	Htp://elec3004.org
Discrete Systems & Z-Transforms	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 5	
http://robotics.itee.uq.edu.au/~elec3004/	March 30, 2015
© 2014 School of Information Technology and Electrical Engineering at The University of Queensland	(CC) BY-NO-SA

scn	edule:	
Week	Date	Lecture Title
1	2-Mar	Introduction
1	3-Mar	Systems Overview
2	9-Mar	Signals as Vectors & Systems as Maps
2	10-Mar	[Signals]
2	16-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	17-Mar	[Sampling]
	23-Mar	System Analysis & Convolution
4	24-Mar	[Convolution & FT]
5	30-Mar	Discrete Systems & Z-Transforms
5	31-Mar	[Z-Transforms]
6	13-Apr	Frequency Response & Filter Analysis
0	14-Apr	[Filters]
7	20-Apr	Digital Filters
	21-Apr	[Digital Filters]
0	27-Apr	Introduction to Digital Control
8	28-Apr	[Feedback]
0	4-May	Digital Control Design
9	5-May	[Digitial Control]
10	11-May	Stability of Digital Systems
10	12-May	[Stability]
1.1	18-May	State-Space
1 11	19-May	Controllability & Observability
12	25-May	PID Control & System Identification
12	26-May	Digitial Control System Hardware
12	31-May	Applications in Industry & Information Theory & Communications
13	2-Jun	Summary and Course Review

- Q: What is negative frequency?
- A: A mathematical convenience
- Trigonometrical FS
 - periodic signal is made up from
 - sum 0 to ∞ of sine and cosines 'harmonics'
- Complex Fourier Series & the Fourier Transform
 - use $exp(\pm j\omega t)$ instead of $cos(\omega t)$ and $sin(\omega t)$
 - signal is sum from 0 to ∞ of exp($\pm j\omega t$)
 - same as sum - ∞ to ∞ of exp(-j ω t)
 - which is more compact (i.e., less chalk!)

ELEC 3004: Systems

Fourier Series \rightarrow Fourier Transforms

ELEC 3004: Systems

30 March 2015 - 🚺

Typical Linear Processors			
Convolution	h(n,k)=h(n-k)		
Cross Correlation	h(n,k)=h(n+k)		
Auto Correlation	h(n,k)=x(k-n)		
Cosine Transform	h(n,k)=	$\cos\left(\frac{2\pi}{N}nk\right)$	
• Sine Transform	h(n,k)=	$\sin\left(\frac{2\pi}{N}nk\right)$	
Fourier Transform	h(n,k)=	$\exp\left(j\frac{2\pi}{N}nk\right)$	
ELEC 3004: Systems		30 March 2015 - 12	

Transform Analysis

• Signal measured (or known) as a function of an independent variable

- e.g., time: y = f(t)

- However, this independent variable may not be the most appropriate/informative
 - e.g., frequency: Y = f(w)
- Therefore, need to transform from one domain to the other
 - e.g., time \Leftrightarrow frequency
 - As used by the human ear (and eye)

Signal processing uses Fourier, Laplace, & z transforms etc

ELEC 3004: Systems

0 March 2015 - 1

Sinusoids and Linear Systems

- The pair of numbers $C(\omega_0)$ and $q(\omega_0)$ are the complex gain of the system at the frequency ω_0 .
- They are respectively, the magnitude response and the phase response at the frequency ω_0 .

$$y(t) = AC(\omega_0) \cos(\omega_0 t + \theta_0 + \theta(\omega_0))$$

$$y(n) = AC(\omega_0 T) \cos(\omega_0 n t + \theta_0 + \theta(\omega_0 T))$$

ELEC 3004: Systems

<section-header> Why Use Sinusoids? Why probe system with sinusoids? Sinusoids are eigenfunctions of linear systems??? What the hell does that mean? Sinusoid in implies sinusoid out Only need to know phase and magnitude (two parameters) to fully describe output rather than whole waveform sine + sine = sine derivative of sine = sine (phase shifted - cos) integral of sine = sine (-cos) Sinusoids maintain orthogonality after sampling (not true of sost orthogonal sets)

ELEC 3004: Systems

30 March 2015 - 17

Fourier Series
 Any finite power, periodic, signal x(t) period T
• can be represented as (∞) summation of
 Sine and cosine waves Called: Trigonometrical Fourier Series
$x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t)$
• Fundamental frequency $\omega_0 = 2\pi/T$ rad/s or $1/T$ Hz • DC (average) value $A_0/2$
ELEC 3004: Systems 30 March 2015 - 20

Example: Square wave

$$x(t) = \begin{cases} 1, & 0 < t < 1; \\ -1, & 1 < t < 2; \\ x(t+2). & \leftarrow \text{periodicl} i.e., x(t+2) = x(t) \end{cases}$$

$$A_n = \int_0^2 x(t) \cos(n\pi t) dt = \int_0^1 \cos(n\pi t) dt - \int_1^2 \cos(n\pi t) dt \\A_n = \left[-\frac{\sin(n\pi t)}{n\pi} \right]_0^1 - \left[-\frac{\sin(n\pi t)}{n\pi} \right]_1^2 = 0 \qquad \text{No cos terms as } \sin(n\pi) = 0 \forall n \\ x(t) \text{ has odd symmetry} \end{cases}$$

$$B_n = \int_0^2 x(t) \sin(n\pi t) dt = \int_0^1 \sin(n\pi t) dt - \int_1^2 \sin(n\pi t) dt \\B_n = \left[-\frac{\cos(n\pi t)}{n\pi} \right]_0^1 - \left[-\frac{\cos(n\pi t)}{n\pi} \right]_1^2 = -\frac{\cos(n\pi t)}{n\pi} + \frac{1}{n\pi} + \frac{1}{n\pi} - \frac{\cos(n\pi t)}{n\pi} \\B_n = \frac{2}{n\pi} (1 - \cos(n\pi t)) \qquad \text{Sin terms only} \end{cases}$$

- There is a simple relationship between
 - trigonometrical and
 - complex Fourier coefficients,

$$X_{0} = \frac{A_{0}}{2}$$

$$X_{n} = \begin{cases} \frac{A_{n} - jB_{n}}{2}, & n > 0; \\ \frac{A_{n} + jB_{n}}{2}, & n < 0. \end{cases}$$
Constrained to be symmetrical, i.e., complex conjugate
$$X_{-n} = X_{n}^{*}$$
Therefore, can calculate simplest form and convert

Fourier Series → Fourier Transforms

Fourier Transform

• If we change the limits of integration to the entire real line, remove the division by T, and make the frequency variable continuous, we get the Fourier Transform

$$C(\omega) = \int_{-\infty}^{+\infty} h(t)e^{-j\omega t} dt$$

$$\sum_{n=0}^{+\infty} ELEC 3004: Systems$$

More properties of the FT

- Differentiation in time
- Integration in time

$$F\left\{\frac{d}{dt}x(t)\right\} = j\omega X(\omega)$$

Differentiation $\Rightarrow \times \omega$
(Note: HPF & DC x zero)
$$F\left\{\frac{d^{n}}{dt}x(t)\right\} = (j\omega)^{n} X(\omega)$$

$$F\left\{\int_{-\infty}^{t} x(t) dt\right\} = \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$$

Integration \Rightarrow / ω + DC offset (LPF & opposite of differentiation)

ELEC 3004: Systems

Interpretation of Fourier Transform	
 Represents (usually finite energy) signals as sum of cosine waves at all possible frequencies X(ω) dω/2π is amplitude of cosine wave i.e., in frequency band ω to ω + dω ∠X(ω) is phase shift of cosine wave 	
 Also represents finite power, periodic signals Using δ(ω) 	
 Distribution with frequency of both magnitude & phase called a Frequency spectrum (continuous) 	
ELEC 3004: Systems	30 March 2015 - 83

Observations:

• The DTFT $X(\omega)$ is <u>periodic</u> with period 2π ;

• *The frequency* ω *is the <u>digital frequency</u> and therefore it is limited to the interval* $-\pi < \omega < +\pi$

<u>Recall</u> that the digital frequency ω is a *normalized frequency* relative to the sampling frequency, defined as $\omega = 2\pi \frac{F}{F}$

Poles and Zeros

factored or pole-zero form of F:

$$F(s) = \frac{b_0 + b_1 s + \dots + b_m s^m}{a_0 + a_1 s + \dots + a_n s^n} = k \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

where

- $k = b_m/a_n$
- z_1, \ldots, z_m are the zeros of F (*i.e.*, roots of b)
- p_1, \ldots, p_n are the poles of F (*i.e.*, roots of a)

(assuming the coefficients of a and b are real) complex poles or zeros come in complex conjugate pairs

can also have *real factored form* . . .

Source: Boyd, EE102,5-13

How to Handle the Digitization?

(z-Transforms)

ELEC 3004: Systems

30 March 2015 -115

The <i>z</i> -trai	nsform			
In practic	• In practice, you'll use look-up tables or computer tools (ie. Matlab)			
to find the <i>z</i> -transform of your functions				
	F(s)	F(kt)	F(z)	
	<u>1</u>	1		
	S		z - 1	
	1	kT	<u> </u>	
	<i>s</i> ²		$(z-1)^2$	
	1	e^{-akT}	<u>Z</u>	
	$\overline{s+a}$		$z - e^{-aT}$	
	1	kTe^{-akT}	zTe^{-aT}	
	$(s + a)^2$		$\overline{(z-e^{-aT})^2}$	
	1	sin(akT)	$z \sin aT$	
	$\overline{s^2 + a^2}$		$\overline{z^2 - (2\cos aT)z + 1}$	
ELEC 3004: System:	s			30 March 2015 - 118

$\mathcal{L}(\text{ZOH}) = ???$: What $\frac{1 - e^{-Ts}}{Ts}$	$\frac{1 - e^{-Ts}}{s}$
<complex-block></complex-block>	 Lathi Franklin, Powell, Workman Franklin, Powell, Emani-Naeini Dorf & Bishop Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) Matlab Proof!
ELEC 3004: Systems	30 March 2015 - 119

Transfer function of Zero-order-hold (ZOH)
• Recall the Laplace Transforms
$$(\mathcal{L})$$
 of:
 $\mathcal{L}[\delta(t)] = 1$ $\mathcal{L}[f(t - kT)] = F(s)e^{-kTs}$
 $\mathcal{L}[\delta(t - kT)] = e^{-kTs}$ $\mathcal{L}[1(t - kT)] = \frac{e^{-kTs}}{s}$
• Thus the \mathcal{L} of h(t) becomes:
 $\mathcal{L}[h(t)] = \mathcal{L}[\sum_{k=0}^{\infty} x(kT)[1(t - kT) - 1(t - (k + 1)T)]]$
 $= \sum_{k=0}^{\infty} x(kT)\mathcal{L}[1(t - kT) - 1(t - (k + 1)T)] = \sum_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}]$
 $= \sum_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum_{k=0}^{\infty} x(kT)\frac{1 - e^{-Ts}}{s}e^{-kTs} = \frac{1 - e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs}$

$$\frac{\text{Transfer function of Zero-order-hold (ZOH)}}{\text{... Continuing the } \mathcal{L} \text{ of } h(t) \dots}$$

$$\mathcal{L}[h(t)] = \mathcal{L}[\sum_{k=0}^{\infty} x(kT)[1(t - kT) - 1(t - (k + 1)T)]]$$

$$= \sum_{k=0}^{\infty} x(kT)\mathcal{L}[1(t - kT) - 1(t - (k + 1)T)] = \sum_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}]$$

$$= \sum_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum_{k=0}^{\infty} x(kT)\frac{1 - e^{-Ts}}{s}e^{-kTs} = \frac{1 - e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs}$$

$$\rightarrow X(s) = \mathcal{L}\left[\sum_{k=0}^{\infty} x(kT)\delta(t - kT)\right] = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$$

$$\therefore H(s) = \mathcal{L}[h(t)] = \frac{1 - e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1 - e^{-Ts}}{s}X(s)$$

$$\Rightarrow \text{Thus, giving the transfer function as:}$$

$$\left[\mathcal{L}_{ZOH}(s) = \frac{H(s)}{X(s)} = \frac{1 - e^{-Ts}}{s} \right] \xrightarrow{\mathcal{Z}} \left[\mathcal{L}_{ZOH}(z) = \frac{(1 - e^{-aT})}{z - e^{-aT}} \right]$$