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Week Date Lecture Title
| 2-MarjIntroduction
Outline:
(1) Review: 2" Order Systems
(2) PID

(3) Tuning Controllers

(4) State-Space

(5) Least Squares

(6) Quantization Effects (and Handling this via Least Squares)

4-May|Introduction to (Digital) Control
5-May|[Digitial Control]

10 11-May|Digital Control Design & State-Space
12-May|Controllability & Observability

18-May|Stability of Digital Systems

19-May|[ Stability]

25-May|Applications in Industry

26-May|Digitial Control System Hardware
1-Jun|System Identification & Information Theory + Communications
2-JunSummary and Course Review
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Announcements: /\
PS 3 Grading: I
— Let’s see if we can get this done in 24-hours -
— We’re working on it

« PS4
— Working on it too!

« PS5:
— Working on it too too!!

« Final Exam Logistics:
— Friday 26/6/2014 at 2:30pm
— Location: TBA
— Closed-book
— Practice exam will be posted soon (exams from 2014, 2013, 2012 are online!)
(Working on it too too too!!)
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Lab 3 - LeviLab

ELEC 3004: Systems Il'May2015- 4


http://robotics.itee.uq.edu.au/~elec3004/2014/assignments/ELEC3004_EXAM_2014.pdf
http://robotics.itee.uq.edu.au/~elec3004/2013/assignments/ELEC3004_final_exam.v2013.pdf
http://courses.itee.uq.edu.au/elec3004/2012s1/_lectures/ELEC3004_final_exam.pdf

LeviLab Interactive — http://lab.elec3004.com
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Review: Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = ™" cos(bt) U(t) (U (t) = unit step)
+ sample:  y(kT) = r* cos(k#) U(kT) with r = e~ & = bT
z ¥ 1 z
(z —red?)  2(z—rei¥)
- z(z — rcosb)
T (2 —rei?)(z — re—if)

* transform: Y (z2) = %

Im(z)A
* e.g. Yp is the pulse response of G(z): )
z(z — rcosf) '
G(z) = - - X
(z) (z —rei?)(z — re—if) [
oles: { 2 =re -1 0<}7{H ©——> Re(z)
POES V2 = e ® |
: x
{ z=0 '
zeros: .
z =rcosf

o
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Response of 2nd order system [1/3]

Responses for varying 7:
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Response of 2nd order system [2/3]
Responses for varying 8: 1
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Response of 2nd order system [3/3]
Some special cases:

r for 8 =0, Y (z) simplifies to:

Y(z) = —

z—r
— exponentially decaying response

> whent# =0and r=1:

Y(z) = —=
=) z—1
— unit step
> when r =0
Y{iz)=1
— unit pulse
> whenf#=0and -1 <r <0
samples of alternating signs

2" Order System Response

Response of a 2" order system to increasing levels of damping:
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Damping and natural frequency

z=eSTwheres = —(w, + jw,/1 — {2
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[Adapted from Franklin, Powell and Emami-Naeini]

Pole positions in the z-plane

« Poles inside the unit circle

are stable

« Poles outside the unit circle

unstable

« Poles on the unit circle

are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r




2" Order System Specifications

Characterizjng the step response:
> ' 1%
e Lo
0.1
1/ t
* Rise time (10% - 90%): i~ % + Steady state error to unit step: e
i o TC + Phase margin:
* Overshoot:  ™»™ /=3 dppr =~ 100¢
+ Settling time (to 1%0): ¢, = ﬂ Why 4.6? 1t’s -In(1%)
) Cwo —ﬁfw°=QMH@m=4ﬁﬁg=§%

2" Order System Specifications

Characterizing the step response:

_ 1%
e i
L/ \—TZAH:__T__

* Risetime (10% -> 90%) & Overshoot:
t, M, 2 , o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:<co1
» Steady state error to unit step:
e, = final value theorem e, = lim {(z = 1) F (2)}




Ex: System Specifications = Control Design [1/4]

Design a controller for a system with:
« A continuous transfer function: G (s) =
« Addiscrete ZOH sampler
« Sampling time (T): T,=1s
« Controller:
UL — —O.S’U,k_l —|— 13 (6k - 0.88€k_1)

0.1
s(s+0.1)

The closed loop system is required to have:
* M, <16%
*+ t,<10s

B<1

Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH

Ty ey uk DAC | u(?) , M) [sample i
D) : H G(s) (1

+ +ADC | !
- : G(2) i

G(z)=(1— 271)2{@} =& I)Z{ _S.Q(HU:().D}

e.g. look up Z{a/s*(s +a)} in tables:

L1 2((0.171+e’0‘1)2+(17€’0'1 70.16’0'1))
iy (=D
#(2) = 1 2 —0.1
z 0.1(z —1)%(z — e~ 01
0.0484(z + 0.9672)

T (2 —1)(2 — 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z) (1-088:"1) . (z—0.88)
E(z) (1405271 — 77 (240.5)

=D(z)=13




Ex: System Specifications = Control Design [3/4]

2. Check the steady state error e55 when 7, = unit ramp

ess = lim e, = lim (2 — 1)E(z)
k—o0 z—1

R E U Y B(z) _ ! ;
+7\T D) G(z) > R(z) 1+ D(2)G(z)
- Tz
R(z) =
. . 1z 1 ) T
o =l N T b | - M e nomee
li T 10g- - e
= 111m =
= .0484(= + 0.96T: .
Uy Q080 £ 0.9672) by gy g g
(z —1)(z — 0.9048) g
B 6}
1 — 0.9048 =
= = 0.96 g
0.0484(1 + 0.9672)D(1) 0-96 S S
£ 2
—> ess <1 (as required) ©
O

5
Time (sec)

Ex: System Specifications = Control Design [4/4]

3. Step response: overshoot M, < 16% — ¢ > 0.5
settling time ¢, < 10 = |z| < 0.01%* = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
4, (2 —0.88) 0.0484(z + 0.9672)
1+13 - =0
+ (z40.5) (z—1)(z — 0.9048)
— 2z = 0.88, —0.050 & 50.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
r=2031,0=1.73

z = —0.050 £ j0.304 = et — { ]
¢ =0.56

T
1

Output y and input u/10
@

all specs satisfied!

5
Time (sec)




PID — the Good Stuff

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

Proportional ij
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©

PID

 Collectively, PID provides two zeros plus a pole at the origin

— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors

» Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

10



PID

» Three basic types of control:
— Proportional
— Integral, and

— Derivative

» The next step up from lead compensation
— Essentially a combination of
proportional and derivative control

r

O

L A

+ e u
D | G
+

Proportional Control

A discrete implementation of proportional control is identical to continuous;
that is, where the continuous is

the discrete is

u(t) = Kpe(t) = D(s)=K,,

u(k) = Kpe(k) = W

where e(t) is the error signal as shown in Fig 5.2.

r

v

+ e u
D | G
+
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Derivative Control

For continuous systems, derivative or rate control has the form
u(t) = KpTpe(t) = D(s)= K,Tps

where T'p is called the derivative time. Differentiation can be approximated
in the discrete domain as the first difference, that is,

(e(k) — e(k —1)) 1-2z1 z—1
u(k) = K dp———g— = D(z) = KpTp—r— = KpTp——

In many designs, the compensation is a sum of proportional and deriva-
tive control (or PD control). In this case, we have

D(z) = K, (1 + TL;;lZ)

or, equivalently,

Derivative Control [2]

 Similar to the lead compensators
— The difference is that the pole isatz=0

[Whereas the pole has been placed at various locations
along the z-plane real axis for the previous designs. ]

» |n the continuous case:

— pure derivative control represents the ideal situation in that there
is no destabilizing phase lag from the differentiation
— the poleisats = -

* In the discrete case:
- 2z=0
— However this has phase lag because of the necessity to wait for
one cycle in order to compute the first difference




Integral Control

For continuous systems, we integrate the error to arrive at the control,

t
o) = %’ /t d(idt = Dis)= —TI%

where T7 is called the integral, or reset time. The discrete equivalent is to
sum all previous errors, yielding

K,T
T

B = | D= e B

u(k) = u(k—1)+ S Ti-71) Te-1

(5.60)

Just as for continuous systems, the primary reason for integral control is to
reduce or eliminate steady-state errors, but this typically occurs at the cost
of reduced stability.

ELEC 3004: Systems Il May 2015 - 25

PID Control

B 1z Tp(z—1)
D(z)—Kp(1+Tl(z_1)+ = )

The user simply has to determine the best values of
. Kp

+ Tpand

. TI

ELEC 3004: Systems Il May 2015 - 26
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PID as Difference Equation

R(z E(z) D(7) Ulz) N G(—") Y(z) >

H(z)

F 3

U(z) Tz z—1
E(Z) =D(Z)=Kp+Ki<m>+Kd< T2 )

u(k) = [Kp + K;T + (54)] - e(k) — [KqT] - e(k — 1) + [K;] - u(k — 1)

PID Intuition & Tuning

» Tuning — How to get the “magic” values:
— Dominant Pole Design
— Ziegler Nichols Methods
— Pole Placement
— Auto Tuning

« Although PID is common it is often poorly tuned
— The derivative action is frequently switched off!
(Why - it’s sensitive to noise)
— Also lots of “T” will make the system more transitory &
leads to integrator wind-up.

14



PID Intuition

de(t)
dr

Lo
ut) = K [e(:) = [ e(ds + T,

. P:
— Control action is proportional to control error
— It is necessary to have an error to have a non-zero control signal

— The main function of the integral action is to make sure that the
process output agrees with the set point in steady state

PID Intuition

de(t)
dr

u(l) = K [e(:) ¥ l? [ e(s)ds + Ty,

— The purpose of the derivative action is to improve the closed loop
stability.

— The instability “mechanism” “controlled” here is that because of
the process dynamics it will take some time before a change in
the control variable is noticeable in the process output.

— The action of a controller with proportional and derivative action
may e interpreted as if the control is made proportional to the
predicted process output, where the prediction is made by
extrapolating the error by the tangent to the error curve.

15



PID Intuition

Effects of increasing a parameter independently

Parameter Rise time Overshoot Settling time  Steady-state error ~ Stability
K, l n Minimal change l l
K; ! n n Eliminate l
Improve
Kp Minor change l l .N.O effect / (if Kp
minimal change
small)
PID Intuition: P and PI
18 1.8 —T
16 i i e 16 —t—i— !~ At
14 — —— — 14— —% ——
| lPI
12 1 12 |- /'\'( -
10 } 1.0 f
y - y
08 = f - 038 ——— =
" rlij)n;il Y (S . 5 / 1 ) [ ==
L ‘ | 9 Proportional ‘ \ ‘ ‘
0.4 I 04 - I ‘ =
02 —t ] | 02 ; Lst
0 i | - 0 . | 1 1 j
0.0 100.0 200.0 300.0 400.0 00 100.0 200.0 300.0 400.0
Time (sec) Time (sec)




PID Intuition: P and Pl and PID

» Responses of P, PI, and PID control to

8 T |
| |
6la—L -
| :
4 r/h |
3 |
iy
E o HY [\ M Ao

Time (msec)

(a) step disturbance input

Amplitude

1.8 T T T T
| | | |
L6 P ! j
[ | Pl |
1.2 | /\ A 1
1.0 { D
¥ -l LA LA
5 T T
0.8 R e EER S
0.6 H—H—— !
P
0.4
0.2 e | — I. SRR —
0 |
0 1 2 3 4 5

Time (msec)

(b) step reference input

PID Example

G(s) =

A 3" order plant: b=10, {=0.707, 0,=4

* PID:

s(s+ b)(s + 2¢w,,)

|

e

+ Kp=855:

5 S S —

H’ R 083s \
= 1 ! |
g |
<05 ! + /

1 o
0 | f |
0 02 04 0.6 08 1 12 14 6 1.8 2
Time (s)
(@)

2 Kp = 8855 -
E R g
g-20 S

Amplitude

- 40% Kp = 370

“‘\ Quarter amplinsde decay [
.'/ \ 5

17



PID Algorithm (in various domains):

FPW §5.8.4 [p.224]
» PID Algorithm (in Z-Domain):

D(z) = K, <1 + Th(z - D)

T,(z—-1) T Tz
« As Difference equation:

u(tp) = u(tp—1)+Kp [(1+ 5§+ 22) e(t) + (-1 = Zf) e(te1) + Re(tp_2)]
» Pseudocode [Source: Wikipedia]:

previous_error = 0, integral = 0
start:
error = setpoint - measured_value
integral = integral + error*dt
derivative = (error - previous_error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error
wait (dt)

goto start

Ziegler-Nichols Tuning — Reaction Rate

FPW § 5.8.5 [p.224]

R0}
/

A/Slope R= % =reaction rate
K

/ T

[/

y
|
|
|
|
|
L=ty—¥e 1 t

lag

Table 5.2 Ziegler-Nichols tuning
parameters using transient response.

K, T Tp
P 1/RL
PI 09/RL 3L

PID 1.2/RL 2L 0.5L

18



Quarter decay ratio

4 ¥(0)

14 Period

0.25

N

VA

O

Ziegler-Nichols Tuning — Stability Limit Method

FPW § 5.8.5 [p.226]

* Increase K, until the system has continuous oscillations
=Ky, : Oscillation Gain for “Ultimate stability”
= Py, : Oscillation Period for “Ultimate stability”

Table 5.3 Ziegler-Nichols tuning
parameters using stability limit.

- Ty Tp
P 0.5Kx,
PI 0.45K,  P./1.2
PID  0.6K, P,/2 P,/8

19



ELEC 3004: Systems

That’s it for Today!

See you tomorrow! ©

Il May 2015 - 39
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