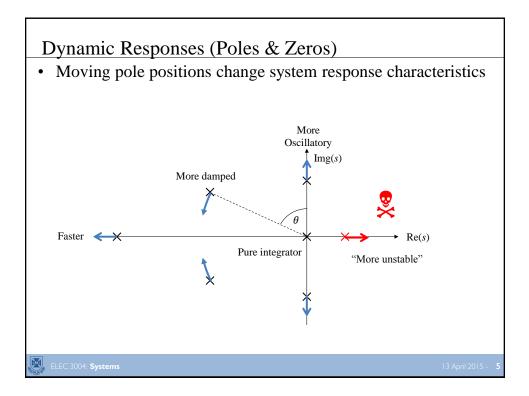
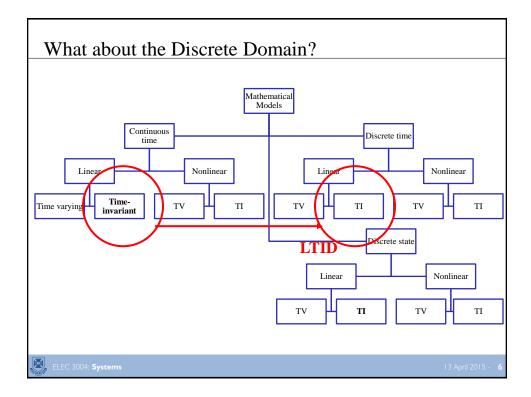
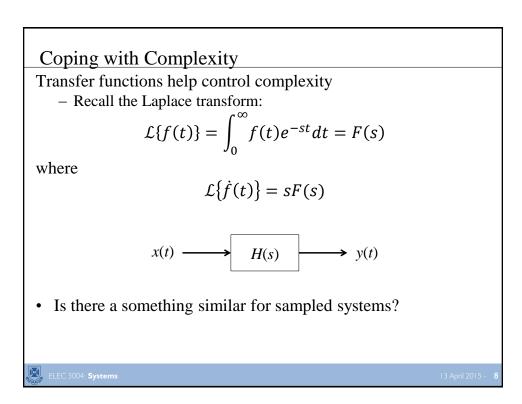


Week	edule:	Lecture Title
1	2-Mar	Introduction
1	3-Mar	Systems Overview
	9-Mar	Signals as Vectors & Systems as Maps
2	10-Mar	[Signals]
2	16-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	17-Mar	[Sampling]
4	23-Mar	System Analysis & Convolution
4	24-Mar	[Convolution & FT]
6	30-Mar	Discrete Systems & Z-Transforms
5	31-Mar	[Z-Transforms]
6	13-Apr	Frequency Response & Filter Analysis
U	14-Apr	[Filters]
7	20-Apr	Digital Filters
	21-Apr	[Digital Filters]
8	27-Apr	Introduction to Digital Control
0	28-Apr	[Feedback]
0	4-May	Digital Control Design
9	5-May	[Digitial Control]
10	11-May	Stability of Digital Systems
10	12-May	[Stability]
11	18-May	State-Space
11	19-May	Controllability & Observability
12	25-May	PID Control & System Identification
12		Digitial Control System Hardware
12	31-May	Applications in Industry & Information Theory & Communication
13	2-Jun	Summary and Course Review







The z-Transform

• It is defined by:

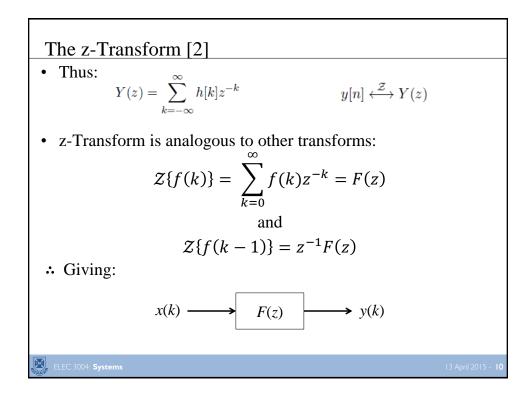
ELEC 3004: Systems

$$z = re^{j\omega}$$

- Or in the Laplace domain: $z = e^{sT}$
- That is \rightarrow it is a discrete version of the Laplace: $f(kT) = e^{-akT} \Rightarrow \mathcal{Z}{f(k)} - \frac{Z}{2}$

$$f(kT) = e^{-a\kappa T} \Rightarrow \mathcal{Z}\{f(k)\} = \frac{1}{z - e^{-aT}}$$

13 April 2015 -

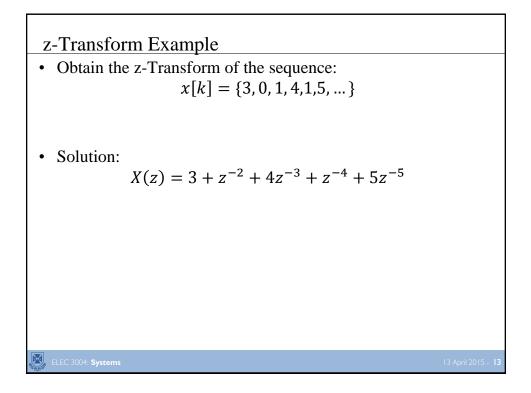


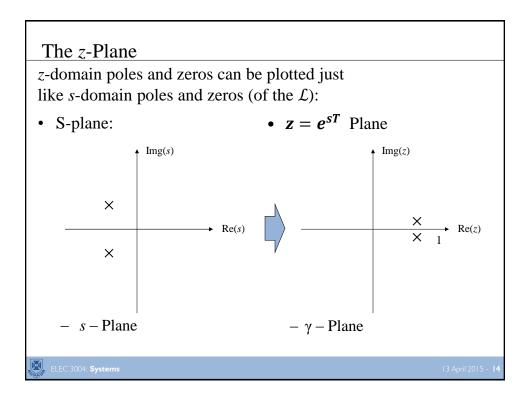
The z-Transform [3]

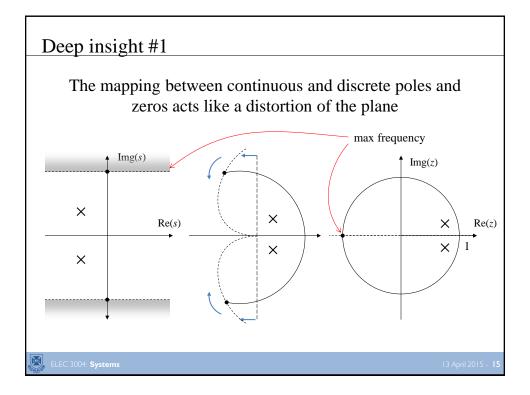
• The z-Transform may also be considered from the Laplace transform of the impulse train representation of sampled signal

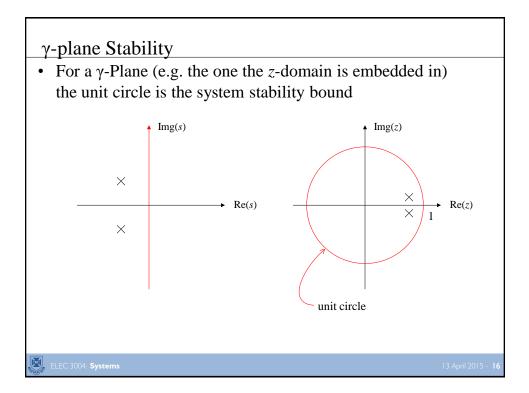
$$u^{*}(t) = u_{0}\delta(t) + u_{1}\delta(t - T) + \dots + u_{k(t - kT)} + \dots$$
$$= \sum_{k=0}^{\infty} u_{k}\delta(t - kT)$$
$$U^{*}(s) = u_{0} + u_{1}e^{-sT} + \dots + u_{k}e^{-skT} + \dots$$
$$= \sum_{k=0}^{\infty} u_{k}e^{-ksT}$$
$$U(z) = \sum_{k=0}^{\infty} u_{k}z^{-k}, \quad z = e^{sT}$$

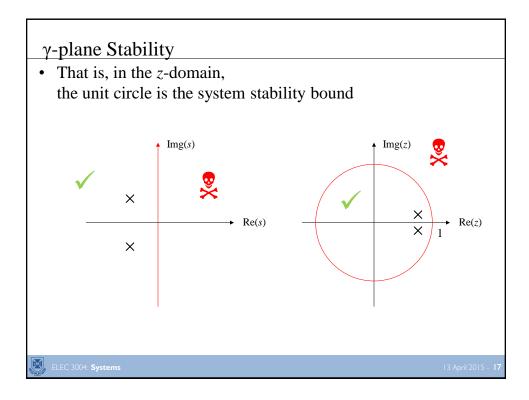
The *z*-transform • In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the z-transform of your functions F(s)F(kt)F(z) $\frac{1}{s}$ Ζ 1 $\overline{z-1}$ 1 TzkТ $\overline{s^2}$ $(z-1)^2$ e^{-akT} 1 Ζ $\overline{z-e^{-aT}}$ $\overline{s+a}$ 1 kTe^{-akT} zTe^{-aT} $(s + a)^2$ $\overline{(z-e^{-aT})^2}$ 1 $z \sin aT$ sin(akT) $\overline{s^2 + a^2}$ $\overline{z^2 - (2\cos aT)z + 1}$ ELEC 3004: Systems

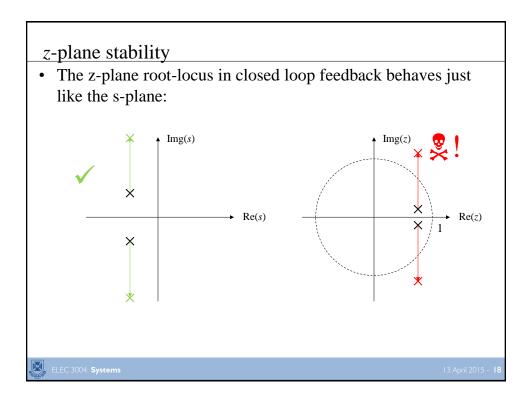












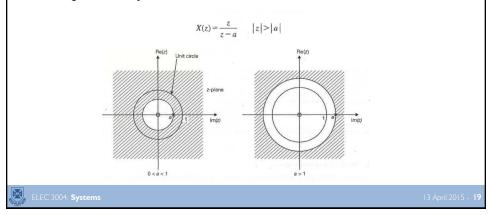
Region of Convergence

ELEC 3004: Systems

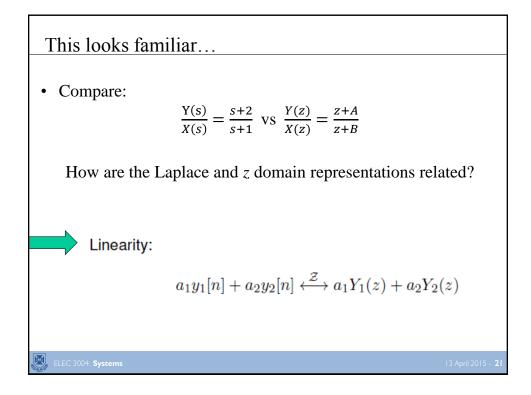
• For the convergence of X(z) we require that

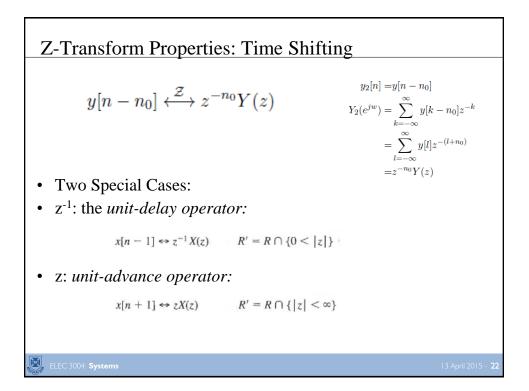
 $\sum_{n=1}^{\infty} \left| a z^{-1} \right|^n < \infty$

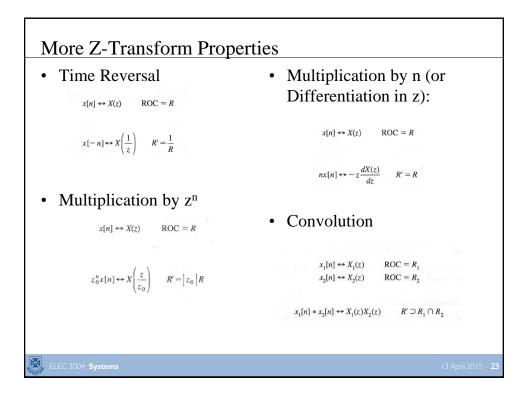
• Thus, the ROC is the range of values of z for which $|az^{-1}| < 1$ or, equivalently, |z| > |a|. Then

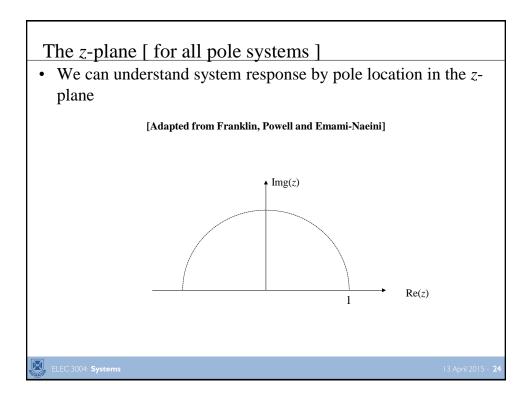


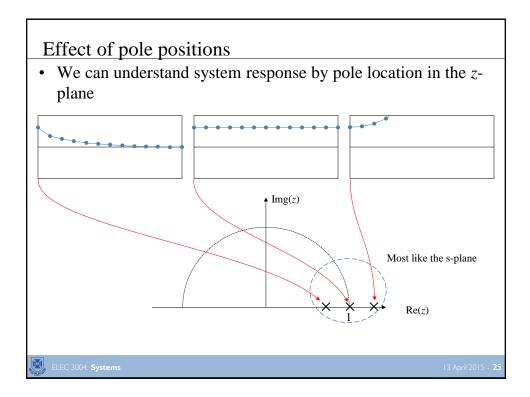
An example! • Back to our difference equation: y(k) = x(k) + Ax(k-1) - By(k-1)becomes $Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z)$ (z+B)Y(z) = (z+A)X(z)which yields the transfer function: $\frac{Y(z)}{X(z)} = \frac{z+A}{z+B}$ Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}

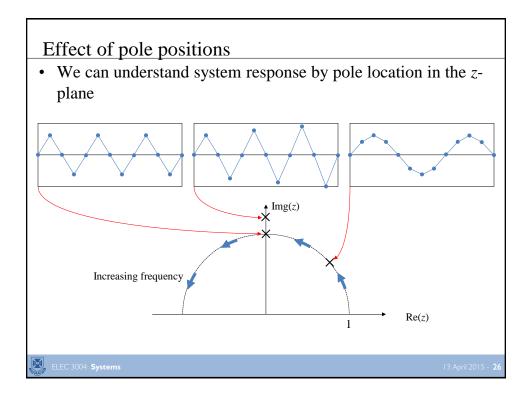


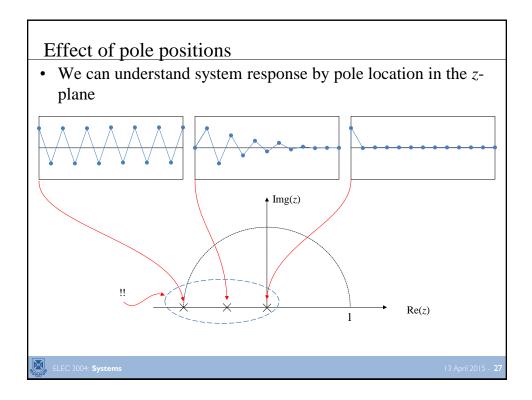


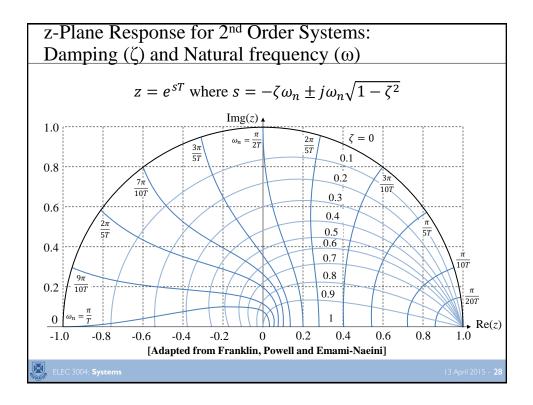


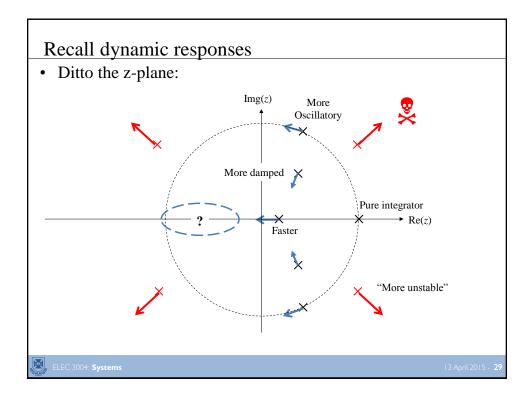


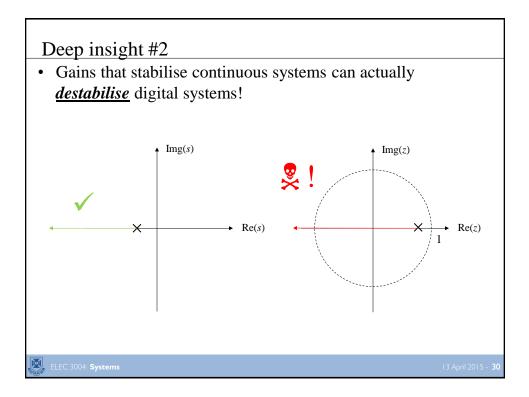








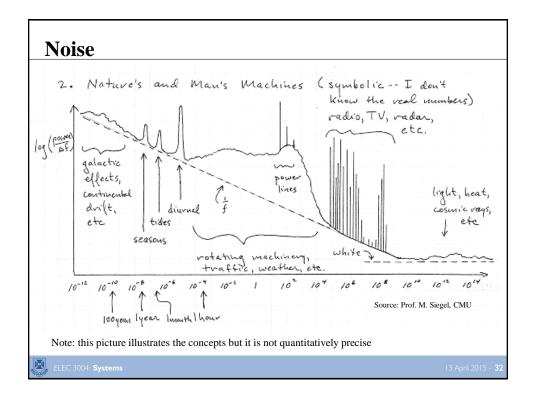




First Some Noise!

ELEC 3004: Systems

13 April 2015 - **31**



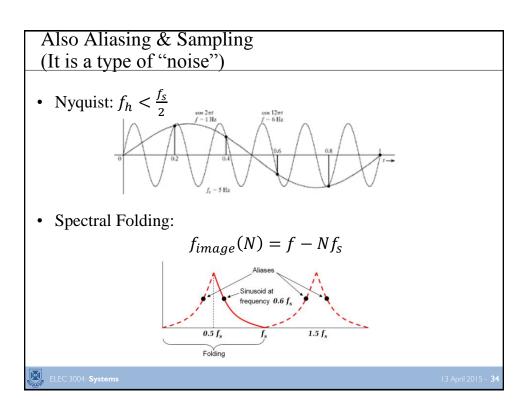
Noise [2] Various Types:

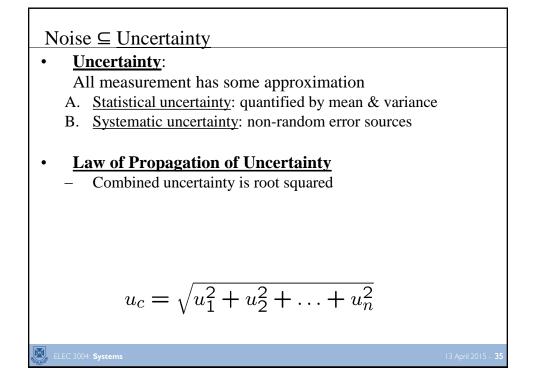
- Thermal (white): ٠
 - Johnson noise, from thermal energy inherent in mass.
- Flicker or 1/f noise: ٠

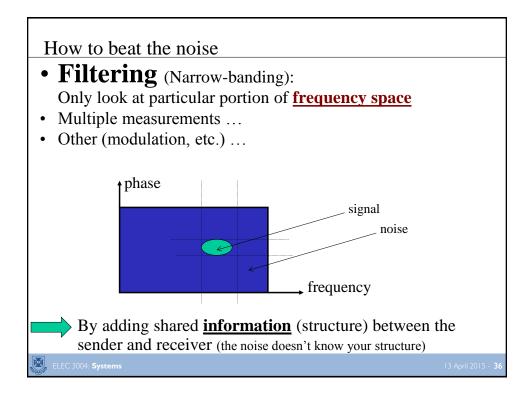
 - Pink noiseMore noise at lower frequency
- Shot noise: ٠

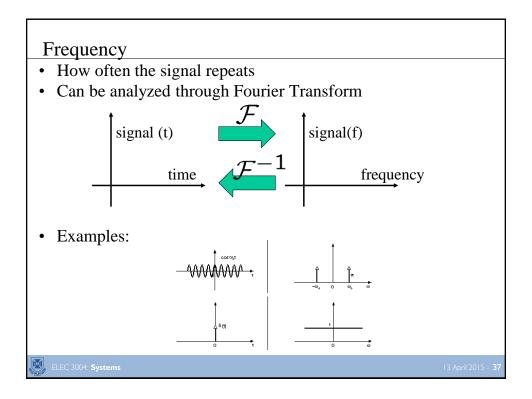
ELEC 3004: Systems

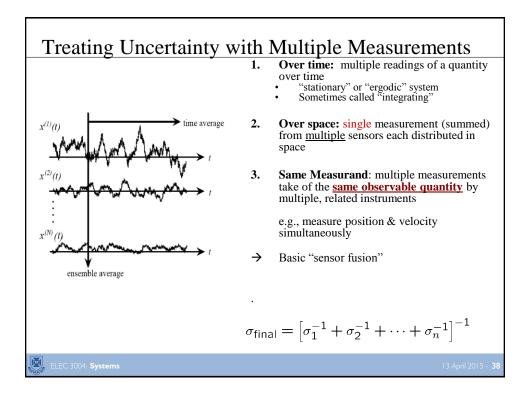
- Noise from quantum effects as current flows across a semiconductor barrier
- Avalanche noise: ٠
 - Noise from junction at breakdown (circuit at discharge)

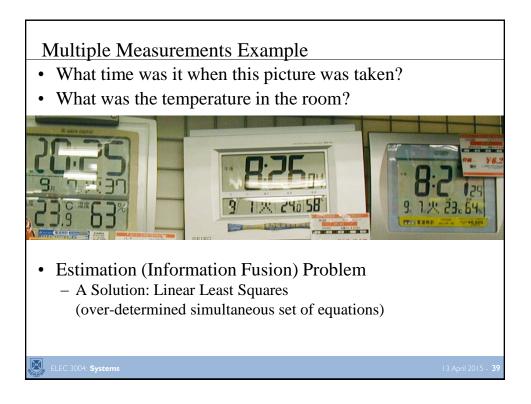


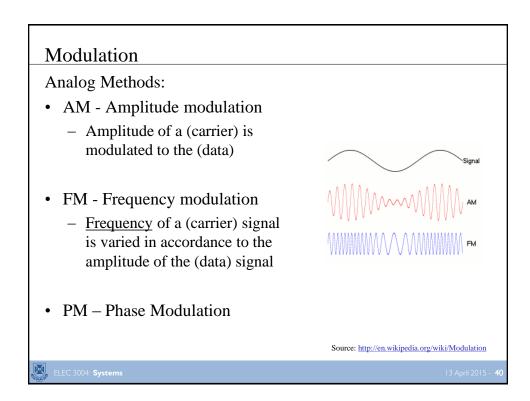


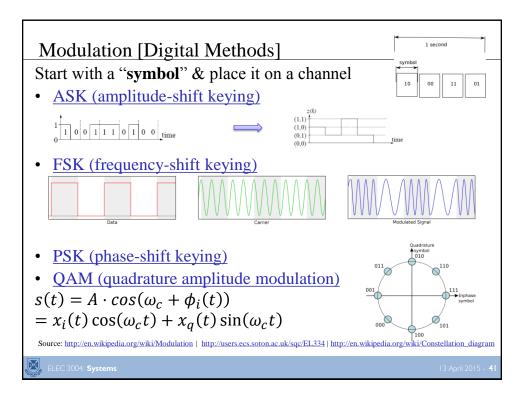


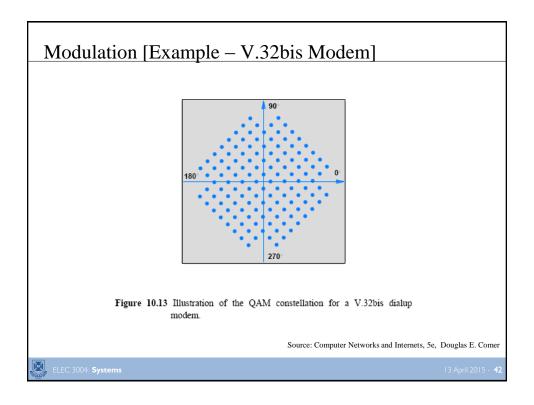


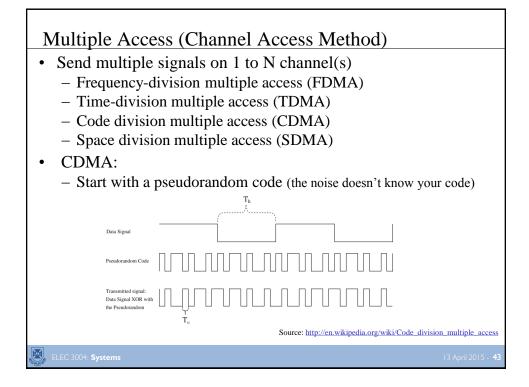


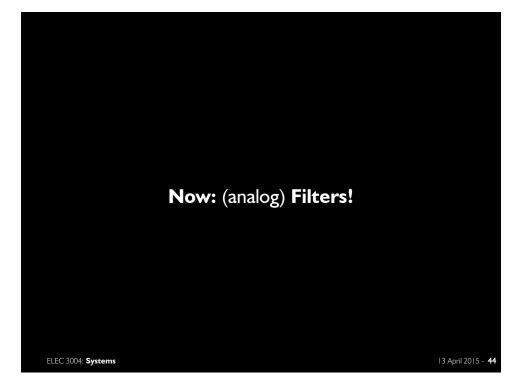


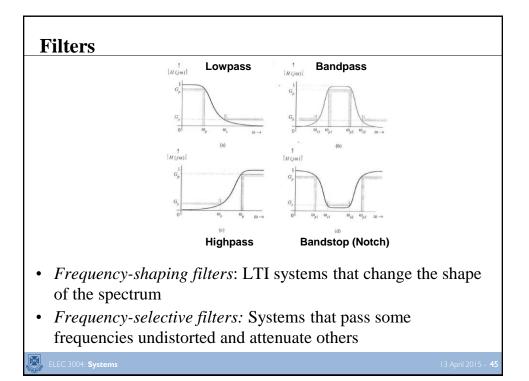


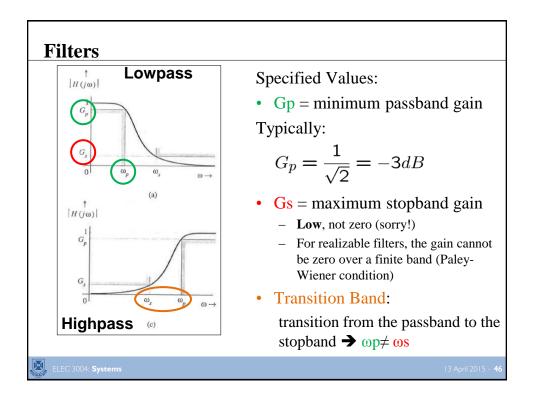


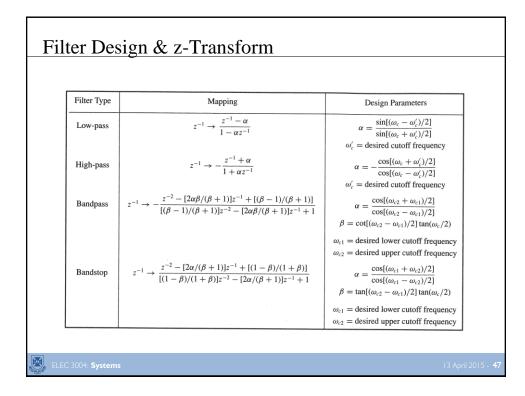




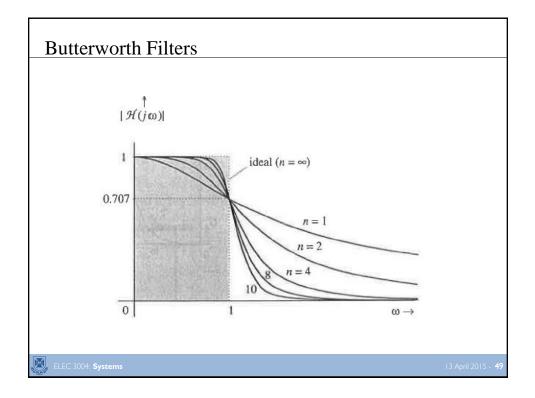


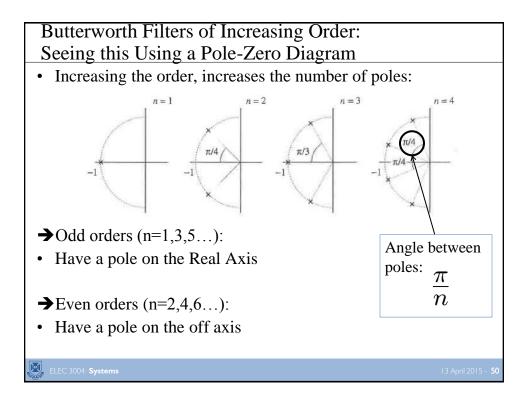


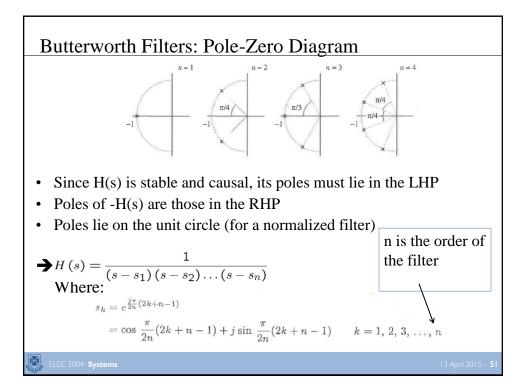


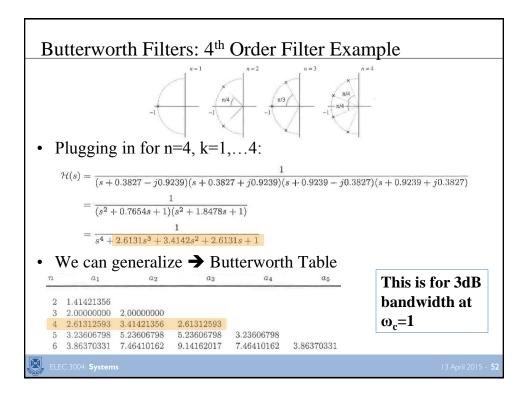


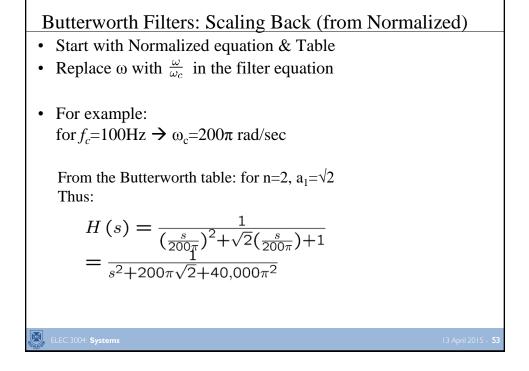
<section-header><section-header><text><text><equation-block><text><equation-block><equation-block><equation-block><equation-block>

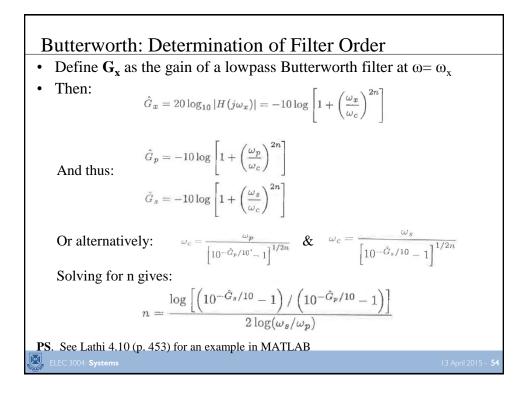


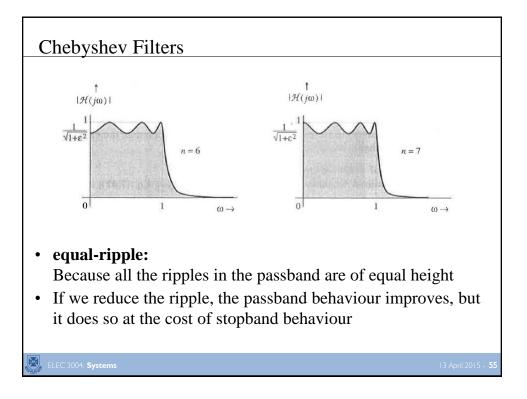












Chebyshev Filters Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the sameorder Butterworth filter, but this is achieved at the expense of inferior passband behavior (rippling) \rightarrow For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dBThe amplitude response of a normalized Chebyshev lowpass filter is: • $|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 C_n^2(\omega)}}$ Where $Cn(\omega)$, the nth-order Chebyshev polynomial, is given by: $C_n(\omega)$ n $C_n(\omega) = \cos\left(n\cos^{-1}\omega\right)$ $C_n(\omega) = \cosh\left(n\cosh^{-1}\omega\right)$ 0 1 1 1.1 and where C_n is given by: 2 20 3 400 4 $8\omega^4 - 8\omega$ $16\omega^{5} - 20\omega^{3} + 5\omega$ 5 $32\omega^6 - 48\omega^4 + 18\omega^2 - 1$ 6 💐 ELEC 3004: Systems

Normalized Chebyshev Properties

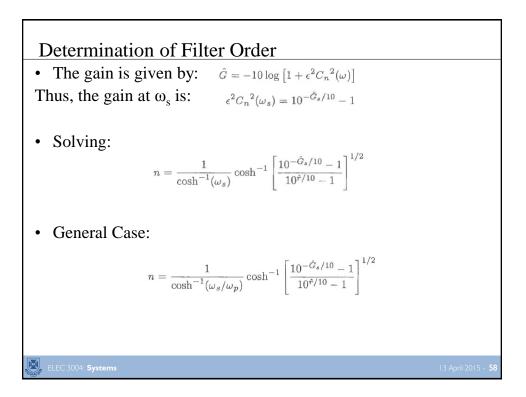
- It's normalized: The passband is $0 < \omega < 1$
- Amplitude response: has ripples in the passband and is smooth (monotonic) in the stopband
- Number of ripples: there is a total of *n* maxima and minima over the passband $0 < \omega < 1$

•
$$C_n^2(0) = \begin{cases} 0, n : odd \\ 1, n : even \end{cases}$$
 $|H(0)| = \begin{cases} 1, n : odd \\ \frac{1}{\sqrt{1+\epsilon^2}}, n : even \end{cases}$

•
$$\epsilon$$
: ripple height $\Rightarrow r = \sqrt{1 + \epsilon^2}$

• The Amplitude at $\omega = 1: \frac{1}{r} = \frac{1}{\sqrt{1+c^2}}$

For Chebyshev filters, the ripple *r* dB takes the place of G_p
 ELEC 3004: Systems
 13 April 2015



Chebyshev Pole Zero Diagram

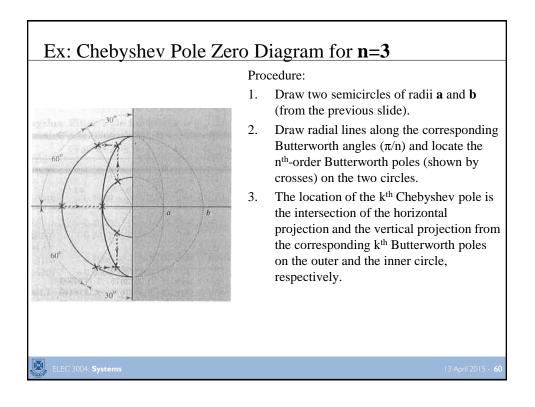
 Whereas <u>Butterworth</u> poles lie on a <u>semi-circle</u>, The poles of an nth-order normalized <u>Chebyshev</u> filter lie on a <u>semiellipse</u> of the major and minor semiaxes:

$$a = \sinh\left(\frac{1}{n} {\rm sinh}^{-1}\left(\frac{1}{\epsilon}\right)\right) \quad \& \quad b = \cosh\left(\frac{1}{n} {\rm sinh}^{-1}\left(\frac{1}{\epsilon}\right)\right)$$

And the poles are at the locations:

$$H(s) = \frac{1}{(s-s_1)(s-s_2)\dots(s-s_n)}$$
$$s_k = -\sin\left[\frac{(2k-1)\pi}{2n}\right]\sinh x + j\cos\left[\frac{(2k-1)\pi}{2n}\right]\cosh x, \ k = 1,\dots,n$$

ELEC 3004: Systems



C	Thebyshev $\mathcal{H}(s) =$			$\frac{K_n}{s^{n-1}+\cdots+}$	$-a_1s + a_0$					
$K_n = \begin{cases} a_0 & n \text{ odd} \\ \\ \frac{a_0}{\sqrt{1+\epsilon^2}} = \frac{a_0}{10^{\hat{r}/20}} & n \text{ even} \end{cases}$										
n	a_0	a_1	a_2	a_3						
1	1.9652267					1 db ripple				
2	1.1025103	1.0977343				$(\hat{r}=1)$				
3	0.4913067	1.2384092	0.9883412							
4	0.2756276	0.7426194	1.4539248	0.9528114						

Other Filter Types: **Chebyshev Type II** = Inverse Chebyshev Filters • Chebyshev filters passband has ripples and the stopband is smooth.

• **Instead:** this has **passband** have **smooth** response and **ripples** in the stopband.

→ Exhibits maximally flat passband response and equi-ripple stopband

→ Cheby2 in MATLAB

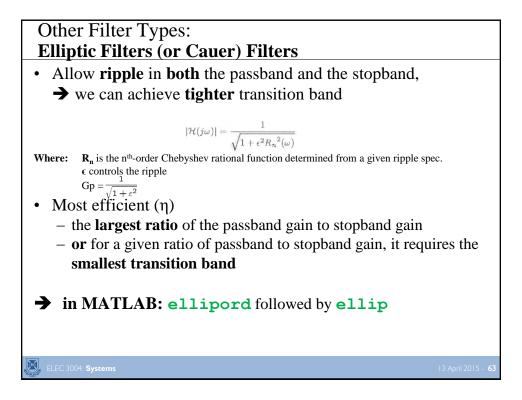
$$\mathcal{H}(\omega)|^{2} = 1 - |\mathcal{H}_{C}(1/\omega)|^{2} = \frac{\epsilon^{2}C_{n}^{2}(1/\omega)}{1 + \epsilon^{2}C_{n}^{2}(1/\omega)}$$

Where: \mathbf{H}_{c} is the Chebyshev filter system from before

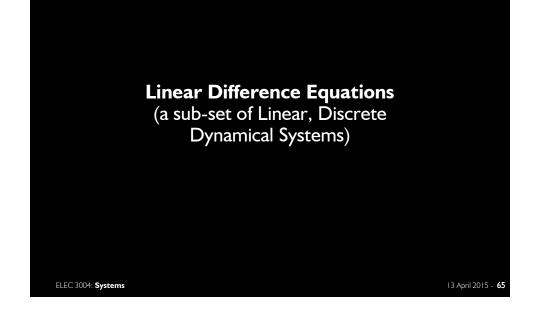
- Passband behavior, especially for small ω , is **better** than Chebyshev
- Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)
- Less time-delay (or phase loss) than that of the Chebyshev
- Both needs the **same order** *n* to meet a set of specifications.
- \$\$\$ (or number of elements): Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order])

ELEC 3004: Systems

3 April 2015 - **62**



In Summ	nary					
	Filter Type	Passband Ripple	Stopband Ripple	Transition Band	MATLAB Design Command	
	Butterworth	No	No	Loose	butter	
	Chebyshev	Yes	No	Tight	cheby	
	Chebyshev Type II (Inverse Chebyshev)	No	Yes	Tight	cheby2	
	Eliptic	Yes	Yes	Tightest	ellip	
ELEC 3004: Syste	ems					13 April 2015 - 64



DT Causality & BIBO Stability [Review]
• Causality:

$$h[n] = 0, n < 0$$

$$\rightarrow y[n] = \sum_{k=0}^{\infty} h[k]x[n-k] \quad \text{or} \quad \Rightarrow y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$$
• Input is Causal if: $x[n] = 0, n < 0$
• Then output is Causal:

$$y[n] = \sum_{k=0}^{n} h[k]x[n-k] = \sum_{k=0}^{n} x[k]h[n-k]$$
• And, DT LTI is BIBO stable if:

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

Linear Difference Equations

