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Lecture Overview

e Course So Far:
Transfer

ODE functions Convolution

@) @) @)

L: Laplace (s)

Z-Transfo

 Lecture(s):

F: Fourier Series L>F:
Convolution (Periodic (E=0+ir) C: Poles & Zeros DFFT Z-Transform
functions) (R>C)

Graphical Understanding of Convolution

= For c(z)=U+am— [ fgt-ryar :

1. Keep the function f (z) fixed

2. Flip (invert) the function g(r) about the vertical axis (t=0)
= thisis g(-7)

3. Shift this frame (g(-7)) along t (horizontal axis) by t,.
= this is g(t,-7)

=>» For c(ty):
4. c(ty) = the area under the product of f (z) and g(t, -7)

5. Repeat this procedure, shifting the frame by different values
(positive and negative) to obtain c(t) for all values of t.




Graphical Understanding of Convolution (Ex)

Complex Numbers and Phasors
Positive Frequency Y
Component Re jo
Rsin(O) R '
0 H
Rcos(0)

Re!? = (Rcos @, Rsin )
= Rcos@+ JRsing
= R(cosé+ jsinb)




Complex Numbers and Phasors

Negative frequency Y
component
Rcos(—6)
i 0
Rsin(-6) R X
, Re 1’

Re !’ = (Rcos(-6), Rsin(-0))
= Rcos(-6) + JRsIin(-6)
= R(cos & — jsin )

Positive and Negative Frequencies

» Frequency is the derivative of phase
more nuanced than :

1
— = repetition rate
T

» Hence both positive and negative frequencies are possible.

» Compare
— velocity vs speed
— frequency vs repetition rate




Negative Frequency

* Q: What is negative frequency?
A: A mathematical convenience

Trigonometrical FS
— periodic signal is made up from
— sum 0 to o of sine and cosines ‘harmonics’

Complex Fourier Series & the Fourier Transform
— use exp(jwt) instead of cos(wt) and sin(wt)

— signal is sum from 0 to oo of exp(+jwt)

— same as sum -oo to oo of exp(-jot)

— which is more compact (i.e., less chalk?)

LGl

Another way to see Aliasing Too!

Rotating wheel and peg

-

Need both top and front
view to determine rotation

= TTFHLLEEET
= FHEEEEETTE

L




Frequency Response

Fourier Series = Fourier Transforms
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Typical Linear Processors

« Convolution
Cross Correlation
Auto Correlation

Cosine Transform

Sine Transform

Fourier Transform

h(n,k)=h(n-k)
h(n,k)=h(n+K)
h(n,k)=x(k-n)

h(n,k)= cos(% nk)
h(n,k)= sin(% nkj
h(n,k)= exp(j ZW” nk)




Transform Analysis

+ Signal measured (or known) as a function of an independent
variable
— e.g., time:y = f(t)

» However, this independent variable may not be the most
appropriate/informative
— e.g., frequency: Y = f(w)

 Therefore, need to transform from one domain to the other

- e.g., time < frequency
— As used by the human ear (and eye)

Signal processing uses Fourier, Laplace, & z transforms etc

Sinusoids and Linear Systems

x(t) or x(n) y(t) or y(n)
h(t) or h(n)

it X(t) = Acos(w,t+6,)
o X(n) = Acos(w,nt+6,)

then in steady state
y(t) = AC(w,) cos(w,t + 6, + A w,))
y(n) = AC(w,T)cos(w,nt+ 6, +O(w,T))




Sinusoids and Linear Systems

 The pair of numbers C(w,) and q(w,) are the complex gain of
the system at the frequency o .

» They are respectively, the magnitude response and the phase
response at the frequency o, .

y(t) = AC(w,) cos(w,t + 6, + 8(w,))
y(n) = AC(w,T)cos(w,nt + 6, + N, T))

Why Use Sinusoids?

* Why probe system with sinusoids?

+ Sinusoids are eigenfunctions of linear systems???

» What the hell does that mean?

» Sinusoid in implies sinusoid out

* Only need to know phase and magnitude (two parameters) to
fully describe output rather than whole waveform
— sine + sine = sine
— derivative of sine = sine (phase shifted - cos)
— integral of sine = sine (-cos)

« Sinusoids maintain orthogonality after sampling (not true of
most orthogonal sets)




Frequency Response

Fourier Series = Fourier Transforms
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Fourier Series

+ Deal with continuous-time periodic signals.
« Discrete frequency spectra.

A Periodic Signal
f(t)

AVAVAN ANVANFANN

VooV U ur

Source: URI ELE436




Two Forms for Fourier Series

Sinusoidal a, < 2nnt & . 27nnt
f)=—+) a cos——+ > b sin—
Form ®) 2 nzzll " T ; " T

2 (T2
a, =— .[ f (t) cos now,tdt
2 T2 T J-112
a, == f(tyt
T b, =2  )sin neogtdt
) TJ:W (t)sin ne,

Complex
Form:

= ] 1 ¢Ti2 .
_ Jnwgt _ — Jnwyt
f(t)= n}@j ce C =1 j_m f (t)e " dt

Source: URI ELE436

Fourier Series

 Any finite power, periodic, signal x(t)
— period T

* can be represented as (e0) summation of
— sine and cosine waves

« Called: Trigonometrical Fourier Series

X(t) = % + i A, cos(na,t) + B, sin(naw,t)

n=1

* Fundamental frequency w,=24T rad/s or 1/T Hz

* DC (average) value A, /2

10



time (t)

Amplitude

0 1 2 3 4 5 6 7 8
frequency (f)

Frequency representation (spectrum) shows signal contains:
» 2Hz and 5Hz components (sinewaves) of equal amplitude

Fourier Series Coefficients

» An & Bn calculated from the signal, x(t)
— called: Fourier coefficients

T/2

x(t) cos(nwyt)dt n=012,---
T2
T/.2
x(t)sin(nw,t)dt n=123,---

_T/2

A =

N S B N

Note: Limits of integration can vary,
provided they cover one period

11



harmonic

signal (black), approximation (red) and harmonic (green)
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Example: Square wave

1, O<t<l;
x(t)=4 -1, 1<t<2;
X(t+2). « periodic! i.e., x(t + 2) = x(t)

A = Ix(t)cos(n;zt)dt Icos(n;zt)dt jcos(n;zt)dt
_ No cos terms as sin(nt) =0V n
An:{ sm } [ SI:SM)} =0 x(t) has odd symmetry
B, _([x(t)sm(n;zt)dt J.sm(nzzt)dt J'sm(nﬂt)dt cos(2nm) =1V n
B { cos nﬂt} [—COS(”M)} :_cos(nzz)+i+i_cos(n7z)
nz | nz nz nz nz
B, =E(1—005(n7r)) Sin terms only

Example: Square wave

Therefore, Trigonometric Fourier series is,

X(t) = i%a— cos(nzz))sin(n )

n=1

Expanding the terms gives,

X(t) = %sin(ﬂt) (fundamental)

+0 (second harmonic) + Only odd harmonics:

+3isin(37zt) (third harmonic) |« |n proportion
T
+0 (fourth harmonic) 1,1/3,1/5,1/7,...
* Higher harmonics
contribute less;
+etc * Therefore, converges

+ 5isin(57zt) (fifth harmonic)
T

14



How to Deal with Aperiodic Signal?

A Periodic Signal
f(t)

Vool vV

If T—>o0, what happens?

Source: URI ELE436

Fourier Integral

S jne 1 T/2 = inegt
fr ()= cem C = L/z f(t)e "'dt

© [1 (12 e - 2 1 o,
- z [?jm fr (r)e™ " dT}eJ " 0, =— W)

T T 2n

T2 — jnegt jnogt
[ [t (0e "dr}o)oe :
-T/2 27'[
Let A=, =—
[ £ (e ™odr e Aw !
12 T

T o>o=do=An~0

Source: URI ELE436
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Fourier Integral

f(t) = 2—1n j“;[ [ (r)e-iwfereJ@td@

F(jo)

f©) = [ Fioe**do  Synthesis

F(jo)= j"; f (t)e dt Analysis

Source: URI ELE436

Fourier Series vs. Fourier Integral

Fourier s _ _
Series: |T(®=2.c.e™ Period Function

B 1 ¢ti2 R .
C, =+ [ fr (e dtI Discrete Spectra

Fourier 1 oo . Non-Period
_ = H Joot
Integral: f(t)_zfcj_w':(]“))e dwl Function

F(jo)=| f(t)e"‘”tdtl Continuous Spectra

Source: URI ELE436

16



Complex Fourier Series (CFS)

« Also called Exponential » FS as a Complex phasor
Fourier series summation

— As it uses Euler’s relation

Aexp(jw,t) = Acos(w,t) + JAsin(w,t)
which implies,
exp (jnw,t) +exp (— jnwt)
2
exp (Jnw,t) —exp (— jnw,t)
2j

cos(nw,t) =

sin(nw,t) =

+00
X(t)= > X, exp(jnw,t) Pty

N=—o0

Complex Fourier Coefficients

« Again, Xn calculated from « Only one set of coefficients,

X(t) Xn
— but, generally they are
complex
+T/2
1 :
X, == j X(t) exp (- jnw,t)dt
T -T/2

Remember: fundamental w, = 27/T !

17



Relationships

« There is a simple
relationship between

— trigonometrical and

— complex Fourier
coefficients,

A
X =19
° 2
—A”_ZJB“, n>0;
X, = .
M’ n<0.

2

Constrained to be
symmetrical, i.e.,
complex conjugate

X =X

Therefore, can calculate simplest form and convert

Example: Complex FS

« Consider the pulse train

signal
A o<lt|<Z;
2
xt)=4 0, %<\t\§T;
X(t+T).

/2

1 .
X, = 7 Ix(t)exp(— jnogt)dt =

-T/2

Note: x

by v/t ... _ -Ar exp(—jna)orj_exp(
ino,Tt 2

» Has complex Fourier series:

>
N 2

]

T

1 7/2

— _[Aexp(— jnat)dt

T -7/2

jnwy,z Note: n is the
2 ind. variable

18



Example: Complex FS

* Which using Euler’s identity
reduces to:

X, = Ar sin(nw, 7/2) = ﬂsa(nw0 7/2)
T w2 T

L2
T
Nw,t
Note: letting ==
exp (_ j@)— eXp(j 9) '(;lgtse(:—e) = cos(0): even
= cos(— )+ jsin(—@)—(cos(@)+ jsin(@)) sinCo)=-sin(o): odd
=cos(@)- jsin(@)—cos(8)- jsin(@) = -2jsin(9)

Frequency Response

Fourier Series = Fourier Transforms

ELEC 3004: Systems 30 March 2015 - 54
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Fourier Transform

» A Fourier Transform is an integral transform that re-expresses
a function in terms of different sine waves of varying
amplitudes, wavelengths, and phases.

1-D Example:

« When you let these three waves interfere with each other you
get your original wave function!

Source: Tufts Uni Sykes Group

ELEC 3004: Systems 30 March 2015 - 55

Fourier Series

« What we have produced is a processor to calculate one
coefficient of the complex Fourier Series

 Fourier Series Coefficients = Heterodyne and average over
observation interval T

——jh(t)

ELEC 3004: Systems 30 March 2015 - 56
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Fourier Transform

« If we change the limits of integration to the entire real line,
remove the division by T, and make the frequency variable
continuous, we get the Fourier Transform

C(w) = Th(t)e‘j“’tdt

ELEC 3004: Systems 30 March 2015 - 57

Fourier Transform (is not the Fourier Series per se)
Continuous Discrete
Time Time
Q B
3 Fourier ISCrete
= Series Fourier
o Transform
Q Continuous .
S . Fourier
2 SOUEG Transform
L Transform
< e ——
Source: URI ELE436

ELEC 3004: Systems 30 March 2015 - 58
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Fourier Transform

« Fourier series
— Only applicable to periodic signals

 Real world signals are rarely periodic

» Develop Fourier transform by
— Examining a periodic signal
— Extending the period to infinity

Fourier Transform

« Problem:asT —» o, X, >0
— i.e., Fourier coefficients vanish!

« Solution: re-define coefficients
~ X, =T x X,

e AST >

— (harmonic frequency) no, — o (continuous freq.)
— (discrete spectrum) X,” — X(w) (continuous spect.)
— o0 (fundamental freq.) reduces — dw (differential)

+ Summation becomes integration

22



Fourier Transform Pair

Inverse Fourier Transform:

f(©) = | F(i)e™do| Synthesis

Fourier Transform:

F(jo)=[" f@e™dt|  Analysis

Source! - URI ELE436

Continuous Spectra

F(jo) =] f(t)e ™ dt

Fi(o)
F(jo) = Fe(jo) + jF (j) g
_ o)
= F(jo)|e®? |
- ~ - Phase
Magnitude

Source: URI ELE436




Pulse widtht =1

Time limited

T

T

!

T

rect(t)

! I I I

-2

0
time (t)

2 4 6 8 10
Infinite bandwidth

X(w)

sinc(w/2m)

-0.5
-20

Angular frequency (w)

Pulse width t = 2

X(t

0.2r

T

T

!

T

rect(t/2)

! I I I

-10 -8

0
time (t)

2 4 6 8 10
Parseval’s Theorem

X(w)

051

-/

2 sinc(w/rt)

-0.5
-10

5 10

Angular frequency (w)
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Pulse width t =4

X(t

0.4r
0.2r

T T T

rect(t/4)

0
-10

10

X(w)

-1
-10

Angular frequency (w)

10

Pulse width t =8

0.81

x(t

0.21

T T T

rect(t/8)

-10

-2 0 2
time (t)

10

X(w)

Angular frequency (w)

10
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Symmetry: F{sinc(t/2x)} = 2= rect(-w) Infinite time

l T T T
L sinc(t/2n)
0.5} R
0 [ -
_0.25 L 1 L 1 L L Il
-40 -30 -20 -10 0 10 20 30 40
time (t) Finite bandwidth
21| )
| 2w rect(-w) |
g L 4
X T
O L L L 1 1 1 Il Il Il
-5 -4 -3 -2 -1 0 1 2 3 4 5

Angular frequency (w) ‘Ideal’ Lowpass filter

Properties of Fourier Transform

 Linearity
- F{ax()+byt)} =aX(®)+b Y(w)
« Time and frequency scaling
— F {x(at)} = 1/a X(w/a)
— broader in time = narrower in frequency
+ and vice versa
« Symmetry (duality)
— 2nx(-w) = [X(t) exp(-jot)dt

* i.e., Fourier transform ‘pairs’
] p

Time limited signal limited has infinite bandwidth;
Signal of finite bandwidth has infinite time support

26



Properties of Fourier Transform

o if... * Then...

o X(t) is real ¢ X(-m) = X(w)*
— R{X(w)} is even
— 3 {X(w)}is odd

|:> — | X(w)| is even
— ZX(w) is odd

« X(t) is real and even » X(w) is real and even
* X(t) is real and odd * X(m) is imaginary and odd

Fourier Transforms

X (@) = 3(0-ag) | X(t) = F{X (@)} (1) = exp( )

| x(t) = cos(wgt)
(real & even)

x(t)

- | X(w) = n[(w-wy)
< + S(w+wp)]
gl | (real and even)

-0 S w0
Note: cos(w0t) has « energy! But is dual of 8(w — w0)

27



Fourier Transforms

1

X(t) = sin(wyt)
(real and odd)

<, X(w) = jr[(w+wy)
> - 8(w-wp)]

(imaginary & odd)

Note: sin & cos have same Mag spectrum, Phase is only difference

Properties of Fourier Transform

« Time Shift
— F{x(t- o)} = exp(-j aw)X(w)

« time shift = phase shift

« Convolution and multiplication
= F{X(®) * y()} = X(w) - Y(o)

* i.e., implement convolution in Fourier domain

— F{X(®) - y(©} = 127 (X(w) * Y (0))

* i.e., Fourier interpretation of multiplication (e.g., frequency modulation)

28



Magnitude and Phase of exp(-j aw)

T T T

1.2 -
as
1 2
= cos? +
5 %8 7 sin2=1
T o6 i
<o
0.4 |
0.2 -
0 1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
Frequency (rad/s)
200 \
__ 100 B
g o
3
pe
=100 E
-200 1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
Frequency (rad/s)
modifies phase conly
X(t) = rect(t) X(w) = sinc(w/2r)
. 1 .
1
0.5 1
ZOH
OH . F
< 0
0 -0.5
h(t) = rect(t) H(w) = sinc(w/2x)
1
1
0.5
< 0
0 -0.5
x(t)*h(t) = tri(t) X(W)H(W) = siné(w/2n)
1
F 0.5
FOH o
0 0
-1 0 1 2 -20 -10 0 10 20
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More properties of the FT

+ Differentiation in time
* Integration in time

F {Ex(t)} = joX (o)
dt Differentiation = x®

d" o (Note: HPF & DC x zero)
RS 0) (o) X (o)

F {j;x(t)dt} :jia) X (@)+7X(0)5(w)

Integration = /m + DC offset
(LPE & opposite of differentiation)

More Fourier Transforms
f(t) :ZS(t - nAt) = HI(t) F(w) = AM)X8(w - 27m/4t)
F
. N
f(t) = 25(t - 2nt) F(W) = (2a14t) Z8(w - 2n/)
F
N —
t N I I N N w
Impulse train, ‘comb’ or ‘Shah’ function

30



More Fourier Transforms

Limit of previous as At — o« and At — 0 respectively
Note: f(t) = 1 has « energy! But is dual of §(t) ©

f(t) = 8(t) Flw)=1
F
=
t w
ft)=1 F(w) = 2nd(w)
F
—
"t w

Note: u(t) also has o energy! But F{u(t)} = F{/5(t)} i.e., apply integration property

“Pop Quiz”: Questions

o IfF{X()} = X(w)
— F{x(2)} =?
~ F{x(t/4)} =2

« FL()}=7

- F{1}="




Pop Quiz: Answers!

... No Worries LectopiaLand © !

o IfF{X()} = X(w)
— F{x(2t)} = 1/2X(»/2)
* narrower in t = broader in freq

— F{x(t/4)} = 4X(4w)

« broader in t = narrower in freq (but increased amplitude)

« F{6(0}=1

— i.e. flat spectrum (all frequencies equally)

* K1} =5(w)
— i.e. impulse at DC only

Interpretation of Fourier Transform

» Represents (usually finite energy) signals

— as sum of cosine waves
« atall possible frequencies
* |[X(w)|dw/27 is amplitude of cosine wave
— i.e., in frequency band © to ® + dw
» /X(w) is phase shift of cosine wave

« Also represents finite power, periodic signals
— Using é(w)

« Distribution with frequency of
— both magnitude & phase
— called a Frequency spectrum (continuous)

32



Fourier Image Examples

Lena

Fourier Magnitude and Phase

20*log10(abs(fft(Lena)))

0.5

Magnitude

0 e P
0 10 20 30 40 50 60 70 80 90 100
Frequency

angle(fft(Lena))

‘random’
range(+mn)

Bridge spectra look similar

33



Magnitude and Phase Only

Lena magnitude only Lena phase + bridge magnitude

Note: titles are illustrative only and are not the actual Matlab commands used!

FFT Fourier Transform
(not just yet — we’ll come back to this)

ELEC 3004: Systems 30 March 2015 - 98
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Fourier Analysis of Discrete Time Signals

 For a discrete time sequence we define two classes of
Fourier Transforms:

» the DTFT (Discrete Time FT) for sequences having
infinite duration,

» the DFT (Discrete FT) for sequences having finite
duration.

The Discrete Time Fourier Transform (DTFT)

+ Given a sequence x(n) having infinite duration, we define the
DTFT as follows:

X (@)= DTFT{x(n)} = > x(n)e~i"

n=—o0

x(n) = IDTFT{X (@)} :%TX(w)ej“’”dw

x(n) X(w)
T
| = n — 7T ‘ T @
_ _ continuous
discrete time frequency

35



Observations:

* The DTFT X(w) is periodic with period ,_

S

T+

* The frequency @ is the digital frequency and therefore it is limited to
the interval —-7<w<+rx

Recall that the digital frequency » is a normalized frequency relative to
the sampling frequency, defined as w= 27—

-F -F /2 0 F S F
_271- /4 0 2 [0)]
Example
| X} 10
DTFT \
x[n] < > 5
(-~ ¥
0_3 1 K @
(! N-1 n 2 X(o) .
o ) N
] 5 .
3 1 3
since
N-1 . l_efij
X — e—J(un — i
)
_ ootz sin(@N /2)
sin(w/2)
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Fast Fourier Transform Algorithms

« Consider DTFT X[ = 3 afn] i

There are approximately N? complex multiplications and additions re-
quired to implement this (V for each value of X'[£]).

If N =2 = 1024, then N? = 2% = 10° a very large number!

However. the FF'T would only require about 5000, a substantial savings

in complexity (the actual caleulation is %1();;.} N).

« Basic idea is to split the sum into 2 subsequences of length N/2
and continue all the way down until you have N/2
subsequences of length 2

— Log2(8)

Radix-2 FFT Algorithms - Two point FFT

«  We assume N=2"m

— This is called Radix-2 FFT Algorithms
Let’s take a simple example where only two points are given n=0, n=1; N=2

1

Y[R =3 ylnlWy™ = y[0] + Wyy[l]

n=0

So we get,

Butterfly FFT

and: y0 yO'
Advantage: Less Y[0] = y[0] + y[1] yl Y1

. . VIl = vl
intensive: O(N/2*log(N)) (1] = y[0] — y[1]
Source: http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

=
computationally ) %
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General FFT Algorithm

First break x[n] into even and odd

Let n=2m for even and n=2m+1 for odd
Even and odd parts are both DFT of a N/2 point sequence

Break up the size N/2 subsequent in half by letting 2m->m
The first subsequence here is the term x[0], x[4], ...
The second subsequent is x[2], X[6], ...

LGl

X[K] =

N—-1
XK =3 alnjwk
n=0
X[k] = Z z[n]u"k"—b— Z r[n,]VV‘m_

nodd
¥ ¥

Z r[?m]ufank n :Z z[2m + l]“rk(zmﬂj -

=0 =0

N/2-1

N/2-1
ZWlemk x[2m]+W,, ‘ ( ZWN/zmk x[2m +1])
m=0 m=0

WNka :Wlemk
+N/2 N/2
WNIZm :WNIZmVVNIZ :WNIZm
W, " =e? =cos(-27) - jsin(-27) =1

N/2
-1

WN

Example

Let’s take a simple example where only two points are given n=0, n=1; N=2

N/2-1

N/2-1
X[Kl= D Wy, x[2m]+W, " ( W, ,,™ x[2m +1])

W N
WNNl2:_1

X[k =11 = S W 0] 42> WKL) = x[0] + W x[1] = x[0]  x{1]

mk mk
WN2 :WNIZ
m+N/2 N/2 m
Wy 2 :WN/ZnWN/Z =Wy,
=e? =cos(—27) — jsin(-27) =1

E——

X[k = 0] = S WX[0] 40 (S WEX[I]) = x[0] + x(1] S@“ o X Yo

X — ¥
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FFT Algorithms - Four point FFT

First find even and odd parts and then combine them:

1 X.[0] 1

x[0] = x[0]

X1[0]

1
X[k X[k
x[1]=x[2] (1)
w
r+ N
) X - e+ %]
1 X,[0] —1
x,[0] = x{1] x[2]
1
1
wol1] = #B3] e = .

F(0) +1 +1 +1 +1]|f(0)
The general form:  |[ra)| |+ - -1 4 ||F )

F@)| = | +1 -1 +1 -1 |[f(2)
F(3) 4 -1 lF3)

FFT Algorithms - 8 point FFT

o > P
LTI
x2] - i \ -
xw]: we E; : i_lﬁ W o s
x[1] HE
R Dj “\7:‘ :; Wi

Applet:
http://www.falstad.com/fourier/directions.html

http://iwww.engineeringproductivitytools.com/stuff/T0001/PT07.HTM
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Systems

Poles and Zeros

F(s) = b(s) _ bo+bis+---+b,,s™
als)  ag+aps+ -+ aps™’

assume b and a have no common factors (cancel them out if they do . . .)

e the m roots of b are called the zeros of F'; A is a zero of F'if FI(A\) =0

e the n roots of a are called the poles of F'; A is a pole of F if
lim, . |[F(s)| = o

the multiplicity of a zero (or pole) A of F'is the multiplicity of the root A
of b (or a)

6s 4+ 12

Example: m

has one zero at s = —2, two poles at s = —1

Source: Boyd, EE102,5-12

ELEC 3004: Systems 30 March 2015 -110
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Poles and Zeros

factored or pole-zero form of F:

— b” + bl‘s +oe- jl)m’f"'m o }1'(.5 — :1) e ("’ — :m)

F(s) = —
(s) ag+ays+ -+ a,s” (s—p1)-(s—pn)
where
o k=b,/a,
® ..., Zy are the zeros of F' (i.e., roots of b)
* P, p,. are the poles of I (i.e., roots of a)

(assuming the coefficients of a and b are real) complex poles or zeros come

in complex conjugate pairs

can also have real factored form . . .

Source: Boyd, EE102,5-13

Pole Zero Plot

poles & zeros of a rational functions are often shown in a pole-zero plot

&

(x denotes a pole; o denotes a zero)

this example is for
(s+1.5)(s+1+2j)(s+1—2j)
(s+25)(s=2)(s—1=4)(s—1+})

F(s) = k

(the plot doesn't tell us k)

Source: Boyd, EE102,5-14
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Partial Fraction Expansion

b(s) bo+bis+---+by,s™

a(s)  ap+ais+ -+ aps”

F(s) =

let's assume (for now)

e no poles are repeated, i.e., all roots of @ have multiplicity one

® 1< 1N

then we can write F' in the form

) — T I'n
S e W

called partial fraction expansion of [

o A..... A, are the poles of F'
e the numbers rq, ..., r,, are called the residues
e when A\, =\, 1, =79

Source: Boyd, EE102,5-15

Partial Fraction Expansion Example

example:
e 1 1
$3+3s2+25 s s+1 s+2
let's check:
= 1 1 ~1(s+1)(s+2) +s(s+2)+s(s+1)
—+ -
s s+1 s+2 s(s+1)(s+2)

in partial fraction form, inverse Laplace transform is easy:

=5 - - | r T'n
LYR) = £ <5~A1+ ﬂq,,)

= I']f/\lf + o TE

(this is real since whenever the poles are conjugates, the corresponding
residues are also)
Source: Boyd, EE102,5-16
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How to Handle the Digitization?

(z-Transforms)

ELEC 3004: Systems

30 March 2015 -115

The z-transform

 The discrete equivalent is the z-Transform?:

20} = ) Rz =F(2)
k=0

and

Z{f(k - D}=z""F(2)

x(k) ——>

F(2)

—> y(K)

Convenient!

+This is not an approximation, but approximations are easier to derive
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The z-Transform

* ltis defined by: _
z =rel”

Or in the Laplace domain:

z=e5T

- Thus: Y(x)= 3 hK=" or gl <E Y (2)

k=—n0o

* LE., It’s a discrete version of the Laplace:
z
fkT) = e~ = Z{f(k)} = =

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTe~ 9T
(s +a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 22— (2cosaT)z + 1
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L(ZOH)=??? : Whatis it?

—1 s
1- 1-—eTs
Ts

«  Wikipedia + Lathi

e ~ | + Franklin, Powell, Workman

|| « Franklin, Powell, Emani-Naeini
» Dorf & Bishop

» Oxford Discrete Systems:
(Mark Cannon)

* MIT 6.002 (Russ Tedrake)
+ Matlab
Proof!

Zero-order-hold (ZOH)

M x(KT) [ Zero-order | h(t)

Sampler Hold _—

+ Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0, the output

h(t) = x(0)[1(t) — 1(¢t = T)] + =(T)[1(t = T) — 1(¢t — 27)] +

= Z x(KT)[1(t - KT) - 1(t - (k4 1)T)]
k=0
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Transfer function of Zero-order-hold (ZOH)

» Recall the Laplace Transforms (£) of:
LWl =1 L[f(t—kT)] = F(s)e T

& e—kTs
Lt —kD)]=e % L1t —kT)] =

» Thus the £ of h(t) becomes:

C[R(2)] = E[i x(KT)[1(t - KT) - 1(t - (k+1)T)]]
k=0

) o0 —kTs  —(k+1)Ts
= S e(KT)LI(t - KT) - 1(t - (k+ D)D) = 3 (kD) e _ DT ]

k=0 k=0 8 5

00 —kT's —(k s [e=] —Ts —Ts oo
= S 2(kT)- o — e Ts 3 2 (kT L= ehrs 1€ S a(kT)e *Ts

k=0 k=0 k=0

Transfer function of Zero-order-hold (ZOH)

... Continuing the £ of h(t) ...

C[R()] = L[> x(KT)[1(t - KT) - 1(t - (k+1)T)]]

k=0 o0 e—kTs  o—(k+1)Ts

z(KT)L[1(t - KT) - 1(t - (k4+1)T)] = Z z(kT)[ - ]

0 k=0 8 8

C —kT's —(k+1)Ts 00 —~Ts -Ts o0

.’I‘(k‘T)e e e‘ ) = Z m(kT)ie_kTS — 17; Z x(k’T)e_kTS
s k=0 8 5 k=0

T
gk

e

gk

k

Il
=}

o0

S a(kT)5(t — kT)

k=0

o0
= > z(kT)e *Ts
k=0

- X(s)=L

_Ts oo _ —TIs
CHE) = L] =T Y a(kT)e T = ()
k=0
=» Thus, giving the transfer function as:
H(: 1—eTs
GzoH(s) = ng = 2| Guon(x) =

(1 - e_aT)
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