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Chapter 2 Modeling and Simulation

Applying the rotational version of Newton’s second law to the motor shaft, we
obtain

2

d#0(t) 4 det?(t)

dt? dit

These two equations give the mathematical model of th¢ DC motor system with
input v, (t) and output 0(t).

In some applications, we are concerned with the angular velocity (speed) of

the motor, instead o(f the angular position~Such cases are called speed control

0t

J

= Kiia(t). (2.13)

cases. Replacing ) by w(t) in (2,12) and (2.13), we get the differential equation

model of a DC motor system in4fie speed control case.

dia(t)

20) + La =5 + Kywo(t) = va(t) (2.14)
J%ﬁi) + Kjw(t) = Kyiq(t). (2.15)

Thegetwo equations give the mathematical model of the DC motor system with
imput v, (t) and output w(t).

Another interesting electromechanical system is a magnetic-ball suspension
system shown in Figure 2.8. The coil at the top, after being fed with current,
produces a magnetic field. The magnetic field generates an attracting force on the
steel ball.
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FIGURE 2.8: A magnetic-ball suspension system.

Here, the voltage applied to the coil »(t) is the input, the distance from the
ball to the coil y(t) is the output, and the lifting force generated by the magnetic
i2(t)
_ y(t)
are mass of the ball M, winding resistance R, and winding inductance L.

Applying KVL to the coil, we obtain

di(t)

Ri(t) + L= = v(t).

. The other parameters

field on the ball is approximately given by f(t) = K
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Section 2.2 State Space Model and Linearization 33

Applying Newton’s second law to the ball, we obtain

d*y(t) ()
M == — 4 Mg,
dt? u(t) Y
These two equations then give the mathematical model of the system. It is noted
that the variables y(t) and i(t) are involved nonlinearly in the equations and this

system is called a nonlinear system.

2.2 STATE SPACE MODEL AND LINEARIZATION

The mathematical models obtained in the previous sections consist of seif of dif-
ferential equations with different orders and these equations involve varighles other
than the inputs and outputs. For the sake of systematic study, we need/fo put them
in standard forms. One of the commonly used standard forms is (e state space
form.

Definition 2.1. The state variables ol a system are g/set of independent
variables whose values at time tg, together with input fof all £ > ¢, determine
the behavior of the system for all ¢ > t.

=S PR TES L S

This definition looks very abstract but in many sjfuations the state variables
can be chosen intuitively. For electrical circuits, we cgn always choose the voltages
across independent capacitors and the currents thybugh independent inductors as
state variables. For mechanical systems, we cap/always choose the positions and
velocities of independent rigid bodies as state yariables. Suppose that a differential
equation model of a system is already obtgned, the variables in the differential
equations are the input u(t) and the in{érnal variables v\ (t),...,v,(t), and the
highest order of the derivatives of v;(t) 1 the differential equations is g;. Then we
can choose

Rl M A e RS v

LG L VRS T ¥

. i i—1 :
Ui(t)'lvi{t)avi{t)u"') 5 )(t) = 1:21"':p
as the state variables. In this ¢gdse, the total number of state variables is ZLI qi-
After the state variablg§ are chosen, usually named z;(t), za(t), ..., z.(t), we

put them into a vector

:‘L‘l(t)
z(t)

€ R".

ﬁfm:(ﬁ)

[unctions. Then the set of mixed ordered differential equations can be converted
intd a set of first-order differential equations plus an algebraic equation

®(t) = fla(t), u(t), t] (2.16)
y(t) = gla(t), ult), 1] (2.17)
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EXAMPLE 2.3
The magnetic suspension system has the differential equation model
; dift) _
d*y(t) i2(t)
M— =-K Myg.
ar? ) T ;

Choose z(t) = i(t), za(t) = y(t),z3(t) = y(t),u(t) = v(t), and we get the state |
space model |
u(t) — Ry (t) ‘

i3(t) Ka3(t)
- Muzy(t)
y(t) = (1)
with
x1(0) i(0)
z2(0) | = | w(0)
z3(0) y(0)

Definition 2.4. A system is said to be linear if it can be described by lingat
differential equations, in particular, if the functions f and g in its stategpace
model are linear functions of @(t) and w(t).

For a linear system, the state space model takes the following siatrix form:
&(t) = A(t)z(t) + b(t)u(t)

y(t) = c(H)a(t) + d(t)u(t) |
where A(t) € R™*" is an n x n matrix, possibly depénding on time ¢, and b(t) € I
R™*! and ¢(t) € R**™ are, respectively, column apd tow vectors depending possibly |
on time ¢. For example, the RLC circuit in Séction 2.1 is a linear system and its
state space equations were already in the afatrix form as in (2.7) and (2.8)

Theorem 2.5 (Superpositigr’ Principle). Assume that a linear system
has zero initial condition. input u(t) produces output ;(t) and input
ua(t) produces output yg(t), then input ajus(t) + agua(t) produces output
a1y (t) + aoya(t) fopAdll oy, an € R.

Proof. With zcrd initial condition, if input u, (¢) produces output  (¢) and
input us(t) pfoduces output ya(t), then there are @(tf) and xo(t) with
x1(0) and x5(0) = 0 satisfying

@1 (t) = A()z1 (1) + b(t)uy (t)
i (t) = e(t)x: (t) + d(t)ua ()

——
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where
oh of dfi
o ()-'-ffl C)f'fu af Qu 9
Ox % (,)}n T du ()_ﬁ_l Or;y Oz,
or, = Ozn o

Since a(t), (1), y(t) are small, we can neglegkThe high-order terms and approximate
the original system by the following lingdr system:

Ax(t) + bu(t)
y(t) = ex(t) + du(t)

where
af af
A= — ; b= —
(9:1’: T=ig ()u =g
U=1ug u=1g
dg . dg
B = 0= == s
Oz |e=zo ' ou |e=xy
u=1g U=1q

e

This linear system is called a linearized system of the original nonlinear system.

EXAMPLE 2.10

The magnetic suspension system is a nonlinear system described by state space

equation
u(t) — Ra (t)
&1(t) =
&(t) 74 (1)
Mz 7Y

y(t) = za(2).

A usual control problem is to lift the ball to a certain height and suspend it at that
height. Hence we wish to linearize it around an operating point with y(¢) = yo.
To get the operating point, solve equations

Uo*RﬁL‘w
0=———
L
0= 30
. 5'3:120
ﬂl4$2(}

Yo = T20.
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Section 2.3 Transfer Functions and Impulse Responses 3!

This gives %{
Z1g vVMgyo o L
ug = R/ Mgyo, Ty | = Yo sy Yo =Yo
T30 0

which means that to suspend the ball at height ¥ in the steady state, one need
to apply a constant voltage u(t) = R/ Mgy to the coil. Denote the deviations o
the input, state, and output variables from the operating point by

u(t) = u(t) — up = u(t) — R\/ Mgy
x1(t) — VMgyo

Z(t) = o(t) — w0 = z2(t) — Yo
x3(t)

y(t) = y(t) — o
Now, the linearized model of the deviation variables is
@(t) = Az(t) + bi(t)
i(t) = ci(t) + di(t)

where
R ¥
. 0 0 1
| of . of 2
= — = 0 0 1 s b= —_— = 0 5
(9:1: :::Lzzll‘ro 7 g du ‘T:ﬁu
=g u=ug
| = = = 0 0
‘ Myo  wo
[}
i dg dg
_8_:1:;:::%—[0 | 0], d—%m:mn—ﬂ.
| wU=1p U=UQ

2.3 TRANSFER FUNCTIONS AND IMPULSE RESPONSES

Consider an LTI system described by state space equation
a&(t) = Ax(t) + bu(t)
y(t) = ex(t) + du(t

Take the Laplace transform with zero initialeonditions:
X(s)+bU(s) (2.18)
s) — X (s) + dU(s). (2.19)

I—————— A
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For systems with a small number of state variables, it is probably more cony

8X1(s) = —=2X;(s) - ?"
s¥ale) = %Xl () — %f-
Y (s) = Xo(s).

Substitute X;(s) from the second gquation into the first equation and note that
Y (s) = Xz(s) from the third eguétion. We then get

) (5+52) 4] 9 = Lo

_Y{s) K,

T U(s)  LoJs?+ (RoJ+ KfLg)s + (R Ky + K Ky)'

the same result as the one obtained by matrix inversion.

Consequently,

G(s)

EXAMPLE 2.13

Let us continue with Example 2.10, the magnetic suspension system. The transfer
function of the linearized model is

=

R 1

S+I 0 0 ¥

G(s)=[0 1 0] 0 s —1 0
g g

—_= = 0
Myo  wo

g 1
_2 e A
\V My, L B —2\/9%

The transfer function of an LTT system with a state space models always a
ratio of two polynomials

where b(s) is called the n or polynomial and a(s) is called the denominator
polynomial. We ass that polynomials b(s) and a(s) are coprime, i.c., they do
fion factors.
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