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Digital State Space Recap
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Digital State Space:

« Difference equations in state-space form:

x[n+ 1] = Ax[n] + Bu[n]
y[n] = Cxn] + Duln]

— u[n], y[n]: input & output (scalars)
— X[n]: state vector

Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

% = Fx + Gu, (6.1)
and (2.44),

y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k +1) = ®x(k) + Tu(k),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /ﬂ ePdnG, (6.4b)




Discretisation FTW!

» We can use the time-domain representation to produce
difference equations!
kKT+T

x(kT +T) = eFT x(kT) + f eFUT+T-D Gy (1) dt
kT

Notice u(t) is not based on a discrete ZOH input, but rather
an integrated time-series.
We can structure this by using the form:

u(t) =u(kT), KkT<tT<kT+T

State-space z-transform

We can apply the z-transform to our system:
(z —®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:
Y@ _ G(z) =H(zl — @)~ 1T
Xz -




State-space control design -- Controllability

 Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:

u=—Kx
such that det(zl — ® + I'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T &I &?r ... o 1r] to be full-rank.

®: Solving State Space

+ In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
— The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

 With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.




State-transition matrix ®(t)

Describes how the state x(t) of the system at some time t
evolves into (or from) the state x(t) at some other time T.

x(t) =D (t,7)x (1)

®(s) =[sI—A]"1 > d(t) = et

Matrix Exponential:

At _ _
et =exp(At) =1+ At + o1 m

Similar idea, but different result, for the control u = I

[': Gamma: Comes from Integrating x

. Aka+1 TZ

Why?

x(t) = eAt=tdx(t,) + fot eAt=DBy (1) dr

A(kt+t—1)
x(kKT +T) = eATx(kT) + fkkTTJrTe Bu(t)dt
u(t) is specified in terms of a continuous time history, though
we often assume u(t) is a ZOH:

u(t) = u(kT) = Introducen = kT + T — 1

an
x(kT +T) = e4Tx(kT) + fkkTT+Te dnBu(kT)

An
>P =e4T T= fOTe dnB




Solving State Space (optional notes) ...

Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the “homogeneous,” i.e., unforced equation

X = Ax (3.2)
where A is a constant k by k matrix. The solution to (3.2) can be expressed as
x(1) = e (3.3)
where ' is the matrix exponential function
2 I
e"’:1+A:+A25+A3;+»-~ (3.4)

and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the
derivative of x(t)

dx(r) __i At
T—d[(e )L‘ (35)

and, from the defining series (3.4),
i(e“')~A+A’1+A3'—2+--»*A(I+A1+A2£+~- ) =AM
di B 21 B 2! -

Thus (3.5) becomes

dx(f) _

& Ae?e = Ax(1)

LGl

Solving State Space (optional notes)

which was to be shown. To evaluate the constant ¢ suppose that at some time 7
the state x(r) is given. Then, from (3.3),

x(r) = eMe (3.6)
Multiplying both sides of (3.6) by the inverse of ¢*” we find that
c=(e") "'x(7)

Thus the general solution to (3.2) for the state x(¢) at time ¢, given the state x(7)
at time 7, is

x(1) = e () x(7) (3.7
The following property of the matrix exponential can readily be established by
a variety of methods—the easiest perhaps being the use of the series definition
(3.4)—
e = gttt (3.8)
for any t, and t,. From this property it follows that
(e") ™ =™ (3.9)
and hence that (3.7) can be written
x(1) = e x(1) (3.10)




Solving State Space (optional notes)

The matrix e

subsequently.

We now turn to the problem of finding a “particular™ solution to the
nonhomogeneous, or ““forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = e™e(t) (3.11)

is a special form of the state-transition matrix to be discussed

where c(f) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

Aee(t) + eMé(1) = Ae™elt) + Bult)
or, upon cancelling the terms A e*c(s) and premultiplying the remainder by
e—Al,
é(t) = e ™Bu(t) (3.12)

Thus the desired function ¢{(¢) can be obtained by simple integration {the
mathematician would say “by a quadrature”)

!
c(t) = J e “*Bu(A) dA
-
The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the

LGl

Solving State Space (optional notes)

homogeneous equation to obtain the complete (gencral] solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

1 ¢
x(t) = e™ J e MBu(A) da = J AN BR (L) dr (3.13)
T T

In obtaining the second integral in (3.13), the exponential e™, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write eMg A = gAY

The complete solution to (3.1) is obtained by adding the *complementary
solution™ (3.10) to the particular solution (3.13). The result is

t

x(1) = ™" x(r) %I e* M Bu(A) dA (3.14)

T
We can now determine the proper value for lower limit T on the integral. At
t = 7 (3.14) becomes

x(7) = x(r) + JTeA“’“Bu(A) dx (3.15)
.

Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

x(1) = e Vx(r) + j MM By () da (3.16)

T




Solving State Space (optional notes)

This important relation will be used many times in the remainder of the book.
It is worthwhile dwelling upon it. We note, first of all, that the solution is the
sum of two terms: the first is due to the “initial” state x(r) and the second—
the integral—is due to the input u(7) in the time interval r = A = ¢ between the
“initial” time r and the “‘present” time ({ The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢ Z 7. The relationship is perfectly valid even
when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral”’: the contribution to the state x(r) due to the input u is
the convolution of u with e™B. Thus the function e™B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is u(f).

If the output y of the system is not the state x itself but is defined by the
observation equation

y=0Cx

then this output is expressed by

1
()= Cer x(1) + J- Ce* "M Bu()) da 3.17)

LGl

Solving State Space (optional notes)

and the impulse response of the system with y regarded as the output is
CEA“_A}B_

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C' are time-varying, (3.16) and (3.17) generalize to

i

x(f) = e x(r) + j eAMB(A)ulA) di (3.18)

T

and

y(£) = C(t) e x(r) + J C(t) e MB(A)u(A) dr (3.19)

T

o
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Pole Placement (Following FPW — Chapter 6)

» FPW has a slightly different notation:

x = Fx + Gu,
y = Hx.

x(k + 1) = ®x(k) + Tu(k),
y(k) = Hx(k},

FT
d=¢"",

77
I’:f eF1dnG,
0

Pole Placement

Start with a simple feedback control law (“controller’)

I
w=-Kx=—[KKy...] | 22

It’s actually a regulator
-+ it does not allow for a reference input to the system.
(there is no “reference” r (r = 0))

Substitute in the difference equation
x(k +1) = dx(k) — TKx(k)
» Z Transform:
(zZ —P+TK)X(z) =0
=» Characteristic Eqn:
det|zl — ® +TK| =0

11
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Pole Placement

Pole placement: Big idea:

« Arbitrarily select the desired root locations of the closed-loop
system and see if the approach will work.

» AKA: full state feedback
-+ enough parameters to influence all the closed-loop poles

« Finding the elements of K so that the roots are in the desired
locations. Unlike classical design, where we iterated on
parameters in the compensator (hoping) to find acceptable root
locations, the full state feedback, pole-placement approach
guarantees success and allows us to arbitrarily pick any root
locations, providing that n roots are specified for an nt"-order

system.
Meaning...
Serious design
10 T
0]
9
2
g
& 10|
=
1]
3
0.1
0.0 0.5 1.0 1.5 2.0
‘ Frequency
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Back to Pole Placement

* Given:

Zi = :811 ﬁZI 33!

« This gives the desired control-characteristic equation as:

ac(z) =(z-p)z—-B)(z~—-P3) .=

* Now we “just solve” for K and “bingo”

O

Pole Placement Example (FPW p. 241)

Example 6.1: Suppose we want to design a control law for the
satellite attitude-control system described by (2.45) with @ = [z; @3]
Example 2.13 showed that the discrete model for this system is

@:[B ﬂ and r:[TQT/ﬂ.

We want to pick z-plane roots of the closed-loop characteristic equa-
tion so that the equivalent s-plane roots have a damping ratio of
¢ = 0.5 and real part of s = —1.8 rad/sec (i.c., s = —1.8 £ 53.12
rad/sec). Using z = e*T with a sample period of 7' = 0.1 sec, we find
that z = 0.8 + j0.25, as shown in Fig. 6.1. The desired characteristic

equation is then
z2 —1.62+0.70 = 0, (6.9)

and the evaluation of (6.7) for any control law K leads to

10 17T T2/2], 5
Z{() 1] ln 1]*[ T J~K‘ Kol

det =10

or

24 (TKy+ (T?/2)K1 — 2)z + (T?/2)K; = TKy+1=0. (6.10)




Pole Placement Example (FPW p. 241)

Equating coefficients in (6.9) and (6.10) with like powers of z, we

obtain two simultaneous equations in‘ the two unknown elements of
K:

TKy+ (T%/2)K) —2 = 1.6,
(T%/2)K) — TKy + 1 =0.70,

which are easily solved for the coefficients and evaluated for T' = 0.1

sec:
0.10 0.35
Ki=—2 =10, Ky= —2> =35
1=y =10 2= - =35

Pole Placement Example (FPW p. 241)
[ i 1 i ‘ 'Im axis f I [ I
‘ !
N ‘ o 720' {
] g g n S [ R
| gﬂT o 2,7[ 2 E
Ly o ,54°
- W T - ! : |
07 —— = e
‘ 107 N 70 |
. \ \ f N | e
144%_/an A /P | 2
3T 5 \‘\ ) i 1/ {
! / ) e NN
| L N ji\ 0.5 h
S (T - I;v ” 4 ,\f B . ﬁq/ ~.\064 g b :
bt TN AN
162°. L 10T | ‘ N 7 | 0, =18
| 08 |
Sl 4 | 5 |
T ’ \% 09— <
1 =
w, = — % % > 2 q X =
| I T T A i t=1.04 fioT 207 [N
-1.0 —0.8 —0.6 —04 -0.2 00 0.2 0.4 0.6 0.8 Lo
z = plane loci of roots of constant § and w,, A control roots
s ==t  ju, /1= A estimator roots
z=cT*
T = sampling period
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Ackermann's Formula (FPW p. 245)

» Gains maybe approximated with:

[K=[0..0 T & &T.. 8" 'T|'a(®)

« Where: C = controllability matrix, n is the order of the system
(or number of state elements) and «,:

C=[ &r...]
ae(B) = B" + a;B" L + @@ 2+ 4 o],
- a;: coefficients of the desired characteristic equation

au(2) = 21— @ +TK|=2"+ 2" '+ + an.

Ackermann's Formula Example (FPW p.246)

Example 6.2: Applying Ackermann’s formula to the satellite at-
titude-control system of Example 6.1, we find from (6.9) that

ay; = —1.6, ay = +0.70,

and therefore

win=[3 ]y Teonly <[5 27)

Furthermore, we find that
_[Tism 3722
r q:r1_{ B8 ]
and

[r cprrlzl/w[ 1 +3T/2],

1 -T/2
and finally

K = [K; K] = (1/T))[0 1]{’1 3T/2} 10.1 0.41']

1 -7/2]{0 01
therefore
1
[K1 K3 = T_"[O'l 0.3577]
=[10 3.5],

which is the same result as that obtained earlier.

15



Stability

ELEC 3004: Systems 25May 2015 - 32

Fast sampling revisited

e Forsmall T:
(sT)?

r=el' =14 T+ +...~14sT

z—1
—zrl4sT 5= ——
z + s s T

» Hence, the unit circle under the map from z to s-plane becomes:

Im(z — 1)
4

[N
\_/

Re(z — 1)

16



Specification bounds

» Recall in the continuous domain, response performance
metrics map to the s-plane:

Img(s) 4 Img(s) Img(s)
wy, = |s| _ 9
£ X
'I
3 Re(s) Re(s) Re(s)
\\ X X
\\
S =
|S|_? g:? 6 =sin~1¢
T S

O

Discrete bounds

» These map to the discrete domain:

In practice, you’d use Matlab to plot these, and check that the spec is satisfied

17



Example Code:

Input System Model G

numg=5; deng=[1 20 0]; sysg=tf(numg, deng);

Approximate the ZOH (l-e”-sT)/ (s)
[nd, dd]=pade(l,2); pade gives us
sysp=tf(nd, dd); sysi=tf([1],[1,0]); %}

sysl=series (l-sysp, sysi); Approximation as a series

Open loop response
syso=series (sysl, sysg);
sys=feedback (syso, 1) ;

step (sys) Display the step response

</assessable>

V AV AV 4 4V 4 & & 4 & /4

WARNING: NOT ASSESSABLE
YV D VYV VY

» Nothing beyond this point is on the exam.
(except for the exam review ©)

« Do not pay attention.

» Do not attempt to learn.
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Inverted Pendulm

5May 2015 - 38

Digital Control

s 1,
L= 3Mu} 4 5me3 —mgteosd

2
where V1 is the velocity of the cart and U s the velocity of the point mass 772. U1 and Uy can be
exprossed in terms of x and () by witing the velocity as the first dervtive of the position

=i
1

" 2y 2
o= ("W@-fmum) + (,‘W{% rm/u)
Simpiying the exprossion for U leads o
02 = i% — 2if cosh + (20

The Lagrangian is now gven by

)

1 1o
(M +m)&* — meif cost + Zme*6* —mglcost

and the equations of motion are

doL_oL
dtoz 9z
doL _dL
dtgs 00

substituting 7, n these equatons and smplying leads t the equatons tha describe the mation o
(M +m) & — mlf cosf + ml6*sinf = F
6 — gsinf = i cost

7 8
£ /
6
80 /
70 4
Wikipedia, ® :
Cart and pole 7 .
H
/
-2
) -
'
20
6
o 8
02 04 06 08 a 12 14 05 1 15 2 25

tisl tis]




Inverted Pendulum

1 1
L= iiﬂvf + Emvg —mgfcost

S— where U1 is the velocity of the cart and U is the velocity of the point mass 112. ¥y and Uz can be
expressed in terms of x and § by writing the velocity as the first derivative of the position;

2 .2
v =@

d P ofd ’
vé = (E(I — fsin 6‘)) + (E(ﬂ casﬁ‘))
Simplifying the expression for Vg leads to:
v2 = % — 203 cos + £26°

The Lagrangian is now given by:

Velocity pick-off

—w

1 . 1,
L == (M+m)i? — mbifcosh + §m£’26‘2 — mglcosf

2
and the equations of motion are:
4oL aL
dt oz~ gr
daL aL
dtgé — a6

substituting [ in these equations and simplifying leads to the equations that describe the motion o
(M +m)i — méfcosf + méd?sind = F
{8 — gsinfl = & cosf

Inverted Pendulum — Equations of Motion

» The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:
6 =w
@ =06=0% +Pu

s M+m
— 1
P—Ml.

Where:

If we further assume unity Ml (Ml = 1), then P = 1

20



Inverted Pendulum —State Space

« We then select a state-vector as:

_ [0 . _[6] _[@
X = [w] hence x = [w] = [w]
Hence giving a state-space model as:
[0 11, [0
4= 02 o]’B =4
The resolvent of which is:
- -1
e o1 [ s 1 [s 1]
o@=61-7=| 0 V] =m@le s

And a state-transition matrix as:

hot sinh Qt
B(t) = cosh Q 0

Q sinh Qt coshQt




