

Week	Date	Lecture Title
1	2-Mar	Introduction
L	3-Mar	Systems Overview
_	9-Mar	Signals as Vectors & Systems as Maps
2	10-Mar	[Signals]
	16-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	17-Mar	[Sampling]
	23-Mar	System Analysis & Convolution
4	24-Mar	[Convolution & FT]
-	30-Mar	Frequency Response & Filter Analysis
5	31-Mar	[Filters]
	6-Apr	Holiday & Holiday
0	7-Apr	Holiday
6	13-Apr	Discrete Systems & Z-Transforms
0	14-Apr	[Z-Transforms]
0	27-Apr	Digital Filters
0	28-Apr	[Digital Filters]
0	4-May	Digital Control Design
9	5-May	[Digitial Control]
10	11-May	Stability of Digital Systems
10	12-May	[Stability]
11	18-May	State-Space
11	19-May	Controllability & Observability
12	25-May	PID Control & System Identification
12	26-May	Digitial Control System Hardware
12	31-May	Applications in Industry & Information Theory & Communications
15	2-Jun	Summary and Course Review

Reference Texts: • Yes! B. P. Lathi Signal processing and linear systems You may use the Internet!! 1998 - Khan Academy TK5102.9.L38 1998 - Wikipedia - YouTube - & Google Scholar Too! João Hespanha Linear Systems Theory, 2009 • This field is vast & there are [UQ Ebooks] countless references present ELEC 3004: Systems

The Point of the Course

- Introduction to terminology/semantics
- An appreciation of how to frame problems in a linear systems engineering context
- Modeling and learning assumptions/when to trust the model
- Ability to identify critical details from the problem

→ It's a **shortcut** ...

Once you see that a system is **"linear"** you can then <u>apply the raft of</u>

"linear systems" tools

(time & frequency analysis) to them without having to do all the analysis from scratch

ELEC 3004: Systems

Not the Point of the Course

- Get good grades
- Just do homework
- Memorize pointless facts
- Rote "learning" of material with no comprehension
- Ask yourself, is the wonder still there?

Ι	lots of Stuff To C	0	ver		
•	Systems			•	Controllability and state transfer
•	Signal Abstractions	•	Discrete Time	•	Observability and state estimation
•	Signals as Vectors / Systems as Maps	•	Continuous Time		
				•	And that, of course,
•	Linear Systems and Their Properties	•	Laplace Transformation		Linear Systems are Cool! 🕲
•	LTI Systems	•	Feedback and Control		
•	Autonomous Linear Dynamical Systems	•	Additional Applications		
•	Convolution		Linear Functions		
•	FIR & IIR Systems	•	Linear Algebra Review		
•	Frequency domain	•	Least Squares		
•	Fourier Transform (CT)	•	Least Squares Problems		
•	Fourier Transform (DT)	•	Least Squares Applications		
	Even and Odd Signals	•	Matrix Decomposition and Linear Algebra		
	Likelihood	•	Regularized Least Squares		
	Causality		0 1		
	cubunty	•	Least-squares		
	Impulse Response	•	Least-squares applications		
	Root Locus	•	Orthonormal sets of vectors		
	Bode Functions	•	Eigenvectors and diagonalization		
		•	Linear dynamical systems with inputs		
•	Left-hand Plane		and outputs		
		•	Symmetric matrices, quadratic forms,		
•	Frequency Response		matrix norm, and SVD		
	ELEC 3004: Systems				2 March 2015 19

Assessment Task	Due Date	Weighting	
Computer-based Assessment Challenge Practice Problems	TBA	EXTRA CREDIT	
Laboratory Practicals Part I, II, III & IV	TBA	EXTRA CREDIT	
Problem Set/s Problem Set 1	20 Mar 15 23:59	12%	
Problem Set/s Problem Set 2	2 Apr 15 23:59	12%	
Problem Set/s Problem Set 3	24 Apr 15 23:59	12%	
Problem Set/s Problem Set 4	8 May 15 23:59	12%	
Problem Set/s Problem Set 5	22 May 15 23:59	12%	
Exam - during Exam Period (Central) Final Examination	Examination Period	40%	

What I expect from you Lectures: Participate - ask questions Turn up (hence the attendance marks) Take an interest in the material being presented Tutorials: Work on questions before tutorials Use tutorials to clarify and enhance Assignments to be submitted on time

Some Philosophy

- Let's start with Why ...
- To learn something is to teach it
 - The function of a teaching is not so much to cover the topics, but more to discover them
- It is actually <u>more</u> work for us!
 - We have to teach you how to reflect
 & then assess this as well as how to do the assignment
- It helps you understand it by giving you a different perspective
- We're a community
 - You (alone) can't do everything ... that's why we work together
 - The notion of "free speech" \rightarrow Trust emerges \rightarrow efficiency (η)

ELEC 3004: Systems

March 2015 - **25**