	http://elec3004.org
Digital Control Design	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 10-Part A (Slide 13, Revised May 13)	
elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/	May 11, 2015

~ • • • • • • • • • • • •	Week	Date	Lecture Title	
	1	2-Mar	Introduction	
Outline:	2	9-Mar	Systems Overview Signals as Vectors & Systems as Maps	
(1) Review	: 2 nd	Order S	Systems	
(2) PID				
(3) Tuning	Con	trollers		
(1) State S.	5			
(4) State-S	bace			
(4) State-Sp (5) Least So	pace quar	13-Apr es 14-Apr		
(4) State-Sp(5) Least So(6) Quantiz	quar atio	es n Effect	ts (and Handling this via Least Square	es)
(4) State-Sp(5) Least So(6) Quantiz	quar atio	es n Effect	ts (and Handling this via Least Square	es)
(5) Least So (6) Quantiz	quar atio	es n Effect ^{4-May}	ts (and Handling this via Least Square	es)
(4) State-Sp (5) Least So (6) Quantiz		es n Effect 4-May 5-May	Introduction to (Digital) Control	es)
(4) State-Sp (5) Least So (6) Quantiz	quar atio	es n Effect ^{4-May} ^{5-May} 11-May	Introduction to (Digital) Control [Digital Control] Digital Control Design & State-Space	es)
(4) State-Sp (5) Least So (6) Quantiz	quar atio	es n Effect ^{4-May} 5-May 11-May 12-May	Introduction to (Digital) Control Digital Control Design & State-Space Controllability & Observability	es)
(4) State-Sp (5) Least So (6) Quantiz	quar atio	es n Effect 5-May 11-May 12-May 18-May	Introduction to (Digital) Control Digital Control Design & State-Space Controllability & Observability Stability of Digital Systems	es)
(4) State-Sp (5) Least So (6) Quantiz	9 10	es n Effect 5-May 11-May 12-May 18-May 19-May 25 May	Introduction to (Digital) Control Introduction to (Digital) Control IDigital Control Design & State-Space Controllability & Observability Stability of Digital Systems [Stability]	es)
(4) State-Sp (5) Least So (6) Quantiz	9 11 12	es n Effect 5-May 11-May 12-May 18-May 19-May 25-May 26-May	Introduction to (Digital) Control Digital Control Design & State-Space Controllability & Observability Stability of Digital Systems [Stability] Applications in Industry Digital Control System Hardware	es)
(4) State-Sp (5) Least So (6) Quantiz	9 10 11	es n Effect 5-May 11-May 12-May 18-May 25-May 26-May 1-Jun	Introduction to (Digital) Control IDigital Control Design & State-Space Controllability & Observability Stability of Digital Systems [Stability] Applications in Industry Digital Control System Hardware System Identification & Information Theory + Communications	es)

PID

- Collectively, PID provides two zeros plus a pole at the origin
 - Zeros provide phase lead
 - Pole provides steady-state tracking
 - Easy to implement in microprocessors
- Many tools exist for optimally tuning PID
 - Zeigler-Nichols
 - Cohen-Coon
 - Automatic software processes

ELEC 3004: Systems

PID

- Three basic types of control:
 - Proportional
 - Integral, and
 - Derivative

• The next step up from lead compensation

 Essentially a combination of proportional and derivative control

Proportional Control

A discrete implementation of proportional control is identical to continuous; that is, where the continuous is

$$u(t) = K_p e(t) \quad \Rightarrow \quad D(s) = K_p,$$

the discrete is

$$u(k) = K_p e(k) \quad \Rightarrow \quad D(z) = K_p$$

where e(t) is the error signal as shown in Fig 5.2.

ELEC 3004: Systems

11 May 2015 - **22**

Derivative Control

For continuous systems, derivative or rate control has the form

$$u(t) = K_p T_D \dot{e}(t) \quad \Rightarrow \quad D(s) = K_p T_D s$$

where T_D is called the *derivative time*. Differentiation can be approximated in the discrete domain as the first difference, that is,

$$u(k) = K_p T_D \frac{(e(k) - e(k-1))}{T} \quad \Rightarrow \quad D(z) = K_p T_D \frac{1 - z^{-1}}{T} = K_p T_D \frac{z - 1}{Tz}$$

In many designs, the compensation is a sum of proportional and derivative control (or PD control). In this case, we have

$$D(z) = K_p \left(1 + \frac{T_D(z-1)}{Tz} \right).$$

or, equivalently,

$$D(z) = K \frac{z - \alpha}{z}$$

ELEC 3004: Systems

Derivative Control [2]
Similar to the lead compensators
- The difference is that the pole is at $z = 0$
[Whereas the pole has been placed at various locations along the z-plane real axis for the previous designs.]
 In the continuous case: pure derivative control represents the ideal situation in that there is no destabilizing phase lag from the differentiation the pole is at s = -∞
 In the discrete case: z=0 However this has phase lag because of the necessity to wait for one cycle in order to compute the first difference
ELEC 3004: Systems 11 May 2015 - 24

Integral Control

ELEC 3004: Systems

For continuous systems, we integrate the error to arrive at the control,

$$u(t) = \frac{K_p}{T_I} \int_{t_o}^t e(t) dt \quad \Rightarrow \quad D(s) = \frac{K_p}{T_I s},$$

where T_I is called the *integral*, or *reset time*. The discrete equivalent is to sum all previous errors, yielding

$$u(k) = u(k-1) + \frac{K_p T}{T_I} e(k) \quad \Rightarrow \quad D(z) = \frac{K_p T}{T_I (1-z^{-1})} = \frac{K_p T z}{T_I (z-1)}.$$
(5.60)

Just as for continuous systems, the primary reason for integral control is to reduce or eliminate steady-state errors, but this typically occurs at the cost of reduced stability.

I May 2015 - **25**

PID Intuition

$$u(t) = K \left[e(t) + \frac{1}{T_i} \int e(s) \, ds + T_d \frac{de(t)}{dt} \right]$$

• P:

- Control action is proportional to control error
- It is necessary to have an error to have a non-zero control signal

• I:

ELEC 3004: Systems

- The main function of the integral action is to make sure that the process output agrees with the set point in steady state

F	PID Intuit	ion				
		Effects of	of increasing a	parameter indepe	ndently	
	Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
	Kp	Ļ	ſ	Minimal change	\downarrow	Ļ
	K _I	Ļ	€	ſ	Eliminate	Ļ
	K _D	Minor change	Ļ	Ļ	No effect / minimal change	Improve (if K _D small)
	ELEC 3004: Systems					11 May 2015 - 3

W § 5.8.5 [p.2	226]			
Increase K_P up $= K_P + O_{PR}$	ntil the system	has continu	ious osci	llations
$= K_U$: Oscillat $\equiv P_{U}$: Oscillat	ion Gain for "U	Ultimate stabi	hility"	
Table	5 3 Ziegler-N	Jichols tunin	g	
		ILULIU IU ULULIU		
Darai	neters using sta	ability limit.	0	
parar	neters using sta	ability limit.		
parar	neters using state K_p	ability limit. T_{I}		
paran	$\frac{K_p}{0.5K_u}$	ability limit. T_I		
paran P P PI	neters using states K_p $0.5K_u$ $0.45K_u$	ability limit. T_I $P_u/1.2$		
P P P P P I PID	$ \frac{K_p}{0.5K_u} $ $ 0.5K_u$ $0.45K_u$ $0.6K_u$	ability limit. T_I $P_u/1.2$ $P_u/2$	$\frac{T_D}{P_u/8}$	

That's it for Today! See you tomorrow! ©

ELEC 3004: Systems

11 May 2015 - **39**