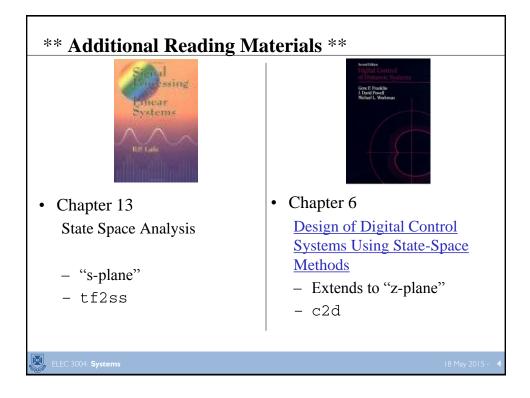
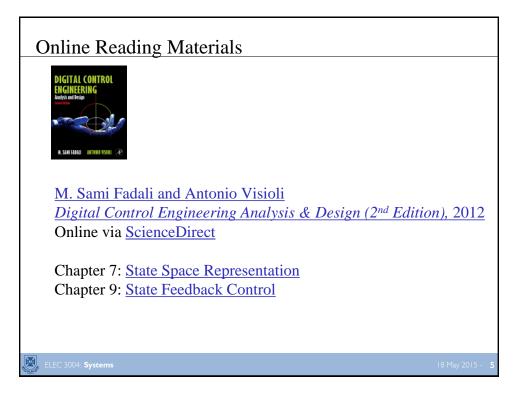
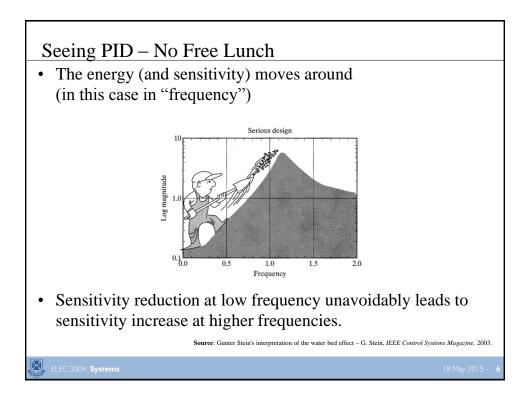
|                                                                                                                                                                      | http://elec3004.org |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| <b>State-Space – Analysis</b> :<br>Controllability & Observability & Stability                                                                                       |                     |  |  |  |
| ELEC 3004: <b>Digital Linear Systems</b> : Signals & Controls<br>Dr. Surya Singh<br>Lecture 11                                                                       |                     |  |  |  |
| elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/ © 2014 School of Information Technology and Electrical Engineering at The University of Queensland | May 18, 2015        |  |  |  |

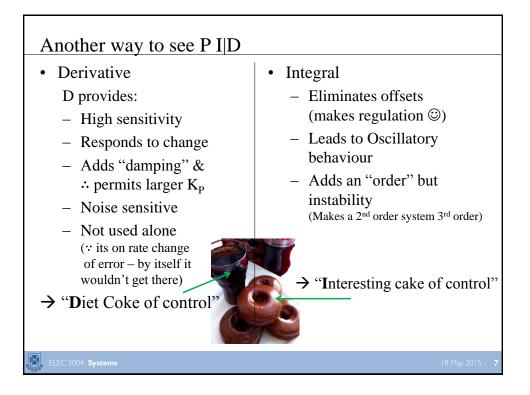
|             | Week            | Date     | Lecture Title                                          |  |
|-------------|-----------------|----------|--------------------------------------------------------|--|
|             | 1               | 2-Mar    | Introduction                                           |  |
| Outline:    |                 |          |                                                        |  |
| (1) Review  | v: Pl           |          |                                                        |  |
| < <i>/</i>  |                 |          | pace Representations                                   |  |
| (3) Contro  |                 |          | [Convolution & FT]<br>Discrete Systems & Z-Transforms  |  |
| (4) Observ  | vabil           | ity      |                                                        |  |
| (5) Stabili |                 | - 13-Apr |                                                        |  |
|             | 7               |          | L'ignar i meis                                         |  |
|             | ,               |          | [Digital Filters]                                      |  |
|             | 8               |          | Discrete Systems Analysis                              |  |
|             | 9<br>10         |          | [Feedback]                                             |  |
|             |                 |          | Introduction to (Digital) Control                      |  |
|             |                 |          | [Digitial Control]                                     |  |
|             |                 |          | Digital Control Design                                 |  |
|             |                 |          | [Introduction to State-Space]                          |  |
|             | <b>11</b><br>12 | 18-May   | State-Space - Analysis                                 |  |
|             |                 | 19-May   | [Stability]                                            |  |
|             |                 | 25-May   | Digitial Control Systems: Shaping the Dynamic Response |  |
|             |                 |          | [Applications in Industry]                             |  |
|             | 13              |          | System Identification & [Summary and Course Review]    |  |
|             | 15              | 2 1      | Information Theory + Communications                    |  |

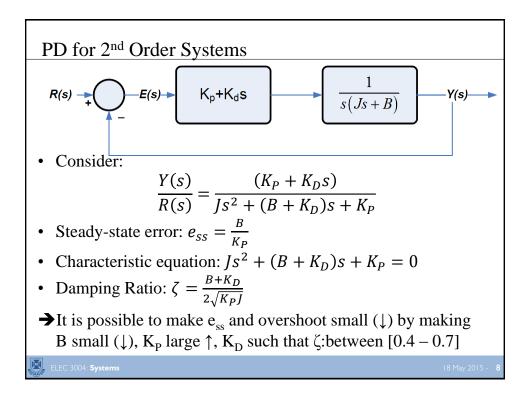




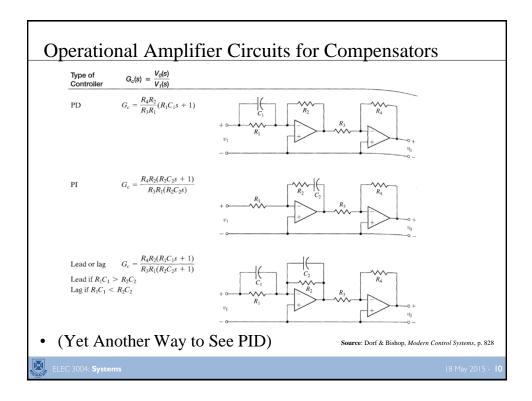


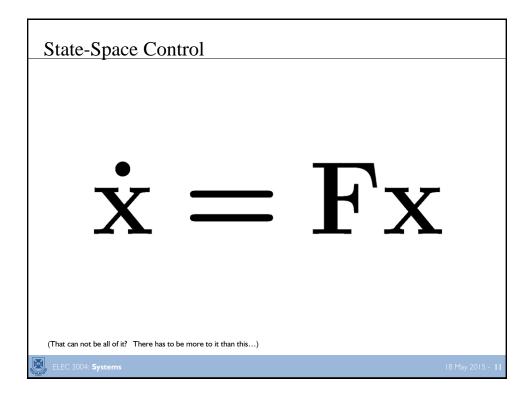


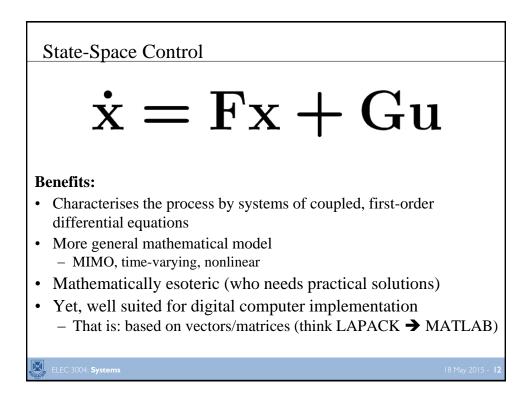


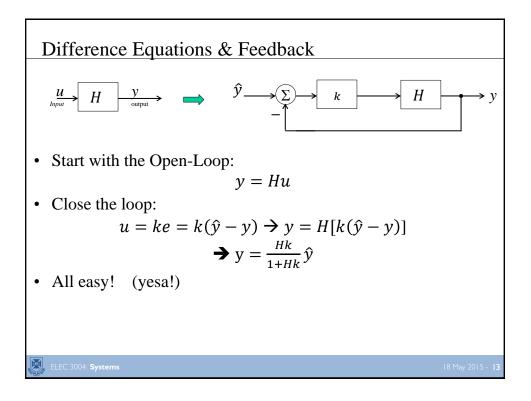


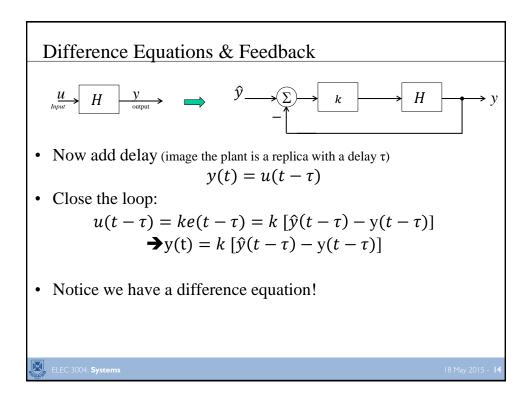


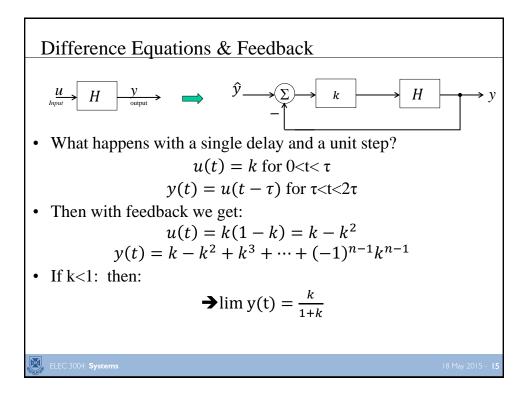


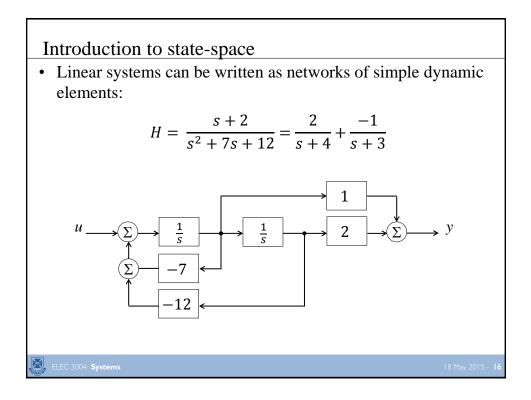


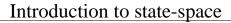




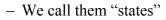


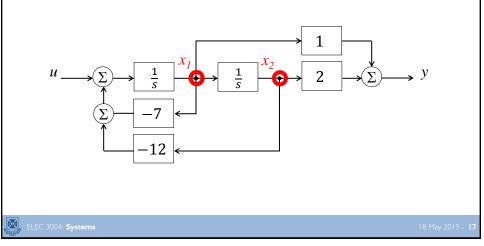


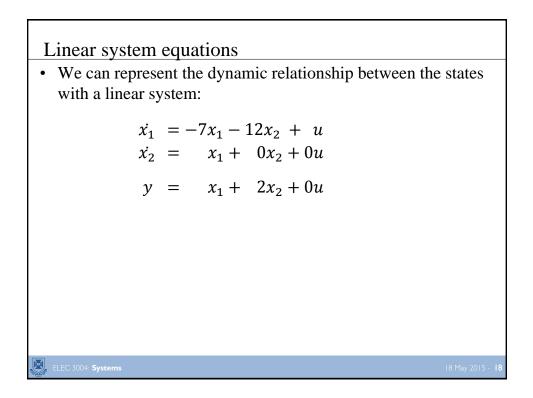


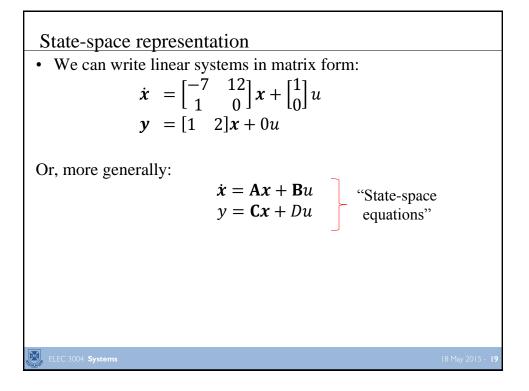


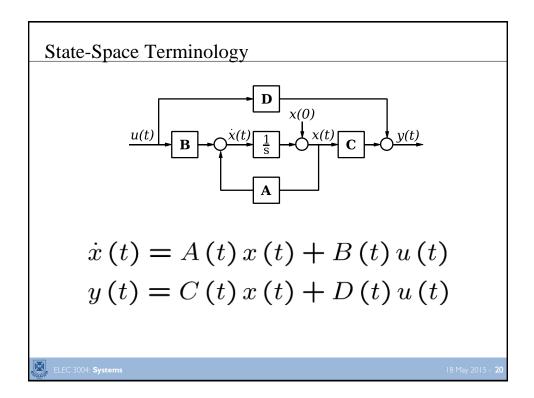
- We can identify the nodes in the system
  - These nodes contain the integrated time-history values of the system response

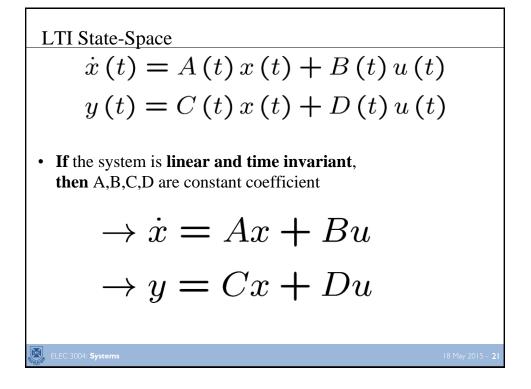




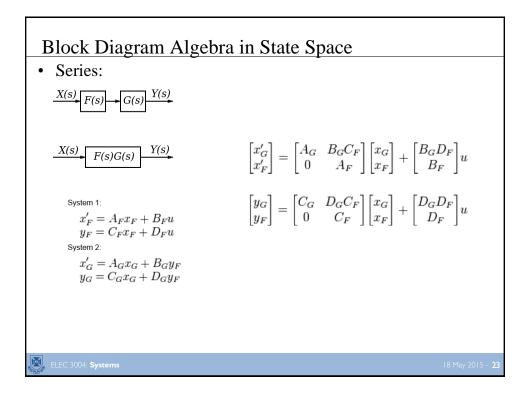


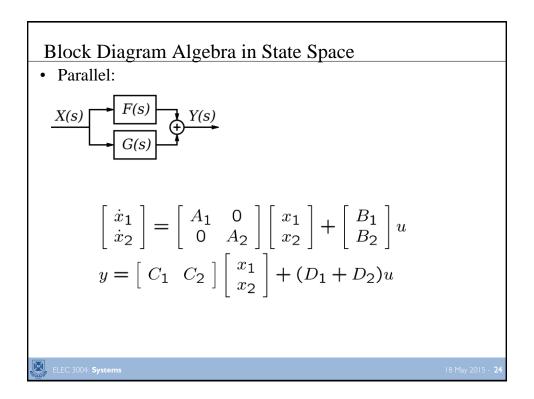


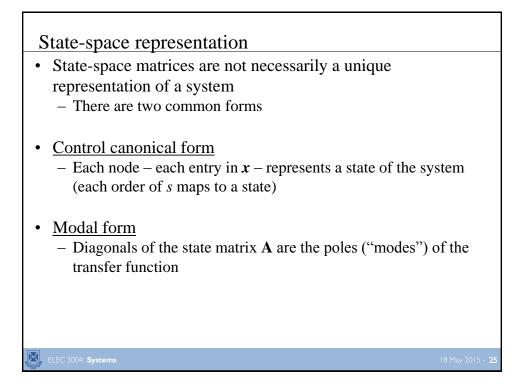




Discrete Time State-Space  $\dot{x}(t) = A(t) x(t) + B(t) u(t)$  y(t) = C(t) x(t) + D(t) u(t)• If the system is discrete, then x and u are given by difference equations  $\rightarrow x[k+1] = A[k] x[k] + B[k] u[k]$  y[k] = C[k] x[k] + D[k] u[k]  $\rightarrow x^+ = Ax + Bu$ y = Cx + Du







## Why is this "Kind of awesome"?

- The controllability of a system depends on the particular set of states you chose
- You can't tell just from a transfer function whether all the states of *x* are controllable
- The poles of the system are the Eigenvalues of  $\mathbf{F}$ ,  $(p_i)$ .

State evolution

ELEC 3004: Systems

- Consider the system matrix relation:
  - $\dot{x} = \mathbf{F}x + \mathbf{G}u$  $y = \mathbf{H}x + Ju$

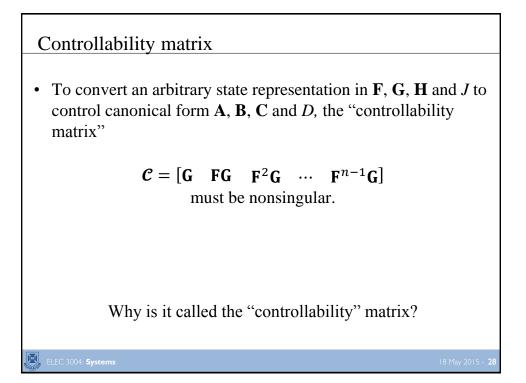
The time solution of this system is:

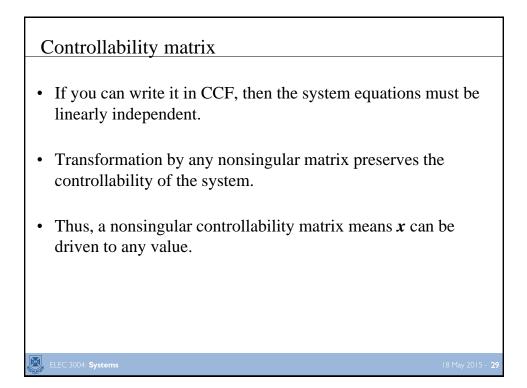
$$\mathbf{x}(t) = e^{\mathbf{F}(t-t_0)} \mathbf{x}(t_0) + \int_{t_0}^t e^{\mathbf{F}(t-\tau)} \mathbf{G}u(\tau) d\tau$$

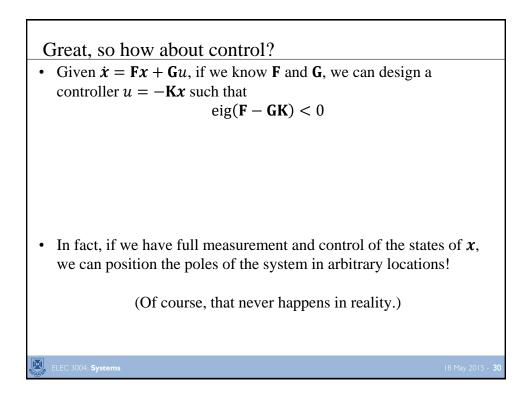
If you didn't know, the matrix exponential is: 1 + 1 + 1 = 1

$$e^{\mathbf{K}t} = \mathbf{I} + \mathbf{K}t + \frac{1}{2!}\mathbf{K}^{2}t^{2} + \frac{1}{3!}\mathbf{K}^{3}t^{3} + \cdots$$

18 May 2015 -







Solving State Space...  
• Recall:  

$$\dot{x} = f(x, u, t)$$
• For Linear Systems:  

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$
• For LTI:  

$$\rightarrow \dot{x} = Ax + Bu$$

$$\rightarrow y = Cx + Du$$

Γ

## $\rightarrow$ State-Transition Matrix $\Phi$

•  $\Phi(t) = e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}]$ 

• It contains all the information about the free motions of the system described by  $\dot{x} = Ax$ 

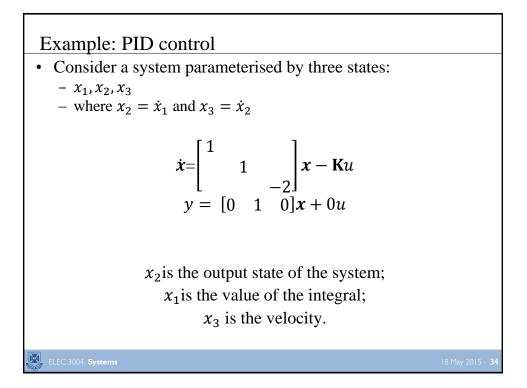
## LTI Properties:

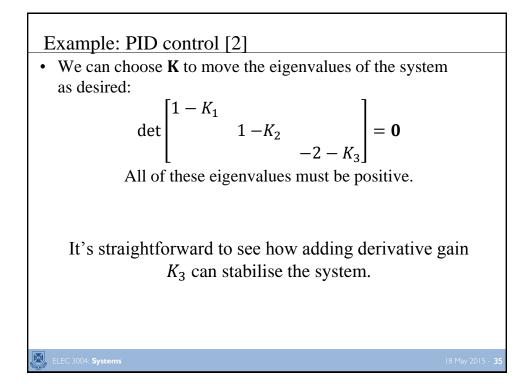
- $\Phi(0) = e^{0t} = I$
- $\Phi^{-1}(t) = \Phi(-t)$
- $\Phi(t_1 + t_2) = \Phi(t_1)\Phi(t_2) = \Phi(t_2)\Phi(t_1)$
- $[\Phi(t)]^n = \Phi(nt)$

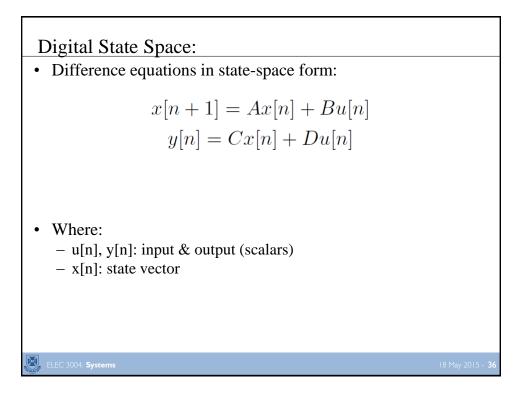
 $\rightarrow$  The closed-loop poles are the eignvalues of the system matrix

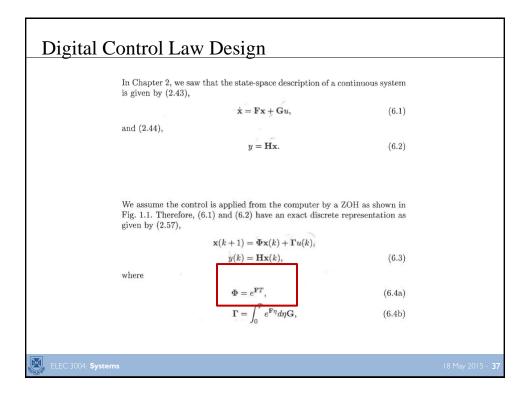
ELEC 3004: Systems

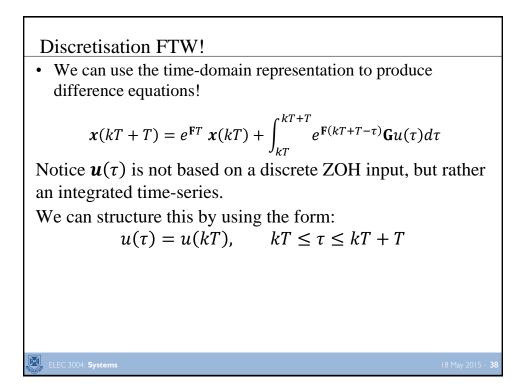
18 May 2015 - **33** 











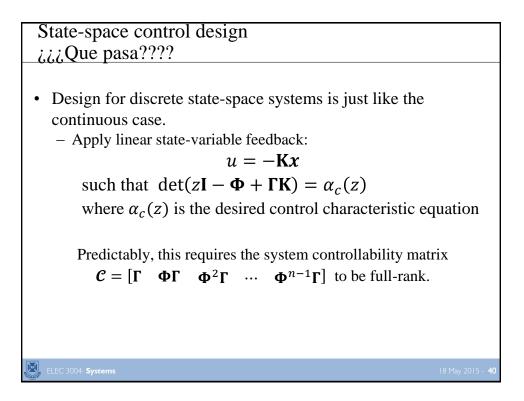
State-space z-transform

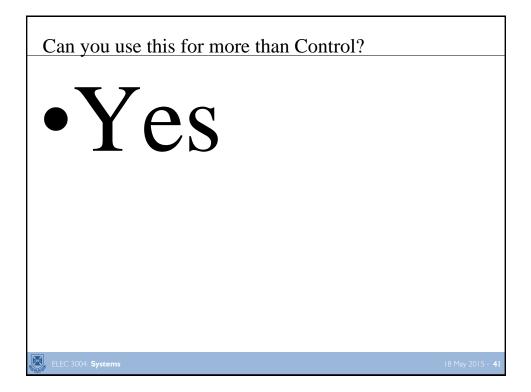
We can apply the z-transform to our system:  $(z\mathbf{I} - \mathbf{\Phi})\mathbf{X}(z) = \mathbf{\Gamma}U(k)$  $Y(z) = \mathbf{H}\mathbf{X}(z)$ 

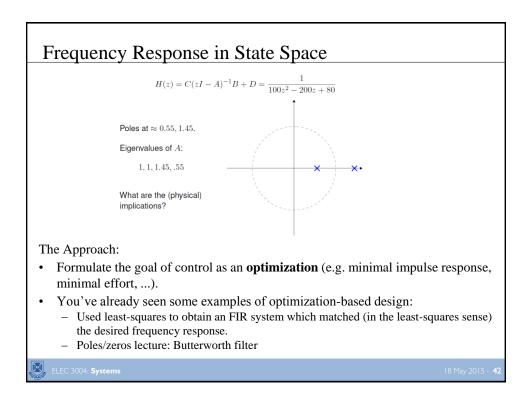
which yields the transfer function:

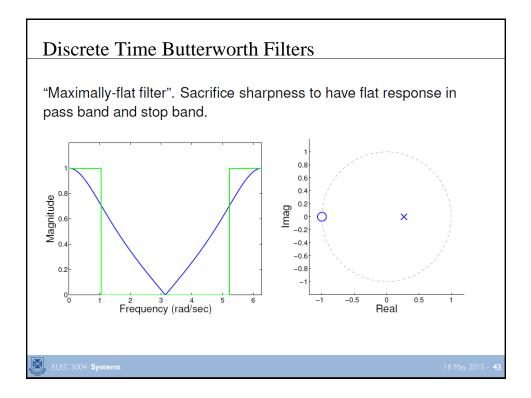
$$\frac{Y(z)}{X(z)} = G(z) = \mathbf{H}(z\mathbf{I} - \mathbf{\Phi})^{-1}\mathbf{\Gamma}$$

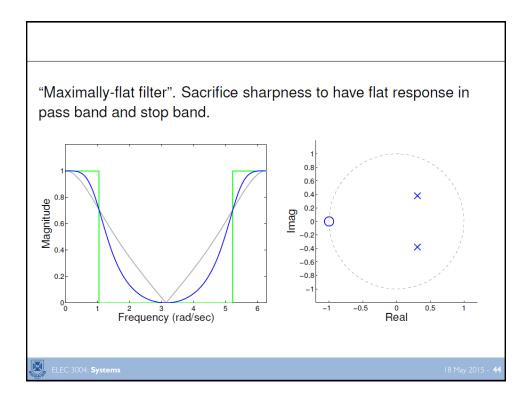
ELEC 3004: Systems

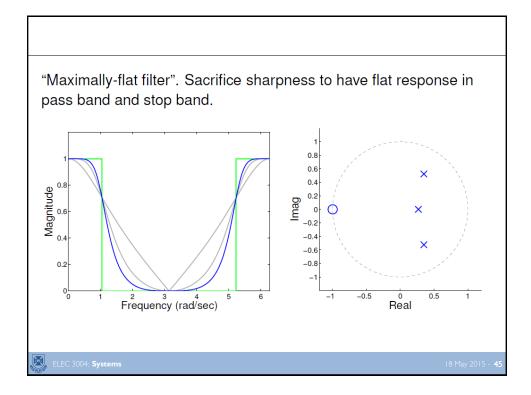




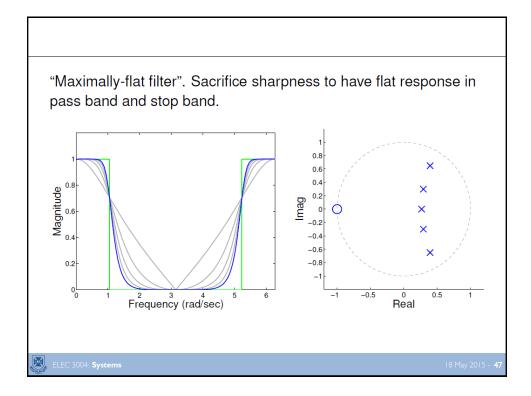


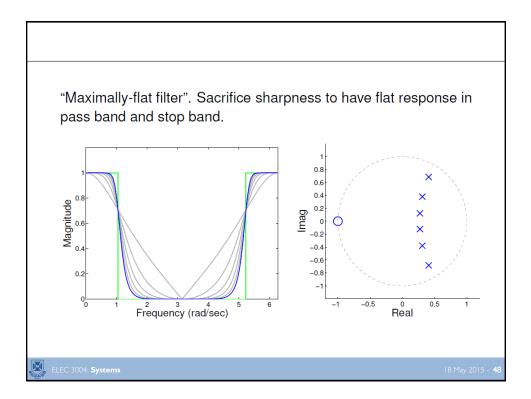


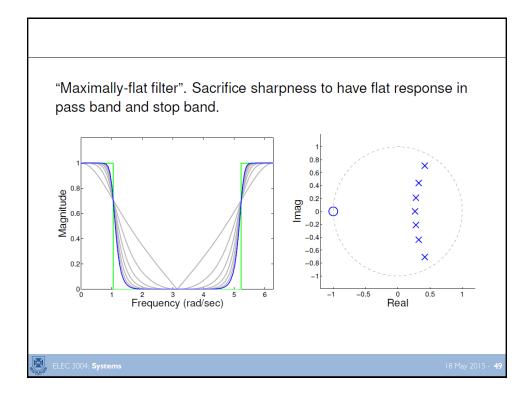












| How?                                                                                                                                                                                                                       |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| • Constrained Least-Squares<br>One formulation: Given $x[0]$                                                                                                                                                               |                         |
| $\begin{array}{ll} \underset{u[0],u[1],\ldots,u[N]}{\text{minimize}} &   \vec{u}  ^2, & \text{where } \vec{u} = \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[N] \end{bmatrix} \\ \text{subject to} & x[N] = 0. \end{array}$ |                         |
| Note that $x[n] = A^n x[0] + \sum_{k=0}^{n-1} A^{(n-1-k)} Bu[k],$                                                                                                                                                          |                         |
| so this problem can be written as                                                                                                                                                                                          |                         |
| $\underset{x_{ls}}{\text{minimize}}   A_{ls}x_{ls} - b_{ls}  ^2  \text{subject to}  C_{ls}x_{ls} = D_{ls}.$                                                                                                                |                         |
| ELEC 3004: Systems                                                                                                                                                                                                         | 18 May 2015 - <b>50</b> |

## Example 2: Command Shaping

18 May 2015 - **51** 

ELEC 3004: Systems

