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Interpretations of Systems as Maps
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Then a System i1s a MATRIX

U[T?} l/[n}
D
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y[1] Dy D12 -+ Dix ] [u[l]
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System Analysis

[Chapter 2, Lathi]
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Linear Differential Systems

dﬂy dﬂ.—ly dy
m + an—1 21 + -4 al'&? +agy(t) =
P i &
b"‘&?ﬁj—-i-bm"lz'm_—l- ++b]£ +b0f(t) (213)

where all the coefficients a; and b; are constants. Using operational notation D to
represent d/dt, we can express this equation as

(Dn + an_lD“‘l +- - 4+a1D+ a.o) y(t)
= (bmD™ + b1 D™ Vo £ 51D +bo) f(2)  (2.1D)

or
Q(D)y(t) = P(D)f(t) (2.1c)
where the polynomials Q(D) and P(D) are
QD)=D"+an D" 14 -+ a;D+ag (2.2a)
P(D)=bpD™ + by D™ L 01D +bg (2.2b)




Linear Differential System Order

Q(Dy(t) = P(D)f(2)

Q(D)=D"+an D™ '+ +a1D +ap y(t)=P(D)/Q(D) f(t)
P(D)"—hmem"'bm——le_'l"'"‘+b1D+bo P(D) M

Q(D): N
« In practice: m <n (yes, N is deNominator)
ifm>n:

then the system is an
(m - n)" -order differentiator of high-frequency signals!

« Derivatives magnify noise!

Derivatives magnify noise!
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Zero-Input | Zero-State

Total response = zero-input response + zero-state response

Zero Input Zero-State

» = The system response when < = the system response to the
the input f(t) = 0 so that it is external input f (t) when the
the result of internal system system is in zero state,

conditions (such as energy meaning the absence of all

storages, initial conditions) internal energy storages;

alone. that is, all initial conditions
« lItis independent of the are zero.

external input.

System Stability

Reh<O

Real —

stable

marginally stable —
Rebh=10

Fig. 2.15 Characteristic roots location and system stability.
Lathi, p. 149




System Stability [11]

Characterisic Root

Location Zero-Input Response

@

Characterisic Root

Location Zero-Input Response
l Ol -
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B I 0' e
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Lathi, p. 150

System Stability [111]

(&)
Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes.
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Signals Review
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Signal: A carrier of (desired) information [1]

* Need NOT be electrical:

» Thermometer
* Clock hands
» Automobile speedometer

* Need NOT always being given
— “Abnormal” sounds/operations

— Ex: “pitch” or “engine hum” during machining as an
indicator for feeds and speeds




Signal: A carrier of (desired) information [2]

« Electrical signals
— Voltage
— Current

 Digital signals
— Convert analog electrical signals to an appropriate
digital electrical message

— Processing by a microcontroller or microprocessor

Ex: Current-to-voltage conversion

« simple: * Detter:
Precision Resistor Use an “op amp”
o Vimeasured
Rynown
Ricn
V= Rkum l' o
Kkvloun V \/= - RKV\O\.}.\I

|
"‘
.\‘




Sampling!
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Not this type of sampling ...

SEMINAR REFRESHMENTS!

Catreine More Carbe
' Catreine  cugar  Sfraight CS.??
L for your VP Sugar

Caftfeine /'

SUGAC  Comeine

Nothing says "We are confident this seminar will be intellectually
stimulating for you”like a table full of things to help you stay awake.

JORGE CHAM D 2013
WWW.PHDCOMICS.COM




This type of sampling...

5(t)
S;

9 10 11 12 13

Source: Wikipedia: http://en.wikipedia.org/wiki/File:Signal_Sampling.png

Analog vs Digital

+ Analog Signal: An analog or analogue signal is any variable
signal continuous in both time and amplitude

« Digital Signal: A digital signal is a signal that is both discrete
and quantized

E.g. Music stored in a
CD: 44,100 Samples

per second and 16 bits
to represent amplitude

10



Digital Signal

» Representation of a signal against a discrete set

The set is fixed in by computing hardware

S

Can be scaled or normalized ... but is limited

s € 7(0,...,210)

Time is also discretized

7.(0,...,219)
216

s e

Representation of Signal

« Time Discretization + Digitization

Coarse time discretization

Coarse signal digitization

D
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Mathematics of Sampling and Reconstruction

sampling reconstruction
X(t t
® X0 roep Ideal y(t)
LPF
Impulse train Gain
S.()=25(t - nAt) .
‘t 0 f. Freq
Sampling frequency f, = 1/t Cut-off frequency = f,

Mathematical Model of Sampling

* X(t) multiplied by impulse train 5T (t)

X.(t) = x(t)o; (t)
= X(D)[S() +S5(t — At) + 5 (t — 2At) +--]
= D X(nAt)s(t - nAt)

n
*  x(t) is a train of impulses of height X(t)| .= 4

12



Continuous-time

2 T T T
1+ ///fx\x
///_/—h;i
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o d
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Discrete-time
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p9900¢f |
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Discrete Time Signal
* Image a signal...
l TNT 1T
T W T Signal
— Digitized Signal
0.5~ —
2
2
s or .
1S
<
0.5~ N
. [P 1 P P O Y PO [P
-8 -6 -4 -2 0 6 8
time (s)
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Discrete Time Signals

Amplitude

-0.5~ 1 ‘| [ \‘ I 1 r ! ’ 1 [‘ 1 !

Digitization helps beat the Noise!

15 T T T T
1 nm mn momr
05 / ! ,‘ \‘ 1 I / \l “ I | \‘

or BERERER [ 1]

1k W 1Y) I" | 1y lJ

T T
Signal + 5% Gausian Noise
— Digitized Noisy Signal
A ! T T

15 I I r r
8 R -

time (s)

Discrete Time Signals

Amplitude

But only so much...

1.5 T T T T
1~ ” I ‘ i | ' h’
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-0.5+ f i [ | i

Ak T -

T T T
Signal + 20% Gausian Noise
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Discrete Time Signals

 Can make control tricky!

-) Figure 1

Fle Edt View Ins ols Desktop Window Help

=1

nsert  To
hEHEHS ea®a v 0 | =0

Signal Manipulations

« Shifting

y (n) =z (n—ng)
» Reversal

y(n) = z(—n)

» Time Scaling
(Down Sampling)

y(M) = z(Mn)
(Up Sampling)
0= (2)

15



Frequency Domain Analysis of Sampling

« Consider the case where the DSP performs no filtering
operations
— 1.e., only passes xc(t) to the reconstruction filter
» To understand we need to look at the frequency domain
» Sampling: we know
— multiplication in time = convolution in frequency
— F{x(®)} = X(w)
— F{8T(t)} = X8(w - 2rn/At),
— i.e., an impulse train in the frequency domain

Frequency Domain Analysis of Sampling

* In the frequency domain we have

XC(W):L(X(W)*ZA_TZ5[W_2A_”:D Remember

2w convolution with
1 27m an impulse?

T A4 X(W_Ej Same idea for an
impulse train

Let’s look at an example
= where X(w) is triangular function
= with maximum frequency w,, rad/s

= being sampled by an impulse train, of
frequency wgrad/s

16



Fourier transform of original signal X()
(signal spectrum)

Fourier transform of impulse train 6(ow/2r) (sampling signal)

Flar(n)]

W, = 2m/At 4n/At w

0
Fourier transform of sampled signal

X () Original spectrum

convolved with

VAL spectrum of
. *+* | impulse train
w

Original Replica 1 Replica 2

Spectrum =« sampled signal

5NN

Original Replica 1 Replica 2
Reconstruction filter (ideal lowpass filter)
Hi(w)
At
W, W, =W, w

Spectrum of reconstructed signal

Reconstruction filter
X(w) = Hp(w) X(w) removes the replica
spectrums & leaves
only the original

W W w

17



Sampling Frequency

« In this example it was possible to recover the original signal
from the discrete-time samples

 But is this always the case?

 Consider an example where the sampling frequency w; is

reduced
— i.e., At is increased

Original Spectrum

"W Wi w

Fourier transform of impulse train (sampling signal)

|

0 2n/At  4rn/At 6m/At W

Amplitude spectrum of sampled signal Replica spectrums
t overlap with origina|
(and each other)
This is Aliasing
: ; W
Original Replica 1 Replica 2 ...

18



Amplitude spectrum of sampled signal sampled signal
| spectrum

original Replica 1 Replica 2 ...
Reconstruction filter (ideal lowpass filter)

W, W, =W, w

Spectrum of reconstructed signal Due to overlapping
T The effect of aliasing is | replicas (aliasing)
that higher frequencies | the reconstruction

of “alias to” (appear as) filter cannot recover

. the original spectrum
lower frequencies
W Wi w

Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

—W, > 2Wjg

Note: this is a > sign not a >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

19



Time Domain Analysis of Sampling

» Frequency domain analysis of sampling is very useful to understand
— sampling (X(w)*> &w - 27m/At) )
— reconstruction (lowpass filter removes replicas)
— aliasing (if w, < 2wp)
» Time domain analysis can also illustrate the concepts
— sampling a sinewave of increasing frequency
— sampling images of a rotating wheel

Original signal
Discrete-time samples
[ R R
T
Reconstructed signal
A signal of the original frequency is reconstructed
05,

20



Original signal

Discrete-time samples

élg él

Reconstructed signal

A signal with a reduced frequency is recovered, i.e., the signal is

aliased to a lower frequency (we recover a replica)
S

Sampling < Nyquist = Aliasing

15

signal

--------- True signal
—6— Aliased (under sampled) signal
-1.5 . L
0 5 10 15
time

21



Nyquist 1s not enough ...

1Hz Sin Wave: Sin@2rt) - 2 Hz Sampling

1 T T T T T T

0.6
0.4}
0.2}
0 %—é—e—%—é—é—e—‘%—e—e—%—é—é

-0.2

Normalized magnitude

04k

-0.6

-0.8F

1 U r Vo / ¢ r | 1 | ¢
0 1 2 3 4 5 6
Time(s)

A little more than Nyquist is not enough ...

1Hz Sin Wave: Sin@nt) > 4 Hz Sampling

T T —"a —a

Normalized magnitude

Time(s)




Sampled Spectrum w, > 2wm

LPE 4
_wm W‘m Wy W
orignal replica 1

original freq recovered

Original and replica
Sampled Spectrum w, < 2w,,

spectrums overlap

LPE 4 Lower frequency
f ot * recovered (W, —W,,)
'Wm W‘mWs W
orignal — v
replica 1

Temporal Aliasing

90° clockwise rotation/frame  270° clockwise rotation/frame
clockwise rotation perceived  (90°) anticlockwise rotation
perceived i.e., aliasing

Require LPF to ‘blur’ motion

23



Time Domain Analysis of Reconstruction

» Frequency domain: multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w,)
— removes replica spectrums, leaves original
» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/r)
— i.e., weighted sinc on every sample
* Normally, w, = wy/2

X, (t) = i X(nAt) Atw, Sinc(wj
I

N=—o0

Reconstruction
®
| I ’ 9 10 11 12 13
ol ... i 4 5 6 7 8
®
®

24



Reconstruction

 Zero-Order Hold [ZOH]
¢

[IIIOII

12 13

Reconstruction

» Whittaker—Shannon interpolation formula

z(t) = Y50 __ z[n] - sinc (#)

AX(f)

25



Reconstruction

« Whittaker—Shannon interpolation formula

4 5 6 7

£

9 10 11 12 13

o 1 ... |

@
Ideal "sinc" Interpolation of sample values [0 00.75 1 0.5 0 0]
1+ /G\ i
08" A R 1
H‘x L reconstructed signal x,(t)

\\\ \ |
()
>
g

-4 -3 -2 -1 0 1 2 3 4
Sample
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Sampling and Reconstruction
Theory and Practice

Signal is bandlimited to bandwidth WB
— Problem: real signals are not bandlimited
* Therefore, require (non-ideal) anti-aliasing filter
Signal multiplied by ideal impulse train
— problems: sample pulses have finite width
— and not ® in practice, but sample & hold circuit
Samples discrete-time, continuous valued
— Problem: require discrete values for DSP
* Therefore, require A/D converter (quantisation)
Ideal lowpass reconstruction (‘sinc’ interpolation)

— problems: ideal lowpass filter not available
 Therefore, use D/A converter and practical lowpass filter

‘staircase’ output from D/A converter (ZOH)

16 T T © T T T T T
) O output samples
—— DIJA output
14 G,

12+ ©

Amplitude (V)
o]
T

Time (sec)

10

27



16

Smooth output from reconstruction filter

L

[ — D/A output

Amplitude (V)

14

12

=
o

pNE

1 1 1

‘ —— Reconstruction filter output

SN

2 4 6
Time (sec)

12

Amplitude (V)

16

14

12

10

Example: error due to signal quantisation

T T o T T

T T T

—— original signal x(t)
~ Quantised samples xq(l)

1 2 3 4 5

Sample number

6

10
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Original Signal After Anti-aliasing LPF After Sample & Hold

TN

After Reconstruction LPF After D/A AftrerAIVD
| ll lf ’ |
Complete practical DSP system signals o DSP

Zero Order Hold (ZOH)

}"ZOH(I)
1
ZOH impulse response
0 At t
| Hypy ()
ZOH amplitude respaonse
[ H, ()
ZOH phase response N m o
_4dn n j T @
At ar | |




Finite Width Sampling

 Impulse train sampling not realisable
— sample pulses have finite width (say nanosecs)

* This produces two effects,
 Impulse train has sinc envelope in frequency domain

— impulse train is square wave with small duty cycle

— Reduces amplitude of replica spectrums
smaller replicas to remove with reconstruction filter ©
 Averaging of signal during sample time

— effective low pass filter of original signal
can reduce aliasing, but can reduce fidelity ®

* negligible with most S/H ©

Aliasing: Another view of this

30



Alliasing

« Aliasing - through sampling, two entirely different analog
sinusoids take on the same “discrete time” identity

For f[k]=cosQk, Q=oT:

The period has to be less than Fh (highest frequency): T < T
SRy

‘}-"\
Thus: 0<7<~)

oy aliased frequency:  wT' = w7 + 2wm

Practical Anti-aliasing Filter

* Non-ideal filter
— WC=Ws /2

* Filter usually 4th — 6th order (e.g., Butterworth)
— so frequencies > wc may still be present
— not higher order as phase response gets worse

 Luckily, most real signals
— are lowpass in nature
+ signal power reduces with increasing frequency
— e.g., speech naturally bandlimited (say < 8KHz)
— Natural signals have a (approx) 1/f spectrum
— 50, in practice aliasing is not (usually) a problem

31



Amplitude spectrum of original signal

\Y; W

-W m

m

Fourier transform of sampling signal (pulses have finite width

______________________________________________ sinc envelop
[ """"" | -------- ‘/Z ero at harmg
1/duty cycl

_ 0 w, =2n/At  An/At w
Fourier transform of sampled signal

1/At

Original Replical  Replica2

Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds
2. holds that value constant until next sample

. Produces ‘staircase’ waveform, x(nAt)

sample instant

f/rﬁl — X(nAt)

— t

hold for At
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Quantisation

» Analogue to digital converter (A/D)
— Calculates nearest binary number to x(nAt)
* X4[n] = q(x(nAY), where q() is non-linear rounding fctn
— output modeled as x,[n] = x(nAt) + e[n]
»  Approximation process
— therefore, loss of information (unrecoverable)
— known as ‘quantisation noise” (e[n])
— error reduced as number of bits in A/D increased
* i.e., AX, quantisation step size reduces

AX
<
‘e[n]‘ - 2

Input-output for 4-bit quantiser
(two’s compliment)

Diaital
gt

0111

0110

0101 -

0100 !
010 '

0001 “A, Analogue
0000 quantisation

1111 step size

-2| 1110

-3 1101

-4 1100

-5 1011

-6 1010

-7 1000

2A
AX=—
2" -1
where A = max amplitude
m = no. quantisation bits

#OI—‘I\)OO-&U‘ICD\I
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Signal to Quantisation Noise

» To estimate SQNR we assume
— e[n] is uncorrelated to signal and is a
— uniform random process
+ assumptions not always correct!
— not the only assumptions we could make...
* Also known a ‘Dynamic range’ (Rp)
— expressed in decibels (dB)
— ratio of power of largest signal to smallest (noise)

P
R, =10log, ,| ==

noise

Dynamic Range

Need to estimate:

1.  Noise power
—  uniform random process: P, ;. = Ax%/12

2. Signal power 1 extra bit halves Ax
—  (at least) two possible assumptions ie 20IoglO(1/2) = 6dB
1. sinusoidal: Pgj, = A%2 U

signal |
2. zero mean Gaussian process: Pgg., = 62
2

Note: as 6~ A/3: Pgigna »
»  where o2 = variance, A = signal amplitude

Regardless of assumptions: Ry increases by 6dB
for every bit that is added to the quantiser
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Practical Reconstruction

Two stage process:
1. Digital to analogue converter (D/A)
—  zero order hold filter
— produces ‘staircase’ analogue output
2. Reconstruction filter
— non-ideal filter: w, = w,/2
—  further reduces replica spectrums

— usually 4t — 6" order e.g., Butterworth
»  for acceptable phase response

D/A Converter

» Analogue output y(t) is
— convolution of output samples y(nAt) with h,q(t)

y(t) =Y y(nAt)h,q,, (t—nAt)

1, 0<t<At
hyon (1) =14
zon (1) {O, otherwise
— JWALt \sin(wAt/2)
H w) =Ate
o ()= terp( ~ LISt SIS

D/A is lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required




Summary

 Theoretical model of Sampling
— bandlimited signal (wB)

— multiplication by ideal impulse train (ws > 2wB)
« convolution of frequency spectrums (creates replicas)

— lIdeal lowpass filter to remove replica spectrums

* WC=WSs/2
« Sinc interpolation
* Practical systems
— Anti-aliasing filter (wc < ws /2)
— A/D (S/H and quantisation)
— DIA (ZOH)
— Reconstruction filter (wc = ws /2)

Don’t confuse
theory and
practice!
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