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32 Chapter 2 Modeling and Simu lation 

Applying the rotational version of Newton '8 second law to the motor shaft, we 
obtain 

J d20(t) + J( dO(t) = J( i (t). 
dt2 f dt t a 

(2. 13) 

These two equations give the mathematical model of the DC motor system with 
input va(t) and output ott). 

In some applications, we arc concerned with the angular velocity (speed) of 
the motor, instead of the angular position. Such cases are called speed control 

cases. Replacing dOlt) by w(t) in (2.12) and (2.13) , we get the differential equation 
dt 

model of a DC motor system in the speed control case. 

. dia (t) 
Ra'a( t ) + La ~ + [(bW(t) = va(t) 

Jdw/(t ) + !(fw(t) = J(t ia(t). 
et 

(2.14) 

(2.15) 

These two equations give the mathematical model of the DC motor system with 
input va(t) and output w(t). 

Another interesting electromechanical system is a magnetic-ball suspension 
system shown in Figure 2.8. T he coil at the top, after being fed with current, 
produces a magnetic field. The magnetic field generates an attracting force on the 
steel ball . 

p~/::r~r~~; 

T 
(0 

FIGURE 2.8: A magnetic-ball suspension system. 

Here, the voltage applied to t he coil v(t) is the input, the distance from the 
ball to the coil y(t) is t he output, and the lift ing force generated by the magnetic 

field on the ball is approximately given by I(t) = J( ~gi. The other parameters 

are mass of the ball M , winding resistance R, and winding inductance L. 
Applying KVL to the coil, we obtain 

d(t) 
Ri(t) + L~d = v(t). 

t 
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Section 2.2 State Space Model and Linearization 33 

Applying Newton's second law to t he ball, we obtain 

Md
2
y(t) = _ J{i

2 (t) M. 
dt2 y(t) + 9 

These two equations then give the mathematical model of the system. It is noted 
t hat t he variables y(t) and itt) are involved nonlinearly in t he equations a nd t his 
system is called a nonlinear system. 

2.2 STATE SPACE MODEL AND LINEARIZATION 

The mathematical models obtained in the previous sections consist of sets of dif­
ferential equations with different orders and these equations involve variables other 
than the inpuls and outputs. For the sake of systematic studYI we need to put them 
in standard forms . One of the commonly used standard forms is the state space 
form. 

D efinition 2.1. The state variables of a system are a set of iridepcndent 
variables whose values at time tOI together with input for all t 2: to, determine 
the behavior of the system for all t 2: to. 

This definition looks very abstract but in many situations the state variables 
can be chosen intuitively. For electrical circuits l we can always choose the voltages 
across independent capacitors and the currents through independent inductors as 
state variables. For mechanical systems, we can always choose the positions and 
velocities of independent rigid bodies as state variables. Suppose that a difierential 
eq \lation model of a system is already obtained 1 the variables in the differentia.l 
equations are the input u(t) and the internal variables VI (t), ... , v,,(t), and t he 
highest order of the derivat ives of Vi(t) in the different ial equations is qi. Then we 
can choose 

Vi( t), Vi(t), Vi(t), ... , viq
, - I) (t) i = 1,21", 1P 

as the state variables. In this case, the total number of state variables is L~= l CJi· 

After the state variables are chosen, usually named X, (t), X2(t), . . . , xn(t), we 
put them into a vector 

x(t) = 

[ 

XI (t) 1 X2(t) 

Xn(t) 

E {RH. 

This vector is called a s tate vector. Here and in the sequel 1 we use bold font 
letters to denote vectors (or matrices) and vector-valued (or matrix-valued) func­
tions, whereas we use normal font letters to denote scalars and scalar-valued 
[ullctions. Then the set of mixed ordered differential equations can be cOl)verted 
into a set of first-order differential equations plus an algebraic equation 

x(t) = f[x(t) , u(t), t] 

y(t) = g[x(t), u(t), t] 

(2.16) 

(2. 17) 
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Section 2.2 State Space Model and Linearization 35 

EXAMPLE 2.3 

The magnetic suspension system has the differential equation model 

d(i) 
Ri(t) + L ~t = v(i) 

Md
2
y(t) = _ J(i2(t) + Mg. 

cii 2 y(t;). 

Choose XI(t) = i(t),x2(t) = y(i), x, (t) = y(t),u(t) = v(i), and we get the state 
space model 

with 

u(t) - RXI (t) 
L 

y(t) = X2(t) 

x,(t) 

f(xl(t) 
=-'-7-'c: + 9 MX2(t) 

[ 
XI(O)] [ i(O) ] 
X2(0) = y(O) . 
x,(O) y(O) 

Definit ion 2.4. A system is said to be linear if it can be described by linear 
differential equations, in particular, if the functions f and 9 in its state space 
model are linear functions of x(t) ancl u(t). 

For a linear system, the state space model takes the following matrix form: 

x(t) = A(t)x(t) + b(t)u(t) 

y(t) = c(i)x(t) + d(t)u(t) 

where A(t) E ~n x n is an n x n matrix, possibly depending on time t, and b(t) E 
lRnxl and c(t) E IR 1XIl are, respectively, column and row vectors depending possibly 
on time t . For example , the RLC circuit in Section 2.1 is a linear system and its 
state space equations were already in the matrix form as in (2.7) and (2.8) 

Theorem 2.5 (Superposition Principle). Assume that a linear system 
has zero initial condition. If input UI(t) produces output yI(t) ancl input 
U2(t) produces output Y2(t), then input "'111.1 (t) + "'2U2(t) produces output 
"'IYI (t ) + "'2Y2(t) for all "'I , "'2 E ~. 
Proof. With zero initial condition, if input UI(t) produces output YI(t) and 
input U2(t) produces output Y2(t), then there are XI(t) and X2-(t) with 
Xl(a) = a ancl X2(0) = a satisfying 

XI(t) = A(t)xI (i) + b(I,)uI(t) 

YI (t) = C(t)XI (t) + d(t)uI (t) 
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38 Chapter 2 Modeling and Simulation 

where 

oj, oj, oj, 

o f 
ox, DXn of OU 

09 [ og og 

1 ox = Ox 
oJn &jn 

OU 
oIn 

ox, Dxu 

ox, OXn OU 

Since i,(t), x(l), jj(t) arc small , we can neglect the high-order terms and approximate 
the origi nal system by the [allowing linear system: 

where 

:tit) = Ax(t) + bu(t) 

jj(t) = exit) + du(t) 

og 1 e - -- ax x = xo ' 
u=uo 

d- Ogl - au X = Xu' 

u = uo 

This linear system is called a linearized system of the original nonli near system. 

EXAMPLE 2.10 

The magnetic suspension system is a nonlinear system described by state space 
equation 

[ 

XI(t) ] 
X2(t) = 
X3 (t) 

u(t) - Rx, (t) 
L 

X3(t) 

xi(t) 
MX2(t) + 9 

'y(t) = X2(t). 

A usual control problem is to lift t he ball to a certain height and suspend it at that 
height. J-fence we wish to linearize it around an operating point with y(t} = Yo . 

To get the operating point, solve equations 

0 = UO - Rx10 
L 

0 = X30 

X2 
0 = __ 1_0_+ g 

MX20 

Yo = X2Q· 
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Section 2.3 Tra nsfer Functions and Impulse Responses 31 

T his gives 

[ 

XlO ] _ [ JlIil9Yo ] X20 - Yo , 
x'o 0 

Uo = R JMgyo, Yo = Yo 

which means that to suspend t he ball at height Yo in t he steady state, one need 
to apply a constant voltage u(t) = R.,j Mgyo to t he coi l. Denote t he deviations 0 

the input , state, and output variables from the operating point by 

u(t) = u(t) - Uo = u(l) - RJMgyo 

[

Xl (t) - "fl'Vl!iYo ] 
5:(t) = x(t) - Xo = X2(t) - Yo 

X3(t) 

fi(t) = y(t) - Yo· 

Now, the linearized model of the deviation variables is 

where 

:i:(t) = A5:(t) + burl) 

fi(t) = ci(t) + du(t) 

R 
0 0 

L 
0 0 1 A - af l _ b _ af l _ 

- 8x :C = :Co -

-2) ~YO 
- 8u :C=Xo -

U = Uo .9 U=Uo 

0 
Yo 

e= a9 I - [ 0 1 o J, d = agl = o. 
8x :C= :Vo - au :C=Xo 

U = Uo U = Uo 

2.3 TRANSFER FUNCTIONS AND IMPULSE RESPONSES 

Consider an LT I system described by state. space equation 

5:(t) = Ax(t) + burt) 

y(t) = eX(I) + du(t). 

Take the Laplace transform with zero init ial conditions: 

sX(s) = AX(s) + bUrs) 

Y(s) - eX(s) + dU(s) . 

1 

L 
0 

0 

(2. 18) 

(2 .19) 

Now a set of differential equations in the time domain becomes a set of alge­
braic equations in the frequency domain. There are a total of n + 1 equations in 

. (2.18) - (2 .19) and we call use them to elim inate the n variables in X(s) to obtain 
an equation relating t he input U(s) and the output Y (s) . Linear algebra now gives 
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Section 2.3 Transfer Functions and Impulse Responses 41 

For systems with a small number of state variables, it is probably more conve­
nient to obtain the transfer function by directly manipulat ing the Laplace trans[orm 
of the state space model (2. 18) and (2.19). Por example, in the speed control case, 
the Laplace transform of t he state space model is 

Ra J~ 1 
sXI(s) = - -L XI(s) - -[ X2(S) + -L U(s) 

a Ja a 

J(, J( f 
sX 2(s) = J XI (S) - jX2(S) 

Y (s) = X2(S), 

Substitute Xl(S) from the second equation into the first equation and note that 
Y (s) = X2 (S) from the third equation. We then get 

[ 
J ( Ra) ( J( f) J(o 1 1 

J(, S + La S + j + La V (s) = La U(s). 

Consequently, 

the same result as the one obtained by matrix inversion. 

EXAMPLE 2.13 

Let us continue with Example 2.10, the magnetic suspension system . The transfer 
function of the linearized model is 

R - I 

S+ - 0 0 1 
L L 

G(s) = [0 1 OJ 0 s - 1 0 

2[;£ 
9 

0 s 
Myo Yo 

[;£1 - 2 Myo L - 2v?iYO 

(s+ ~) (S2 - :J VM( Ls + R )(Yos2 - g) 

The transfer function of an LTI system with <'I, state space model is always a 
ratio of two polynomials 

G(s) = b(s) 
a(s) 

where b(s) is called t he numera tor polynomial and a(s) is called t he denominator 
polynomial. We assume that polynomials b(s) and a(s) are coprime, i.e., t hey do 
not have common factors. 
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