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Lecture Schedule: 
Week Date Lecture Title 

1 
2-Mar Introduction 

3-Mar Systems Overview 

2 
9-Mar Signals as Vectors & Systems as Maps 

10-Mar [Signals] 

3 
16-Mar Sampling & Data Acquisition & Antialiasing Filters 

17-Mar [Sampling] 

4 
23-Mar System Analysis & Convolution 

24-Mar [Convolution & FT]  

5 
30-Mar Discrete Systems & Z-Transforms 

31-Mar [Z-Transforms] 

6 13-Apr Frequency Response & Filter Analysis 
14-Apr [Filters] 

7 
20-Apr Digital Filters 

21-Apr [Digital Filters] 

8 
27-Apr Introduction to Digital Control 

28-Apr [Feedback] 

9 
4-May Digital Control Design 

5-May [Digitial Control] 

10 
11-May Stability of Digital Systems 

12-May [Stability] 

11 
18-May State-Space 

19-May Controllability & Observability 

12 
25-May PID Control & System Identification 

26-May Digitial Control System Hardware 

13 
31-May Applications in Industry & Information Theory & Communications 

2-Jun Summary and Course Review 
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Dynamic Systems Review 
 
 

13 April 2015 - ELEC 3004: Systems 4 



3 

Dynamic Responses (Poles & Zeros) 
• Moving pole positions change system response characteristics 

Img(s) 

Re(s) 

   

“More unstable” 

Faster 

More 

Oscillatory 

More damped 

Pure integrator 

𝜃 
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Mathematical 
Models 

Continuous 
time 

Linear 

Time varying 
Time-

invariant  

Nonlinear 

TV TI 

Discrete time 

Linear 

TV TI 

Nonlinear 

TV TI 

Discrete state 

Linear 

TV TI 

Nonlinear 

TV TI 

What about the Discrete Domain? 

LTID 

13 April 2015 - ELEC 3004: Systems 6 



4 

 

z Transforms 
(Digital Systems Made eZ) 

 
Review and Extended Explanation 
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Transfer functions help control complexity 
– Recall the Laplace transform: 

ℒ 𝑓 𝑡 =  𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0

= 𝐹 𝑠  

where 

ℒ 𝑓 𝑡 = 𝑠𝐹(𝑠) 

 

 

 

 

• Is there a something similar for sampled systems? 

Coping with Complexity 

H(s) y(t) x(t) 
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• It is defined by: 

 

 

• Or in the Laplace domain: 

𝑧 = 𝑒𝑠𝑇 

 

• That is  it is a discrete version of the Laplace: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
 

 

The z-Transform 
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• Thus: 

 

 

• z-Transform is analogous to other transforms: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 ∴  Giving: 

 

 

The z-Transform [2] 

F(z) y(k) x(k) 
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• The z-Transform may also be considered from the  

Laplace transform of the impulse train representation of 

sampled signal 

 

𝑢∗ 𝑡 = 𝑢0𝛿 𝑡 + 𝑢1𝛿 𝑡 − 𝑇 + …+ 𝑢𝑘 𝑡−𝑘𝑇 + …  

=  𝑢𝑘𝛿(𝑡 − 𝑘𝑇)

∞

𝑘=0
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The z-Transform [3] 

The z-transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 

 
𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2 + 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin𝑎𝑇

𝑧2− 2cos𝑎𝑇 𝑧 + 1 
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• Obtain the z-Transform of the sequence: 

𝑥 𝑘 = {3, 0, 1, 4,1,5, … } 

 

 

• Solution: 

𝑋 𝑧 = 3 + 𝑧−2 + 4𝑧−3 + 𝑧−4 + 5𝑧−5 
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z-Transform Example 

The z-Plane 
z-domain poles and zeros can be plotted just  

like s-domain poles and zeros (of the ℒ): 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

• S-plane:  

 

 

 

 

 

 

 

 
–  s – Plane  

• 𝒛 = 𝒆𝒔𝑻  Plane 

 

 

 

 

 

 

 

 
– γ – Plane  
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Deep insight #1 

The mapping between continuous and discrete poles and 

zeros acts like a distortion of the plane 

Img(z) 

Re(z) 

Img(s) 

Re(s) 

1 

max frequency 
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γ-plane Stability 
• For a γ-Plane (e.g. the one the z-domain is embedded in) 

the unit circle is the system stability bound 

 

 
Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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γ-plane Stability 
• That is, in the z-domain,  

the unit circle is the system stability bound 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

   
     

  
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z-plane stability 
• The z-plane root-locus in closed loop feedback behaves just 

like the s-plane: 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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• For the convergence of X(z) we require that 

 

 

• Thus, the ROC is the range of values of z for which |az-1|< l 

or, equivalently, |z| > |a|. Then  

Region of Convergence 
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An example! 
• Back to our difference equation: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

becomes 

𝑌 𝑧 = 𝑋 𝑧 + 𝐴𝑧−1𝑋 𝑧 − 𝐵𝑧−1𝑌(𝑧)  
(𝑧 + 𝐵)𝑌(𝑧)  = (𝑧 + 𝐴)𝑋 𝑧  

 

which yields the transfer function: 
 

𝑌(𝑧)

𝑋(𝑧)
=
𝑧 + 𝐴

𝑧 + 𝐵
 

 
Note: It is also not uncommon to see systems expressed as polynomials in 𝑧−𝑛 

13 April 2015 - ELEC 3004: Systems 20 
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This looks familiar… 
 

• Compare: 
Y s

𝑋 𝑠
=

𝑠+2

𝑠+1
  vs  

𝑌(𝑧)

𝑋(𝑧)
=

𝑧+𝐴

𝑧+𝐵
 

 

How are the Laplace and z domain representations related? 
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• Two Special Cases: 

• z-1: the unit-delay operator: 

 

 

• z: unit-advance operator:  

 

Z-Transform Properties: Time Shifting 
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More Z-Transform Properties 

• Time Reversal 

 

 

 

 

• Multiplication by zn 

• Multiplication by n (or 

Differentiation in z):  

 

 

 

 

• Convolution 

13 April 2015 - ELEC 3004: Systems 23 

The z-plane [ for all pole systems ] 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

!! 
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z-Plane Response for 2nd Order Systems: 
Damping (ζ) and Natural frequency (ω) 

[Adapted from Franklin, Powell and Emami-Naeini] 

-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

𝑧 = 𝑒𝑠𝑇  where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 

0.1 

0.2 

0.3 

0.4 

0.5 
0.6 

0.7 

0.8 

0.9 

𝜔𝑛 =
𝜋

2𝑇
 

3𝜋

5𝑇
 

7𝜋

10𝑇
 

9𝜋

10𝑇
 

2𝜋

5𝑇
 

1 

2𝜋

5𝑇
 

𝜔𝑛 =
𝜋

𝑇
 

𝜁 = 0 

3𝜋

10𝑇
 

𝜋

5𝑇
 

𝜋

10𝑇
 

𝜋

20𝑇
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Recall dynamic responses 
• Ditto the z-plane: 

Img(z) 

Re(z) 

   

“More unstable” 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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Deep insight #2 
• Gains that stabilise continuous systems can actually  

destabilise digital systems! 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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First Some Noise! 
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Noise 

Note: this picture illustrates the concepts but it is not quantitatively precise 

Source: Prof. M. Siegel, CMU 
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Various Types: 
• Thermal (white):  

– Johnson noise, from thermal energy inherent in mass. 

 
• Flicker or 1/f noise:  

– Pink noise  
– More noise at lower frequency  

 
• Shot noise: 

– Noise from quantum effects as current flows across a semiconductor barrier 

 
• Avalanche noise: 

– Noise from junction at breakdown (circuit at discharge) 

Noise [2] 

13 April 2015 - ELEC 3004: Systems 33 

• Nyquist: 𝑓ℎ <
𝑓𝑠

2
 

 

 

 

 

• Spectral Folding: 
𝑓𝑖𝑚𝑎𝑔𝑒 𝑁 = 𝑓 − 𝑁𝑓𝑠    

 

Also Aliasing & Sampling   
(It is a type of “noise”) 
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• Uncertainty:  

All measurement has some approximation  
A. Statistical uncertainty: quantified by mean & variance 

B. Systematic uncertainty: non-random error sources 

 

• Law of Propagation of Uncertainty 

– Combined uncertainty is root squared 

Noise ⊆ Uncertainty 

13 April 2015 - ELEC 3004: Systems 35 

• Filtering (Narrow-banding):  

Only look at particular portion of frequency space 

• Multiple measurements … 

• Other (modulation, etc.) … 

 

 

 

 

 

 

 

 

By adding shared information (structure) between the 
sender and receiver (the noise doesn’t know your structure) 

How to beat the noise 

phase 

frequency 

signal 

noise 
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• How often the signal repeats  

• Can be analyzed through Fourier Transform 

 

 

 

 

 

 

• Examples: 

Frequency 

signal(f) 

frequency 

signal (t) 

time 

13 April 2015 - ELEC 3004: Systems 37 

1. Over time:  multiple readings of a quantity 
over time 

• “stationary” or “ergodic” system 
• Sometimes called “integrating” 

 

2. Over space: single measurement (summed) 
from multiple sensors each distributed in 
space 

 
3. Same Measurand: multiple measurements 

take of the same observable quantity by 
multiple, related instruments  
 
e.g., measure position & velocity 
simultaneously 
 

 Basic “sensor fusion” 
 

 
. 

 

Treating Uncertainty with Multiple Measurements 
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• What time was it when this picture was taken? 

• What was the temperature in the room? 

 

 

 

 

 

 

• Estimation (Information Fusion) Problem 
– A Solution: Linear Least Squares  

(over-determined simultaneous set of equations) 

 

 

Multiple Measurements Example 
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Modulation 

Analog Methods: 

• AM - Amplitude modulation 

– Amplitude of a (carrier) is 

modulated to the (data) 

 

• FM - Frequency modulation 

– Frequency of a (carrier) signal 

is varied in accordance to the 

amplitude of the (data) signal 

 

• PM – Phase Modulation 

Source: http://en.wikipedia.org/wiki/Modulation 
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Start with a “symbol” & place it on a channel  

• ASK (amplitude-shift keying) 

 

 

• FSK (frequency-shift keying) 

 

 

 

• PSK (phase-shift keying) 

• QAM (quadrature amplitude modulation) 

𝑠 𝑡 = 𝐴 ⋅ 𝑐𝑜𝑠 𝜔𝑐 + 𝜙𝑖 𝑡  
= 𝑥𝑖 𝑡 cos 𝜔𝑐𝑡 + 𝑥𝑞 𝑡 sin 𝜔𝑐𝑡  

Modulation [Digital Methods] 

Source: http://en.wikipedia.org/wiki/Modulation |  http://users.ecs.soton.ac.uk/sqc/EL334 | http://en.wikipedia.org/wiki/Constellation_diagram 
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Modulation [Example – V.32bis Modem] 

Source: Computer Networks and Internets, 5e,  Douglas E. Comer 

https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Amplitude-shift_keying
https://en.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Frequency-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Phase-shift_keying
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
https://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
http://en.wikipedia.org/wiki/Modulation
http://users.ecs.soton.ac.uk/sqc/EL334
http://users.ecs.soton.ac.uk/sqc/EL334
http://en.wikipedia.org/wiki/Constellation_diagram
http://en.wikipedia.org/wiki/Constellation_diagram
http://en.wikipedia.org/wiki/Constellation_diagram
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• Send multiple signals on 1 to N channel(s) 
– Frequency-division multiple access (FDMA) 

– Time-division multiple access (TDMA) 

– Code division multiple access (CDMA) 

– Space division multiple access (SDMA) 

•  CDMA: 
– Start with a pseudorandom code (the noise doesn’t know your code)  

 

 

 

Multiple Access (Channel Access Method) 

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access 
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Now: (analog) Filters! 
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• Frequency-shaping filters: LTI systems that change the shape 

of the spectrum 

• Frequency-selective filters: Systems that pass some 

frequencies undistorted and attenuate others 

Filters 
Lowpass Bandpass 

Highpass Bandstop (Notch) 
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Filters 

Specified Values: 

• Gp = minimum passband gain 

Typically: 

 

 

• Gs = maximum stopband gain 

– Low, not zero (sorry!) 

– For realizable filters, the gain cannot 

be zero over a finite band (Paley-

Wiener condition) 

• Transition Band: 

transition from the passband to the 

stopband  ωp≠ ωs 

 

 

Lowpass 

Highpass 
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Filter Design & z-Transform 

13 April 2015 - ELEC 3004: Systems 47 

• Butterworth: Smooth in the pass-band 

• The amplitude response |H(jω)| of an nth order Butterworth 

low pass filter is given by: 

 

 

 

• The normalized case (ωc=1) 

 

 

 

 

Recall that:   

 

Butterworth Filters 
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Butterworth Filters 
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• Increasing the order, increases the number of poles: 

 

 

 

 

 

 

Odd orders (n=1,3,5…): 

• Have a pole on the Real Axis 

 

Even orders (n=2,4,6…): 

• Have a pole on the off axis 

 

 

Butterworth Filters of Increasing Order: 
Seeing this Using a Pole-Zero Diagram 

Angle between 

poles: 
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• Since H(s) is stable and causal, its poles must lie in the LHP 

• Poles of -H(s) are those in the RHP 

• Poles lie on the unit circle (for a normalized filter) 

 

       

Where: 

 

 

 

Butterworth Filters: Pole-Zero Diagram 

n is the order of 

the filter 
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Butterworth Filters: 4th Order Filter Example 

• Plugging in for n=4, k=1,…4: 

 

 

 

 

• We can generalize  Butterworth Table 

 

 

 

This is for 3dB 

bandwidth at 

ωc=1 
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• Start with Normalized equation & Table 

• Replace ω with       in the filter equation 

 

• For example:   

for fc=100Hz  ωc=200π rad/sec 

 
From the Butterworth table: for n=2, a1=√2 

Thus: 

 

 

 

Butterworth Filters: Scaling Back (from Normalized) 
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• Define Gx as the gain of a lowpass Butterworth filter at ω= ωx 

• Then: 

 

 

 
And thus: 

 

 

 

Or alternatively:           &   

 

Solving for n gives: 

 

 

 

PS.  See Lathi 4.10 (p. 453) for an example in MATLAB 

 

 

 

 

Butterworth: Determination of Filter Order 
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• equal-ripple:  

Because all the ripples in the passband are of equal height 

• If we reduce the ripple, the passband behaviour improves, but 

it does so at the cost of stopband behaviour 

Chebyshev Filters 
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• Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-

order Butterworth filter, but this is achieved at the expense of inferior passband 

behavior (rippling)  

 For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev 

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB 

 

• The amplitude response of a normalized Chebyshev lowpass filter is: 

 

 
Where Cn(ω), the nth-order Chebyshev polynomial, is given by: 

 

 

 

      and where Cn is given by: 

Chebyshev Filters 
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• It’s normalized: The passband is 0<ω<1 

• Amplitude response: has ripples in the passband and is 

smooth (monotonic) in the stopband 

• Number of ripples: there is a total of n maxima and minima 

over the passband  0<ω<1 

 

•   

 

• ϵ: ripple height   

 

• The Amplitude at ω=1:  

 

• For Chebyshev filters, the ripple r dB takes the place of Gp 

 

 

 

Normalized Chebyshev Properties 
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• The gain is given by: 

Thus, the gain at ωs is: 

 

• Solving:   

 

 

 

• General Case: 

  

 

Determination of Filter Order 

13 April 2015 - ELEC 3004: Systems 58 



30 

• Whereas Butterworth poles lie on a semi-circle, 

The poles of an nth-order normalized Chebyshev filter lie on a 

semiellipse of the major and minor semiaxes: 

 

 

 

  And the poles are at the locations: 

  

Chebyshev Pole Zero Diagram 
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Ex: Chebyshev Pole Zero Diagram for n=3 

 Procedure: 

1. Draw two semicircles of radii a and b 

(from the previous slide). 

2. Draw radial lines along the corresponding 

Butterworth angles (π/n) and locate the 

nth-order Butterworth poles (shown by 

crosses) on the two circles.  

3. The location of the kth Chebyshev pole is 

the intersection of the horizontal 

projection and the vertical projection from 

the corresponding kth Butterworth poles 

on the outer and the inner circle, 

respectively.  
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Chebyshev Values / Table 
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• Chebyshev filters passband has ripples and the stopband is smooth. 

• Instead: this has passband have smooth response and ripples in 

the stopband.  

Exhibits maximally flat passband response and equi-ripple stopband 

 Cheby2 in MATLAB 

 

 
Where: Hc is the Chebyshev filter system from before 

• Passband behavior, especially for small ω, is better than Chebyshev  

• Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)  

• Less time-delay (or phase loss) than that of the Chebyshev 

• Both needs the same order n to meet a set of specifications.  

• $$$ (or number of elements):  

Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order]) 

Other Filter Types:  
Chebyshev Type II = Inverse Chebyshev Filters 
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• Allow ripple in both the passband and the stopband,  

 we can achieve tighter transition band 

 

 
Where:  Rn is the nth-order Chebyshev rational function determined from a given ripple spec. 

  ϵ controls the ripple 

 Gp =  

• Most efficient (η)  
– the largest ratio of the passband gain to stopband gain 

– or for a given ratio of passband to stopband gain, it requires the 

smallest transition band  

 

 in MATLAB: ellipord followed by ellip  

 

 

Other Filter Types:  
Elliptic Filters (or Cauer) Filters 
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Filter Type 
Passband 

Ripple 

Stopband 

Ripple 

Transition 

Band 

MATLAB Design 

Command 

Butterworth No No Loose butter 

Chebyshev Yes No Tight cheby 

Chebyshev Type II 

(Inverse Chebyshev) 
No Yes Tight cheby2 

Eliptic Yes Yes Tightest ellip 

In Summary 

13 April 2015 - ELEC 3004: Systems 64 



33 

 

Linear Difference Equations 
(a sub-set of Linear, Discrete 

Dynamical Systems) 
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• Causality: 

 
 

»    or    

 

•  Input is Causal if: 

 

• Then output is Causal: 

 

 

• And, DT LTI is BIBO stable if: 

 

 

 

DT Causality  & BIBO Stability [Review] 
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Linear Difference Equations 
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zk :  

• k: “order of difference”  

• k: delay 

Assume a form of the solution  
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Impulse Response (Graphically) 

∞ matrix ×  ∞ vector? 
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• First let’s multiply circulant matrices… 
– A circulant matrix can be descibed completely by its first row or column 

 

 

 

 

 

 

 

 

• Multiply by u[k]   

 

 

 

∴   For circulant matrices, matrix multiplication reduces to a weighted 

combination of shifted impulse responses 
 

How do you multiply an infinite matrix? 

Z: Shift operator 
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Two Types of Systems 

• Linear shift-invariant: 

 

 

 

 

 

Z: Shift operator 

 

• Linear time-invariant system 

 

 

 

 

 

 

 

R: Unit delay operator 

 

 

 
13 April 2015 - ELEC 3004: Systems 71 

Impulse Response of Both Types 
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Impulse Response of Both Types 
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