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Lecture Schedule:

Week Date Lecture Title
2-MarjIntroduction

3-Mar|Systems Overview

9-Mar|Signals as Vectors & Systems as Maps

1

2 10-Mar|[Signals]

3 16-Mar|Sampling & Data Acquisition & Antialiasing Filters
17-Mar|[Sampling]

4 23-Mar|System Analysis & Convolution
24-Mar|[Convolution & FT]

5 30-Mar|Discrete Systems & Z-Transforms

31-Mar|[Z-Transforms]

6 13-AprFrequency Response & Filter Analysis
14-Apr[Filters]

20-AprDigital Filters

7 21-Apr[Digital Filters]

3 27-AprjIntroduction to Digital Control
28-Apr|[Feedback]

9 4-May|Digital Control Design

5-May|[Digitial Control]

10 11-MayStability of Digital Systems
12-May|[Stability]

1 18-May|State-Space
19-May|Controllability & Observability

12 25-May|PID Control & System Identification
26-May|Digitial Control System Hardware

13 31-May|Applications in Industry & Information Theory & Communications

2-JunSummary and Course Review

amic Systems Review
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Dynamic Responses (Poles & Zeros)

» Moving pole positions change system response characteristics

More
Oscillatory
Img(s)
More damped
e
f >
Faster <€ > Re(s)

LGl

Pure integrator

“More unstable”

What about the Discrete Domain?

Mathematical

o

Models
ContEir?]Lelous Discrete time
Lin?/—\ Nonlinear Liyﬂ\/-\ Nonlinear
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Linear Nonlinear
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z Transforms
(Digital Systems Made eZ)

Review and Extended Explanation
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Coping with Complexity
Transfer functions help control complexity
— Recall the Laplace transform:

LF) = f F(Oe=stdt = F(s)
0

where

L{F (O} = sF(s)

X(t) ——{ H() — y()

* Is there a something similar for sampled systems?




The z-Transform

* ltis defined by:

z =rel¥

 Orin the Laplace domain:

z=eT

» Thatis - it is a discrete version of the Laplace:
Z
fkT) = e~ = Z{f(k)} = pr—

The z-Transform [2]

e Thus: o
Y(2)= Y hlklz yln] +5 Y (2)

 z-Transform is analogous to other transforms:
20} = ) fU0z* = F@)
k=0

and

Z{f(k =1} =z7"F(2)
~ Giving:

XK) — F@ — vk




The z-Transform [3]

» The z-Transform may also be considered from the
Laplace transform of the impulse train representation of
sampled signal

u*(t) == uOS(t) + U16(t - T) + ...+ uk(t_kT) + ...

- Z weS(t — kT)
k=0
U'(s) =up +use T+ +ue Sk + ..

= z uy e kT

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
52 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTeaT
(s + a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 72— (2cosal)z+ 1




z-Transform Example

* Obtain the z-Transform of the sequence:

« Solution:

x[k] = {3,0,1,4,15, ..}

X(z2)=3+z?%4+4z3+z*+52z7°

The z-Plane

z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):

+ S-plane:

Img(s)

e z=2¢%T Plane

Img(2)

— s—Plane

» Re(s) ®

— v —Plane

Re(2)




Deep insight #1

The mapping between continuous and discrete poles and
zeros acts like a distortion of the plane

max frequency

Img(2)

v-plane Stability

» For ay-Plane (e.g. the one the z-domain is embedded in)
the unit circle is the system stability bound

b
(\J

unit circle

Img(s)

Re(s) Re(2)




v-plane Stability

e That is, in the z-domain,

the unit circle is the system stability bound

Img(s)

"
=

Re(s)

v Img(2) @

-
N

>
} . Re(z)

z-plane stability

« The z-plane root-locus in closed loop feedback behaves just

like the s-plane:

Img(s)

Re(s)

Img(2) @ |

X

Re(2)




Region of Convergence

+ For the convergence of X(z) we require that

2 }az_] ]m <
n=0

« Thus, the ROC is the range of values of z for which |az|< |
or, equivalently, |z| > |a|. Then

N ;i

N
N\
NN

Az ma
7 > ’/,/ //

as1

.
N

An example!

+ Back to our difference equation:

y(k) =x(k) + Ax(k — 1) — By(k — 1)
becomes

Y(z2) =X(2) + Az71X(2) — Bz7'Y(2)
(z+B)Y(2) =(z+4A)X(2)
which yields the transfer function:

Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™"
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This looks familiar...

» Compare:
YG) _ stz @) _ z+A
X(s)  s+1 X(z)  z+B

How are the Laplace and z domain representations related?

- Linearity:

1,2 s e
a1y1[n] + agya[n] +— a1Y1(2) + aoYa(z)

Z-Transform Properties: Time Shifting

y2[n] =y[n —no]

.z
. < L AT % 0
Yy ['ﬂ- ﬂ{]_ —r Z } (3) Ya(el™) = Z ylk —nglz="*

k=—00

- Z y'i]z—([+n(3)
l=—0o

. :3—71[;};(3)
» Two Special Cases:

« z'%: the unit-delay operator:

xn — 1]« 27 1X(2) R'=RN{0< ||}

* Z: unit-advance operator:

x[n+ 1] = 2X(2) R'=RN{|z] <}
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More Z-Transform Properties

« Time Reversal

x[n] < X(z) ROC =R

1 1
([—n]= X|— Rz
x[—n] (2) =

« Multiplication by z"

x[n] = X(z) ROC = R

(z i
z:J!-‘W”J"‘XJ% R'=|z9|R
\ <0/

« Multiplication by n (or
Differentiation in z):

xlnl ==Xz}  ROC=R

dX(z, .
nx[n]ﬂfz—() R' =R
dz

« Convolution

x,[n] < X,(z) ROC = R,
X,[n] < X,(2) ROC = R,

x,[n] * x,[n] < X,(2)X,(2) R'DR NR,

The z-plane [ for all pole systems |

» We can understand system response by pole location in the z-

plane

[Adapted from Franklin, Powell and Emami-Naeini]

Re(z)

12



Effect of pole positions

» We can understand system response by pole location in the z-
plane

rr'/‘

.\'\.\* ........... P
%99 o o

Effect of pole positions

» We can understand system response by pole location in the z-
plane

AN AN

NARVARY A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

AAAAMNAARA e AN
VY VVVV|[VYT

Re(z)

z-Plane Response for 2" Order Systems:
Damping ({) and Natural frequency ()

z=eSTwheres = —(w, + jw,/1 — (2

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,

“',

-1.0 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1.0
[Adapted from Franklin, Powell and Emami-Naeini]
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Recall dynamic responses

« Ditto the z-plane:

A

Img(2) More

More dal

Oscillatory <

Pure integrator

\More unstable”

5 Re(z)
Faster

%

15

Deep insight #2

+ Gains that stabilise continuous systems can actually

destabilise digital systems!

Y Img(s)

Img(2)

Ko

Re(s) “ X Re(2)
\ ;1
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First Some Noise!

ELEC 3004: Systems

I3 April 2015 -

Noise
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Source: Prof. M. Siegel, CMU
|20 yeas [henn fuguth | o

Note: this picture illustrates the concepts but it is not quantitatively precise
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Noise [2]

Various Types:

» Thermal (white):
— Johnson noise, from thermal energy inherent in mass.

Flicker or 1/f noise:
— Pink noise
— More noise at lower frequency

Shot noise:
— Noise from quantum effects as current flows across a semiconductor barrier

Avalanche noise:
— Noise from junction at breakdown (circuit at discharge)

Also Aliasing & Sampling
(It 1s a type of “noise”)

* Nyquist: f <§

i f Lz
f 1 _r/ / \ f L e I i / 1 { \
e / 1 f [ \os |/ \ o8 | \ 1
7 T o 1 8 T~ | 7 ' 1 r
\ | \ / \ e W | \ [ el
A f 5 / “. r‘ T~ 1 j e . .u {

 Spectral Folding:
fimage(N) = f - Nf:s‘

_Aliases
- o L

__Sinusoid at \\;\“\

frequency 0.6 f
/

Folding
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Noise € Uncertainty

«  Uncertainty:
All measurement has some approximation
A. Statistical uncertainty: quantified by mean & variance
B. Systematic uncertainty: non-random error sources

« Law of Propagation of Uncertainty
— Combined uncertainty is root squared

ucz\/u%—l—u%—l—...—ku?%

How to beat the noise

° Fllterlng (Narrow-banding):

Only look at particular portion of frequency space
* Multiple measurements ...
* Other (modulation, etc.) ...

phase

signal
noise

frequency

By adding shared information (structure) between the
sender and receiver (the noise doesn’t know your structure)

18



Frequency

» How often the signal repeats
 Can be analyzed through Fourier Transform

f
signal (t) ‘ signal(f)

« Examples:

time Gl frequency

oos bt
: I
L,
lm
=]

1 o @

Treating Uncertainty with Multiple Measurements

-\J“(U

l‘_r_':(”

x (N} (t )

——- {1 o average

A b, iy

Y

ensemble average

1. Over time: multiple readings of a quantity
over time
“stationary” or “ergodic” system
Sometimes called “integrating”

2. Over space: single measurement (summed)
from multiple sensors each distributed in
space

3. Same Measurand: multiple measurements
take of the same observable quantity by
multiple, related instruments

e.g., measure position & velocity
simultaneously

- Basic “sensor fusion”

_ _ 1
Ofinal = 01"+ o5+ oyl




Multiple Measurements Example

R

» What time was it when this picture was taken?
» What was the temperature in the room?

« Estimation (Information Fusion) Problem
— A Solution: Linear Least Squares
(over-determined simultaneous set of equations)

Modulation

Analog Methods:
* AM - Amplitude modulation

— Amplitude of a (carrier) is
modulated to the (data)

* FM - Frequency modulation

— Frequency of a (carrier) signal
is varied in accordance to the

amplitude of the (data) signal

* PM — Phase Modulation

Source: http://en.wikipedia.org/wiki/Modulation
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Modulation [Digital Methods] [ e ]

Start with a “symbol” & place it on a channel |
- ASK (amplitude-shift keying) BEEBER

[ . wn
1 | ; i :> |
—1‘ NI ﬂ 0 0 time :‘(]J‘]Jl B
1) ‘0,0i time

« FSK (frequency-shift keying)

| AN L WA ANEA N
J — L WY VYV VUV ’\u'ﬂf\ﬁ'\f \ ‘U'f\'f\'blﬂu /I

Data Carrier Modulated Signal

« PSK (phase-shift keying)

* QAM (quadrature amplitude modulation)
s(t) =A-cos(w, + ¢;(t))

= x;(t) cos(w,t) + x4(t) sin(w,t)

Source: http://en.wikipedia.org/wiki/Modulation | http://users.ecs.soton.ac.uk/sqc/EL334 | http://en.wikipedia.org/wiki/Constellation_diagram

Modulation [Example — V.32bis Modem]

4} 90
L] L]
* 8|8 @
- & § & B
s & =|e & &

. = = 5 & & @
s & 8 ®|® @ & @
. s s e . s s @
e o & ® 8|® & o & »
180 * @ & @ --o.¢0
. 8 8 % & = 8 & @
s * & ® |8 8 ° & @
" 8 8 & 8§ 8 & & @
s 8 B B = o @
s & = 8 @ 8 @
s & & |8 = @

. * 8 & &

. &= @

- L]

270

Figure 10.13 Illustration of the QAM constellation for a V.32bis dialup
modem.

Source: Computer Networks and Internets, 5e, Douglas E. Comer
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Multiple Access (Channel Access Method)

+ Send multiple signals on 1 to N channel(s)
— Frequency-division multiple access (FDMA)
— Time-division multiple access (TDMA)
— Code division multiple access (CDMA)
— Space division multiple access (SDMA)

« CDMA:
— Start with a pseudorandom code (the noise doesn’t know your code)

T

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access

Now: (analog) Filters!

ELEC 3004: Systems 13 April 2015 - 44
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Filters

Lowpass .|~ Bandpass

N L
LA N

» e-

\

Highpass Bandstop (Notch)

» Frequency-shaping filters: LTI systems that change the shape
of the spectrum

» Frequency-selective filters: Systems that pass some
frequencies undistorted and attenuate others

Filters

' Lowpass Specified Values:

Jll(jmy‘

* Gp = minimum passband gain
Typically:
1
Gp=—== —-3dB
p \/5
+ Gs = maximum stopband gain
— Low, not zero (sorry?!)

— For realizable filters, the gain cannot
be zero over a finite band (Paley-
Wiener condition)

e Transition Band:

Highpass © transition from the passband to the
stopband =» wp# ©s

23



Filter Design & z-Transform

Filter Type Mapping Design Parameters
Low-pass PN AL, _ sinl(o, — /)/2]
1 —az! sinf(ew, + @!)/2]

@, = desired cutoff frequency

High-pass 7 - _lte o= SOl ¥ al)/2)
1+ az-! cos[(w, — @!)/2]
w!. = desired cutoff frequency
Bandpass | 2~ — _ 2~ 122B/(B+ DIz +1(B — /(B + 1] o = Slwa +wa)/2]
[(B—=D/(B+ D]z = [20B/(B+ D]z~ + 1 cos[(we — we)/2]
B = cotl(w:2 — wai)/2] tan(w, /2)

.y = desired lower cutoff frequency

w2 = desired upper cutoff frequency
Bandstop st F2 = [2e/B 4 D) 13 = B/ + B o = Sla +wa)/2)
[(1=pB) /(0 + Pz = Ref(B+ Dz + 1 cos[(we — we2)/2]

B = tan[(w.a — w)/2] tan(w, /2)

wy = desired lower cutoff frequency
.y = desired upper cutoff frequency

Butterworth Filters

 Butterworth: Smooth in the pass-band
 The amplitude response |H(jw)| of an nt" order Butterworth
low pass filter is given by:

B ()] = s

i ()

E P 1
|H(JUJ|:W B ()i (—ju) = () =

» The normalized case (o.=1)

1

1+ w2n

Recall that: |H (jw)|? = H (jw) H (—jw)

24



Butterworth Filters

!
[ H(jow)l

0.707 |+

ideal (n = o)

Butterworth Filters of Increasing Order:
Seeing this Using a Pole-Zero Diagram

* Increasing the order, increases the number of poles:

n=1 n=2

. Y

S

-1

=>»0dd orders (n=1,3,5...):
» Have a pole on the Real Axis

=>Even orders (n=2,4,6...):
» Have a pole on the off axis

Angle between
poles:

25



Butterworth Filters: Pole-Zero Diagram

n=1 n=2 n=3 n=4

% ¥
X
% T4
i mid / w3/ /

 Since H(s) is stable and causal, its poles must lie in the LHP
 Poles of -H(s) are those in the RHP

« Poles lie on the unit circle (for a normalized filter)

n is the order of
X the filter
H s5) =
> H (s) (s —51) (s —52)...(5 — spn)
Where: )
sp = ¢ (Zkin—1) \
= cos é’—;'(QA:Tn — 1) + jsin %{2&7 Fn—1) k=1,23 .. .n

Butterworth Filters: 4! Order Filter Example

1 = n=3

* Plugging in for n=4, k=1,...4:
- - — - — l —— —
(s + 0.3827 — 50.9239) (s 4 0.3827 + j0.9239)(s + 0.9239 — 50.3827)(s + 0.9239 + 50.3827)
1
(52 4 0.7654s + 1)(s2 + 1.8478s + 1)

1
5% 1 2.6131s3 + 3.414252 1 2.6131s + 1

H(s) =

» We can generalize =» Butterworth Table

< o - i . i This is for 3dB
2 1.41421356 bandwidth at
3 2.00000000 2.00000000 _

4 261312503 3.41421356  2.61312503 o.~1

5 3.23606798 5.23606798  5.23606798  3.23606798
6 3.86370331 7.46410162 9.14162017  7.46410162  3.86370331

26



Butterworth Filters: Scaling Back (from Normalized)

» Start with Normalized equation & Table
* Replace o with = in the filter equation

« For example:
for f,=100Hz = ®»,=200x rad/sec

From the Butterworth table: for n=2, alz\/z
Thus:

H(s) =

1
(@)%ﬁ(ﬁ)ﬁ
= 242007v/2+440,00072

Butterworth: Determination of Filter Order

+ Define G, as the gain of a lowpass Butterworth filter at o= ,
« Then:

We

2n
Gy = 20logo |H (jws)| = —101log [1 + (‘il) ]

2n]

Gp=—10log [1 + <ﬁ> J
And thus: We
. 2n
Gs = —10log l:l+ <wi> }
Or alternatively: w Y g wem

']“_ &, /10t 'J I/ [1() -G, /10 _ 4 ‘

Solving for n gives:
log Kl[)---d_,-/lo _ 1) / (10—(;;/10 . ]ﬂ

n = —

2log(we/wp)

PS. See Lathi 4.10 (p. 453) for an example in MATLAB
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Chebyshev Filters

!
| H(jw)| PH (jw) |

w—

 equal-ripple:
Because all the ripples in the passband are of equal height

« If we reduce the ripple, the passband behaviour improves, but
it does so at the cost of stopband behaviour

Chebyshev Filters

» Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-
order Butterworth filter, but this is achieved at the expense of inferior passband
behavior (rippling)

=>» For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

» The amplitude response of a normalized Chebvshev lowpass filter is:

1
[H(jw)l = =

V’fl + €20, % (w)

Where Cn(w), the nth-order Chebyshev polynomial, is given by:

n Cr(w)
Cwlw) = cos (ncos™ w)
Cpn(w) = cosh (n cosh 1m) 01
1 w
H i . 2 2w?-1
and where C,, is given by: ”
3 4wd-3w
4 8wt-8wl+1l
5 16w’ — 20w3 + 5w
6 32w — 48w 4+ 18w?% — 1

28



Normalized Chebyshev Properties

 It’s normalized: The passband is O<w<1

« Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband

« Number of ripples: there is a total of n maxima and minima
over the passband 0<w<1

1, n:odd

o (2 - 0, n:odd |H(0) = 1 o
7 (0) {1‘ MDA s =\ i nieven

- e ripple height > 7 = \/1 4 €2

* The Amplitude at =1: %= \/1:73

« For Chebyshev filters, the ripple r dB takes the place of G,

Determination of Filter Order

« The gainisgiven by: ¢ = —10log [1 +¢*C.%(w))
Thus, the gain at o, is: 20,2 (w,) = 10-G+/10 _ |

+ Solving:

1 10-6:/10 _1]"*
= — cosh™ T B
cosh™ (ws) 107710 _ 1 ‘

« General Case:

n=

- 1/2
1 _, [10-Ge/10 _1]™
cosh™? { |

S —
cosh™ (ws/wp)




Chebyshev Pole Zero Diagram

» Whereas Butterworth poles lie on a semi-circle,
The poles of an nt-order normalized Chebyshev filter lie on a
semiellipse of the major and minor semiaxes:

a = sinh (lsinh_l (lD & b= cosh (lsinh‘l (i))
n € n €

And the poles are at the locations:

1
H(s)=
(s (s—s51)(s—52)...(s—sn)
s = {(Zkzn )= ]sinh r+jcos [% coshz, k=1,..., n

Ex: Chebyshev Pole Zero Diagram for n=3

Procedure:

1. Draw two semicircles of radii aand b
(from the previous slide).

3 2. Draw radial lines along the corresponding

R Butterworth angles (n/n) and locate the
nth-order Butterworth poles (shown by
crosses) on the two circles.

: 3. The location of the ki Chebyshev pole is
ja b the intersection of the horizontal
" projection and the vertical projection from
the corresponding kth Butterworth poles
on the outer and the inner circle,
respectively.

60"
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Chebyshev Values / Table

K, K
H(‘?) = — b . 7 ) o
C'uls) s"+ap_1s" 1+ - +a15+ag
ag n odd
]\"n = ag - ag
\/1_7? = ﬁ/'é() n even
n ap a az a3
1 1.9652267 1 db ripple
2 1.1025103 1.0977343 (f=1)
3 0.4913067 1.2384092 0.9883412
4 0.2756276 0.7426194 1.4539248 0.9528114

Other Filter Types:

Chebyshev Type Il = Inverse Chebyshev Filters

the stopband.
= Cheby2 in MATLAB

[HW)I* =1~ [He(l/w)®
Where: H, is the Chebyshev filter system from before

« $$%$ (or number of elements):

GZCZ(I/LU)
1+ e2C2(1/w)

« Chebyshev filters passband has ripples and the stopband is smooth.
« Instead: this has passband have smooth response and ripples in

=> Exhibits maximally flat passband response and equi-ripple stopband

 Passband behavior, especially for small o, is better than Chebyshev
« Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)
 Less time-delay (or phase loss) than that of the Chebyshev

 Both needs the same order n to meet a set of specifications.

ChEby < Inverse ChebySheV < Butterworth (of the same performance [not order])
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Other Filter Types:
Elliptic Filters (or Cauer) Filters

 Allow ripple in both the passband and the stopband,
=>» we can achieve tighter transition band

[H{iw)| = ———=
V"l Fe2Rn 2 (w)
Where: R, is the n-order Chebyshev rational function determined from a given ripple spec.
€ controli the ripple
Gp=7——

* Most eﬁ“ic+ient m)
— the largest ratio of the passhand gain to stopband gain
— or for a given ratio of passband to stopband gain, it requires the
smallest transition band

= in MATLAB: ellipord followed by ellip

Filter Type Passband Stopband Transition | MATLAB Design
P Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheb
Chebyshev Type Il i
heby?2
(Inverse Chebyshev) No Yes Tight cheby
Eliptic Yes Yes Tightest ellip
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Linear Difference Equations
(a sub-set of Linear, Discrete

Dynamical Systems)

ELEC 3004: Systems I3 April 2015 - 65

DT Causality & BIBO Stability [Review]

+ Causality:
h[n]=0,n<0

Syl =Y hMrl K o Subl= Y wkhb -
k=0

k=—oc

e Inputis Causal if: z[n] =0,n<0

» Then output is Causal:
y[n] = i hklz[n—k] = i z [k]h [n — K]
k=0

k=0

« And, DT LTI is BIBO stable if:
Z |h[k]] < oo

k=—00
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Linear Difference Equations

ug = fleny - 1€k UQ, - - -, Uk—1).
Up = —A1Uk—1 —O2Up—2—" - —Qplg—n +boeg +bree_1 4+ -+ bmep—m.
Vup = up — ug—1 (first difference),
V2u = Vug — Vg (second difference),

Vi = VP luy — VPl (nth difference).

Up = Uk,
gy = up — Vug,

tug_g = up — 2Vug + Vzuk.

a;Vguk — (a1 + 2a2)Vuy, + (az + a1 + Vuy, = boey.

Assume a form of the solution

zZK:
* k: “order of difference”
+ k: delay

Azk - AZK“_-1+AZ'€_2.

-1

l=z""+2

22=z+1.
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Impulse Response (Graphically)

an LTI system to the unit impulse:

ri[u]

LTI System

By time invariance, we know

[ — k
R system

And by linearity, we know

ad[n — k] + cad[n — ko

| LTI System

e

uinl= Y ulkldn -]

ke—no

- & LTI System &

Let's define the impulse response, h[n], as the result of applying

hln]

hln — k|

.!Ill’P:H - L‘li + r)gh[u - .'.'g}

0

yln] = Z ulklhln — k]

k=—oc

0 matrix X o vector?

How do you multiply an infinite matrix?

* First let’s multiply circulant matrices...
— A circulant matrix can be descibed completely by its first row or column

aq aq ay .- Ap—1
p—1 ag ap -+ (p_9 | | L ‘
A= |m—2 an-1 ao - an-3| = |h Zh Z?h --- ZN-1}
a1 as as - a egy
o ’ Z: Shift operator
] nm
* Multlply by U[k] > Lo Zh Z“,‘J s ZNEL, u[2] = \Z_I ulk) Z¥7
‘ : Je=01
u[N =1

For circulant matrices, matrix multiplication reduces to a weighted
combination of shifted impulse responses
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Two Types of Systems

« Linear shift-invariant:

 Linear time-invariant system

N-—1
y=Y_ulk]Z"
k=0 o
y = Z u[k‘]]?kh
Z: Shift operator h=—00
Z - ug uy, ug ug. . u,,_L]r = [ty—y. up. uy. . . ... H”_::I.
R: Unit delay operator
R-[... . ug. ul.ug.u;‘....]'j. =[ .. u_p ug,ug.. .. r

Impulse Response of Both Types

1 1
y[n] = 5u.[n — 1]+ Eu[n,]

y[—1] =0
y[O] = é
yll] = i
y[2] =0

y[n] = é;f[n — 1] + u[n]

h[—1]=0
ff:(]: =1
|

. 1
h[2] = -

; 4
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Impulse Response of Both Types

‘Finite impulse response” (FIR)

y[n] %_l/[)l — 1]+ uln]
hln]
1t
21
1
I I ' 2.8 s

“Infinite impulse response” (IIR)
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