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Week Date Lecture Title 

1 
2-Mar Introduction 

3-Mar Systems Overview 

2 
9-Mar Signals as Vectors & Systems as Maps 

10-Mar [Signals] 

3 
16-Mar Sampling & Data Acquisition & Antialiasing Filters 

17-Mar [Sampling] 

4 
23-Mar System Analysis & Convolution 

24-Mar [Convolution & FT]  

5 
30-Mar Discrete Systems & Z-Transforms 

31-Mar [Z-Transforms] 

6 
13-Apr Frequency Response & Filter Analysis 

14-Apr [Filters] 

7 
20-Apr Digital Filters 

21-Apr [Digital Filters] 

8 
27-Apr Discrete Systems Analysis 

28-Apr [Feedback] 

9 
4-May Introduction to (Digital) Control 

5-May [Digitial Control] 

10 
11-May Digital Control Design 

12-May [Introduction to State-Space] 

11 18-May State-Space - Analysis 
19-May [Stability] 

12 
25-May Digitial Control Systems: Shaping the Dynamic Response 

26-May [Applications in Industry] 

13 
1-Jun System Identification & [Summary and Course Review] 

2-Jun Information Theory + Communications 

Schedule 

18 May 2015 - ELEC 3004: Systems 2 

Outline: 

(1) Review: PID 

(2) Expand on State-Space Representations 

(3) Controllability 

(4) Observability 

(5) Stability 

http://itee.uq.edu.au/~metr4202/
http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/
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** Additional Reading Materials ** 

• Chapter 13 

State Space Analysis 

 

– “s-plane” 

  

 

 

• Chapter 6 

Design of Digital Control 

Systems Using State-Space 

Methods 

– Extends to “z-plane” 
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http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
http://robotics.itee.uq.edu.au/~elec3004/ebooks/FPW - Chapter 6 - Design of Digital Control Systems Using State-Space Methods.pdf
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M. Sami Fadali and Antonio Visioli 

Digital Control Engineering Analysis & Design (2nd Edition), 2012 

Online via ScienceDirect 

 

Chapter 7: State Space Representation 

Chapter 9: State Feedback Control 

 

Online Reading Materials 
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• The energy (and sensitivity) moves around  

(in this case in “frequency”) 

 

 

 

 

 

 

 

 

• Sensitivity reduction at low frequency unavoidably leads to 

sensitivity increase at higher frequencies. 
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Seeing PID – No Free Lunch 

Source: Gunter Stein's interpretation of the water bed effect – G. Stein, IEEE Control Systems Magazine, 2003. 

https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
https://library.uq.edu.au/record=b3143666~S7
http://www.sciencedirect.com.ezproxy.library.uq.edu.au/science/book/9780123943910
http://www.sciencedirect.com.ezproxy.library.uq.edu.au/science/article/pii/B9780123943910000071
http://www.sciencedirect.com.ezproxy.library.uq.edu.au/science/article/pii/B9780123943910000071
http://www.sciencedirect.com.ezproxy.library.uq.edu.au/science/article/pii/B9780123943910000071
http://www.sciencedirect.com.ezproxy.library.uq.edu.au/science/article/pii/B9780123943910000095
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Another way to see P I|D 

• Derivative 

D provides: 

– High sensitivity 

– Responds to change  

– Adds “damping” &  

∴ permits larger KP 

– Noise sensitive 

– Not used alone 
(∵ its on rate change 

 of error – by itself it  

wouldn’t get there) 

 “Diet Coke of control” 

• Integral 

– Eliminates offsets 

(makes regulation ) 

– Leads to Oscillatory 

behaviour 

– Adds an “order” but 

instability 
(Makes a 2nd order system 3rd order) 

 

 

 “Interesting cake of control” 
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• Consider: 
𝑌 𝑠

𝑅 𝑠
=

𝐾𝑃 + 𝐾𝐷𝑠

𝐽𝑠2 + 𝐵 + 𝐾𝐷 𝑠 + 𝐾𝑃
 

• Steady-state error: 𝑒𝑠𝑠 =
𝐵

𝐾𝑃
 

• Characteristic equation: 𝐽𝑠2 + 𝐵 + 𝐾𝐷 𝑠 + 𝐾𝑃 = 0 

• Damping Ratio: 𝜁 =
𝐵+𝐾𝐷

2 𝐾𝑃𝐽
 

It is possible to make ess and overshoot small (↓) by making 

B small (↓), KP large ↑, KD such that ζ:between [0.4 – 0.7] 

ELEC 3004: Systems 18 May 2015 - 8 

PD for 2nd Order Systems 
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Can Be Used to Make (& Get Over) Speed Bumps 
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Source: xkcd -- http://what-if.xkcd.com/61/ 

“How fast can you hit a speed bump while driving and live?” 

• (Yet Another Way to See PID) 

ELEC 3004: Systems 18 May 2015 - 10 

Operational Amplifier Circuits for Compensators 

Source: Dorf & Bishop, Modern Control Systems, p. 828 

http://what-if.xkcd.com/61/
http://what-if.xkcd.com/61/
http://what-if.xkcd.com/61/
http://what-if.xkcd.com/61/
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State-Space Control 

 
(That can not be all of it?   There has to be more to it than this…) 

18 May 2015 - ELEC 3004: Systems 11 

State-Space Control 

Benefits: 

• Characterises the process by systems of coupled, first-order 

differential equations  

• More general mathematical model  
– MIMO, time-varying, nonlinear 

• Mathematically esoteric (who needs practical solutions)  

• Yet, well suited for digital computer implementation 
– That is: based on vectors/matrices (think LAPACK  MATLAB) 

 

 18 May 2015 - ELEC 3004: Systems 12 
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Difference Equations & Feedback 

• Start with the Open-Loop:  

𝑦 = 𝐻𝑢 

• Close the loop:  

𝑢 = 𝑘𝑒 = 𝑘 𝑦 − 𝑦   𝑦 = 𝐻[𝑘 𝑦 − 𝑦 ] 

 y =
𝐻𝑘

1+𝐻𝑘
𝑦  

• All easy!    (yesa!) 

𝐻 u 
Input 

y 
output 

S   𝑘 𝐻 𝑦  y 

– 
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Difference Equations & Feedback 

• Now add delay (image the plant is a replica with a delay τ) 

𝑦(𝑡) = 𝑢(𝑡 − 𝜏) 

• Close the loop:  

𝑢(𝑡 − 𝜏) = 𝑘𝑒(𝑡 − 𝜏) = 𝑘 [𝑦 𝑡 − 𝜏 − y(𝑡 − 𝜏)] 

y(t) = 𝑘 [𝑦 𝑡 − 𝜏 − y(𝑡 − 𝜏)] 

 

• Notice we have a difference equation! 

 

𝐻 u 
Input 

y 
output 

S   𝑘 𝐻 𝑦  y 

– 

18 May 2015 - ELEC 3004: Systems 14 
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Difference Equations & Feedback 

• What happens with a single delay and a unit step? 

𝑢 𝑡 = 𝑘 for 0<t< τ 
𝑦(𝑡) = 𝑢(𝑡 − 𝜏) for τ<t<2τ 

• Then with feedback we get: 
𝑢 𝑡 = 𝑘 1 − 𝑘 = 𝑘 − 𝑘2 

𝑦 𝑡 = 𝑘 − 𝑘2 + 𝑘3 +⋯+ −1 𝑛−1𝑘𝑛−1 

• If k<1:  then: 

lim y(t) =
𝑘

1+𝑘
 

 

𝐻 u 
Input 

y 
output 

S   𝑘 𝐻 𝑦  y 

– 

18 May 2015 - ELEC 3004: Systems 15 

Introduction to state-space 
• Linear systems can be written as networks of simple dynamic 

elements: 
 

𝐻 = 
𝑠 + 2

𝑠2 + 7𝑠 + 12
=

2

𝑠 + 4
+

−1

𝑠 + 3
 

S   
1
𝑠   

1
𝑠 S 

−7 

1 

−12 

2 

S 

u y 

18 May 2015 - ELEC 3004: Systems 16 
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Introduction to state-space 
• We can identify the nodes in the system 

– These nodes contain the integrated time-history values of the 

system response 

– We call them “states” 
 

S   
1
𝑠   

1
𝑠 S 

−7 

1 

−12 

2 

S 

u y 
x1 x2 
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Linear system equations 
• We can represent the dynamic relationship between the states 

with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 

 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 

 

18 May 2015 - ELEC 3004: Systems 18 
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State-space representation 
• We can write linear systems in matrix form: 

 𝒙  =
−7 12
1 0

𝒙 +
1
0
𝑢 

 𝒚  = 1 2 𝒙 + 0𝑢 

 

Or, more generally: 

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

 

“State-space 

equations” 

18 May 2015 - ELEC 3004: Systems 19 

State-Space Terminology 

18 May 2015 - ELEC 3004: Systems 20 
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• If the system is linear and time invariant,  

then A,B,C,D are constant coefficient  

 

LTI State-Space 

18 May 2015 - ELEC 3004: Systems 21 

• If the system is discrete,  

then x and u are given by difference equations 

 

Discrete Time State-Space 

18 May 2015 - ELEC 3004: Systems 22 
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• Series: 

 

Block Diagram Algebra in State Space 

18 May 2015 - ELEC 3004: Systems 23 

• Parallel: 

 

Block Diagram Algebra in State Space 

18 May 2015 - ELEC 3004: Systems 24 
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State-space representation 
• State-space matrices are not necessarily a unique 

representation of a system 
– There are two common forms 

 

• Control canonical form 
– Each node – each entry in x – represents a state of the system 

(each order of s maps to a state) 

 

• Modal form 
– Diagonals of the state matrix A are the poles (“modes”) of the 

transfer function 

18 May 2015 - ELEC 3004: Systems 25 

Why is this “Kind of awesome”? 
• The controllability of a system depends on the particular set of 

states you chose 

 

• You can’t tell just from a transfer function whether all the 

states of x are controllable 

 

• The poles of the system are the Eigenvalues of F, (𝑝𝑖). 

18 May 2015 - ELEC 3004: Systems 26 
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State evolution 
• Consider the system matrix relation: 

𝒙 = 𝐅𝒙 + 𝐆𝑢 

𝑦 = 𝐇𝒙 + 𝐽𝑢 

 
 

The time solution of this system is: 

𝒙 𝑡 = 𝑒𝐅 𝑡−𝑡0 𝒙 𝑡0 + = 𝑒𝐅 𝑡−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑡

𝑡0

 

 

 

If you didn’t know, the matrix exponential is: 

𝑒𝐊𝑡 = 𝐈 + 𝐊𝑡 +
1

2!
𝐊2𝑡2 +

1

3!
𝐊3𝑡3 +⋯ 

18 May 2015 - ELEC 3004: Systems 27 

Controllability matrix 
 

• To convert an arbitrary state representation in F, G, H and J to 

control canonical form A, B, C and D, the “controllability 

matrix” 

 
𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

must be nonsingular. 

 

 

 

 

Why is it called the “controllability” matrix? 

18 May 2015 - ELEC 3004: Systems 28 



15 

Controllability matrix 
 

• If you can write it in CCF, then the system equations must be 

linearly independent.  

 

• Transformation by any nonsingular matrix preserves the 

controllability of the system. 

 

• Thus, a nonsingular controllability matrix means x can be 

driven to any value. 
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Great, so how about control? 
• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can design a 

controller 𝑢 = −𝐊𝒙 such that 

eig 𝐅 − 𝐆𝐊 < 0 

 

 

 

 

 

 

• In fact, if we have full measurement and control of the states of 𝒙, 

we can position the poles of the system in arbitrary locations! 

 

(Of course, that never happens in reality.) 

18 May 2015 - ELEC 3004: Systems 30 
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• Recall: 

 

 

 

• For Linear Systems: 

 

 

 

• For LTI: 

 

 

Solving State Space… 
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𝑥 = 𝐴𝑥 + 𝐵𝑢 

𝑠𝑋 𝑠 − 𝑥 0 = 𝐴𝑋 𝑠 + 𝐵𝑈 𝑠  

𝑋 𝑠 = 𝑠𝐼 − 𝐴 −1𝑥 0 + 𝑠𝐼 − 𝐴 −1𝐵𝑈 𝑠  

 

𝑋 𝑠 = ℒ 𝑒𝐴𝑡 𝑥 0 + ℒ 𝑒𝐴𝑡 𝐵𝑈 𝑠  

 

𝑥 𝑡 =  𝑒𝐴𝑡
𝑡

0

𝐵𝑢 𝜏 𝑑𝜏 

 

⇒ 𝑒𝐴𝑡 

 

 

ELEC 3004: Systems 18 May 2015 - 32 

 Solutions to State Equations 
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• Φ 𝑡 = 𝑒𝐴𝑡  = ℒ−1[ 𝑠𝐼 − 𝐴 −1] 

 

• It contains all the information about the free motions of the 

system described by 𝑥 = 𝐴𝑥 

 

LTI Properties: 

• Φ 0 = 𝑒0𝑡 = 𝐼 

• Φ−1 𝑡 = Φ −𝑡  

• Φ 𝑡1 + 𝑡2 = Φ 𝑡1 Φ 𝑡2 = Φ 𝑡2 Φ 𝑡1  

• Φ 𝑡 𝑛 = Φ 𝑛𝑡  
 

 The closed-loop poles are the eignvalues of the system matrix 

 

 ELEC 3004: Systems 18 May 2015 - 33 

 State-Transition Matrix Φ 

Example: PID control 
• Consider a system parameterised by three states:  

– 𝑥1, 𝑥2, 𝑥3 

– where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

 

 

𝑥2is the output state of the system;  

𝑥1is the value of the integral;  
𝑥3 is the velocity. 

18 May 2015 - ELEC 3004: Systems 34 
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Example: PID control [2] 
• We can choose 𝐊 to move the eigenvalues of the system  

as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 

 

 

It’s straightforward to see how adding derivative gain  
𝐾3 can stabilise the system.  

18 May 2015 - ELEC 3004: Systems 35 

• Difference equations in state-space form: 

 

 

 

 

 

 

• Where: 
– u[n], y[n]: input & output (scalars) 

– x[n]: state vector 

 

 

 

Digital State Space: 

18 May 2015 - ELEC 3004: Systems 36 
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Digital Control Law Design 

18 May 2015 - ELEC 3004: Systems 37 

Discretisation FTW! 
• We can use the time-domain representation to produce 

difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, but rather 

an integrated time-series. 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  

18 May 2015 - ELEC 3004: Systems 38 
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State-space z-transform 
 

We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 

which yields the transfer function: 
𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪 

18 May 2015 - ELEC 3004: Systems 39 

 

• Design for discrete state-space systems is just like the 

continuous case. 
– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

 such that  det 𝑧𝐈 − 𝚽 + 𝚪𝐊 = 𝛼𝑐 𝑧  

 where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

Predictably, this requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
 

ELEC 3004: Systems 18 May 2015 - 40 

State-space control design 
¿¿¿Que pasa???? 
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•Yes 
Can you use this for more than Control? 

18 May 2015 - ELEC 3004: Systems 41 

The Approach: 

• Formulate the goal of control as an optimization (e.g. minimal impulse response, 

minimal effort, ...). 

• You’ve already seen some examples of optimization-based design:  
– Used least-squares to obtain an FIR system which matched (in the least-squares sense) 

the desired frequency response. 

– Poles/zeros lecture: Butterworth filter 

Frequency Response in State Space 

18 May 2015 - ELEC 3004: Systems 42 
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Discrete Time Butterworth Filters 

18 May 2015 - ELEC 3004: Systems 43 
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• Constrained Least-Squares …  

How? 

18 May 2015 - ELEC 3004: Systems 50 
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Example 2: 

Command Shaping 

18 May 2015 - ELEC 3004: Systems 51 

Command Shaping 
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Command Shaping 

•  Zero Vibration (ZV)  

 

 

 

• Zero Vibration and Derivative (ZVD)  
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