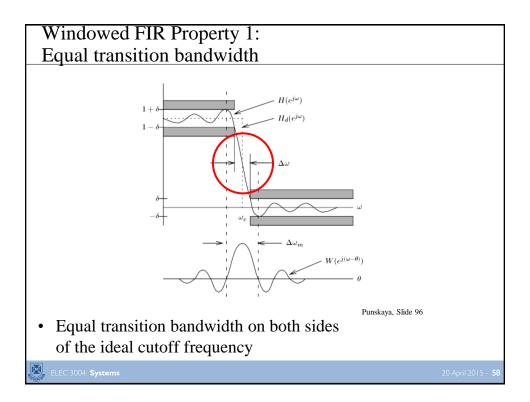


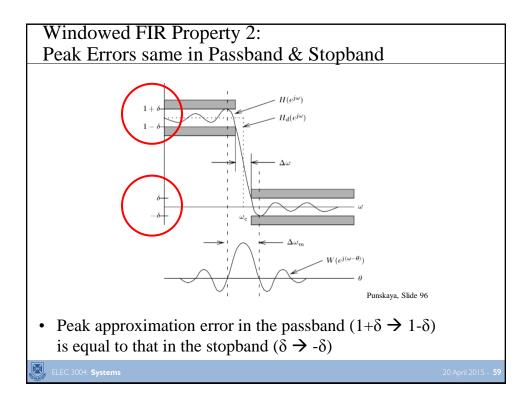


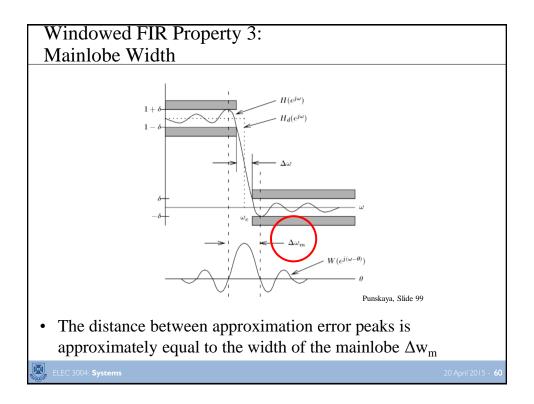
Summary Characteristics of Common Window Functions

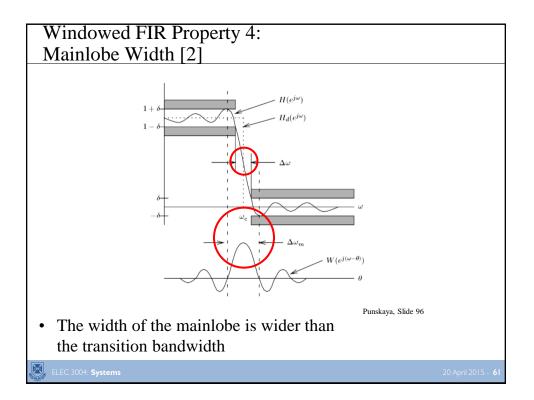


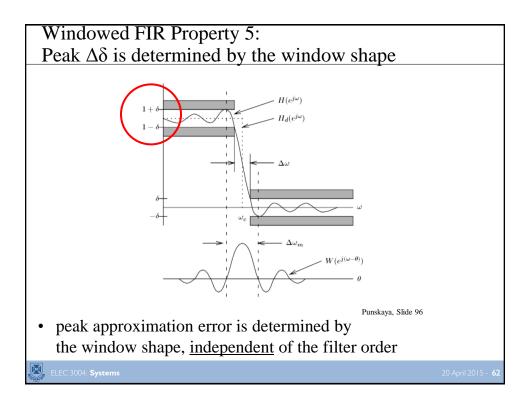


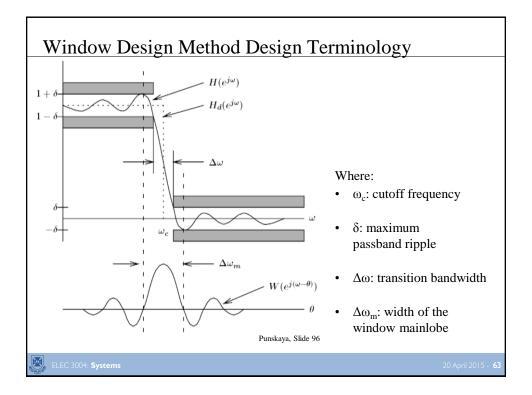


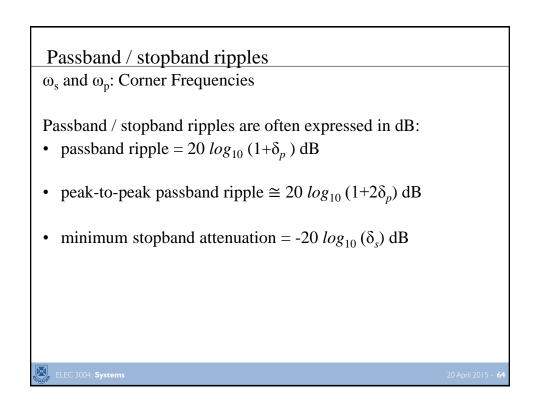


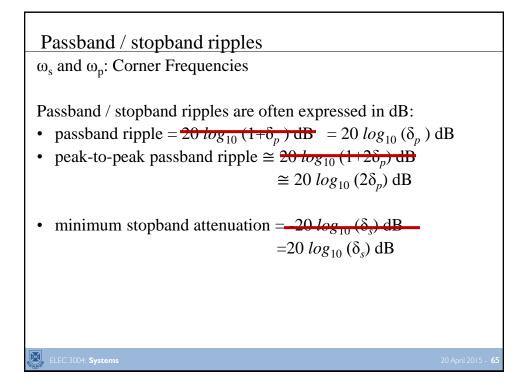


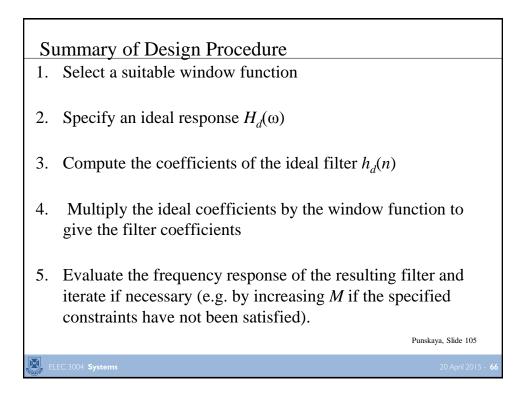


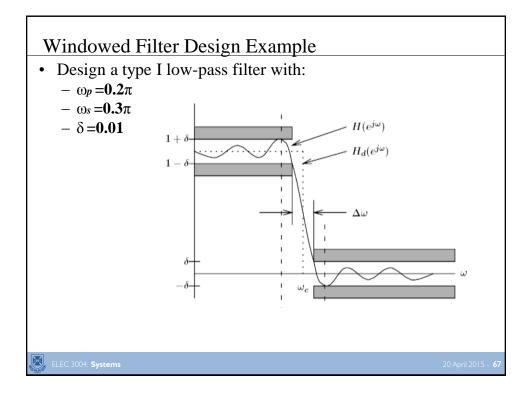


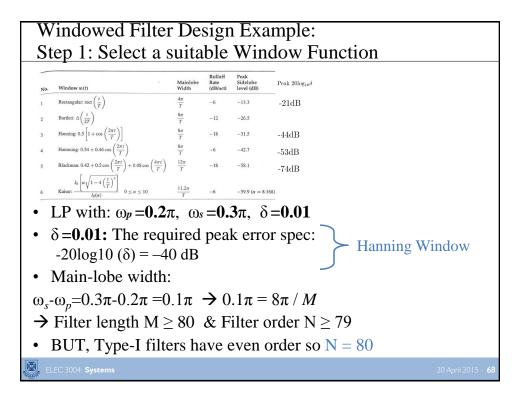


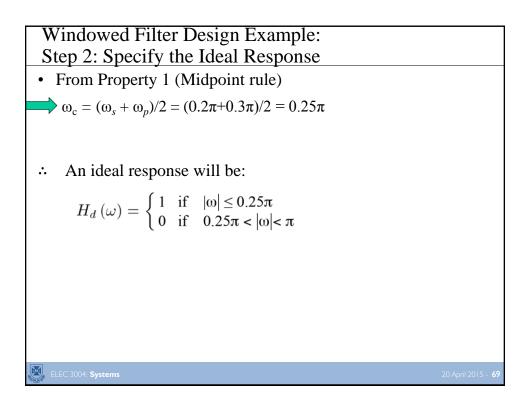




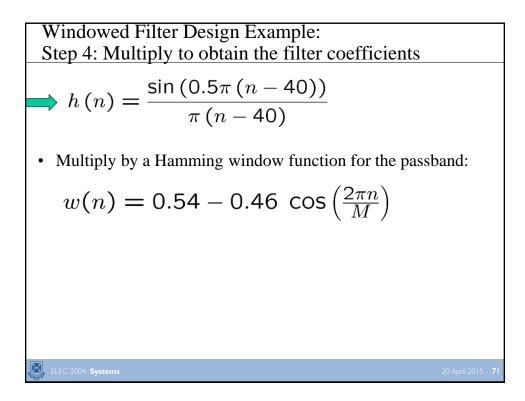


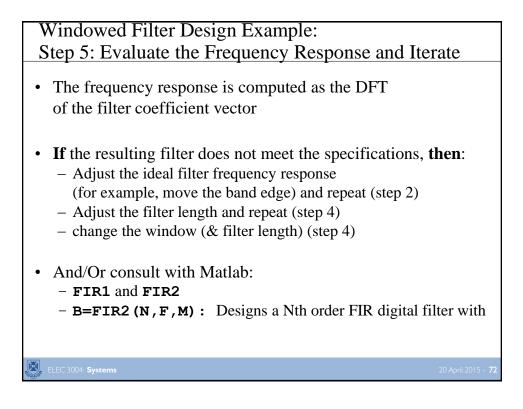


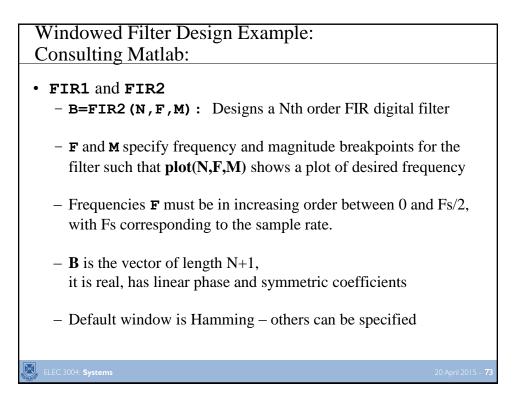




Windowed Filter Design Example: Step 3: Compute the coefficients of the ideal filter 5. The ideal filter coefficients h_d are given by the Inverse Discrete time Fourier transform of $H_d(\omega)$ $x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$ $= \frac{\omega_c}{\pi} \frac{\sin \omega_c n}{\omega_c n}.$ For the Delayed impulse response (to make it causal) $\tilde{h}(n) = \hat{h}\left(n - \frac{N-1}{2}\right)$ Coefficients of the ideal filter (via equation or IFFT): $h(n) = \frac{\sin\left(0.5\pi\left(n - 40\right)\right)}{\pi\left(n - 40\right)}$







In Conclusion

- FIR Filters are digital (can not be implemented in analog) and exploit the difference and delay operators
- A window based design builds on the notion of a truncation of the "ideal" box-car or rectangular low-pass filter in the Frequency domain (which is a sinc function in the time domain)
- Other Design Methods exist:
 - Least-Square Design
 - Equiripple Design
 - Remez method
 - The Parks-McClellan Remez algorithm
 - Optimisation routines ...