e —

etaces regniind "L e

—

30 Chapter 2

2.1.3

Modeling and Simulation

We can also reorganize the equations into the following matrix form
M; O #1(t) 5 F o —F |[&(t) " [K —K [=(t)
0 A’[g S—L'-fg(t} —F F ’Lz(t) -K K .I‘z(t)
1
= [0]f(t). (2.11)

Models of the form (2.11) are very typical for mechanical systems. Such a
model is called a second-order model.

Next let us consider a pendulum shown in Figure 2.6. Here a torque 7;(t) can
be applied around the pivot point and we are concerned with the angle 6(t) between
the pendulum and the vertical downward direction. The length of the pendulum is
L and the mass M of the pendulum is concentrated at its tip.

FIGURE 2.6: A pendulum.

In a rotational motion, Newton’s second law takes the form
3

d*0(t)
— =T(t
dt? w0
where J is called the moment of inertia, 0(t) is the angular displacement, and 7(t)
is the total torque applied.
Applying this to the pendulum system, we know that the moment of inertia is
J = ML? and there are two torques applied to the system: the externally applied
torque 7;(t), and the torque due to the gravity of the mass which is MgLsin 6(t).
Therefore, the equation governing the motion is given by
d*0(t) .
T~ 7:(t) — MgLsin0(t).

ML?

This is a second-order differential equation. Here the input is the torque 7;(t) and
the output is the angle 6(t).

Electromechanical systems

A simple electromechanical system is an armature-controlled direct current (DC)
motor with a load, shown in Figure 2.7.

A DC motor has two sets of windings. One set is mounted on the stator
and is used to generate the magnetic field. In an armature-controlled DC motor,

Section 2.1 Modeling Based on First Principles 31

FIGURE 2.7: An armature-controlled DC motor system.

the current to this set of windings is set to be constant so that the magnetic field
in the motor is constant. The other set is mounted on the rotor and is used to
generate the torque through the magnetic force. The current through this winding
is controllable so a controlled torque can be obtained. When the motor shaft turns,
the magnetic field also generates a potential in the rotor winding as a result of the
Faraday induction. This potential is called the back electro-motive force (back
emf). There are two basic relations in a DC motor. One is that the torque in the
motor shaft is proportional to the armature current via the torque constant Ky, i.e.,

Talt) = Kidalt).

The other is that the back emf vy, (t) is proportional to the motor velocity w(t) via
the back emf constant Ky, i.e.,

wp(t) = Kpw(t).

The torque in the motor shaft then drives the load, which consists of a mass with a
moment of inertia .J and a counteractive friction torque proportional to the motor
velocity via the friction coefficient Ky. Therefore, the whole DC motor system
including the armature circuit and the mechanical load can be described by the
following parameters and variables:

Ra: armature resistance

Lz armature inductance

J: moment of inertia of the load

K;: friction coefficient

K. torque constant

Ky: back emf constant

va(t): armature voltage

14(t) armature current

wp(t): back electro-motive force (back emf)
Tm(t): motor torque

o(t): angular position of the motor shaft
w(t): angular velocity of the motor shaft (= 6(t)) 2

Applying KVL to the armature circuit, we obtain '

2 di,(t) do(t)
Ra'bq(t)“l-La at + K di

= va(t). (2.12)

iciestiabaclihel et N i S, iy e, g

32

Chapter 2 Modeling and Simulation

Applying the rotational version of Newton’s second law to the motor shaft, we
obtain

2
d#0(t) 4 det?(t)
dt? dit
These two equations give the mathematical model of the DC motor system with

input v, (t) and output 0(t).

In some applications, we are concerned with the angular velocity (speed) of
the motor, instead o(f the angular position. Such cases are called speed control
0t

J = Kyia(t). (2.13)

cases. Replacing) by w(t) in (2.12) and (2.13), we get the differential equation

model of a DC motor system in the speed control case.

dia(t)

Raia(t) + La=3 = + Kyo(t) = va(t) (2.14)
J%ﬁi) + Kjw(t) = Kyiq(t). (2.15)

These two equations give the mathematical model of the DC motor system with
input v, (t) and output w(t).

Another interesting electromechanical system is a magnetic-ball suspension
system shown in Figure 2.8. The coil at the top, after being fed with current,
produces a magnetic field. The magnetic field generates an attracting force on the
steel ball.

y IS IS IS IS s

¢F—_'____"_O +

R, L c"—'———_b 13 -
S

Z iz 7

FIGURE 2.8: A magnetic-ball suspension system.

Here, the voltage applied to the coil »(t) is the input, the distance from the
ball to the coil y(t) is the output, and the lifting force generated by the magnetic
i2(t)
_ y(t)
are mass of the ball M, winding resistance R, and winding inductance L.

Applying KVL to the coil, we obtain

di(t)

Ri(t) + L= = v(t).

. The other parameters

field on the ball is approximately given by f(t) = K

Section 2.2 State Space Model and Linearization 33

Applying Newton’s second law to the ball, we obtain

2 ;2
GO R0

()
These two equations then give the mathematical model of the system. It is noted
that the variables y(t) and i(t) are involved nonlinearly in the equations and this
system is called a nonlinear system.

+ Mg.

2.2 STATE SPACE MODEL AND LINEARIZATION

The mathematical models obtained in the previous sections consist of sets of dif-
ferential equations with different orders and these equations involve variables other
than the inputs and outputs. For the sake of systematic study, we need to put them
in standard forms. One of the commonly used standard forms is the state space
form.

Definition 2.1. The state variables ol a system are a set of independent
variables whose values at time tg, together with input for all £ > ¢, determine
the behavior of the system for all ¢ > t.

This definition looks very abstract but in many situations the state variables
can be chosen intuitively. For electrical circuits, we can always choose the voltages
across independent capacitors and the currents through independent inductors as
state variables. For mechanical systems, we can always choose the positions and
velocities of independent rigid bodies as state variables. Suppose that a differential
equation model of a system is already obtained, the variables in the differential
equations are the input u(t) and the internal variables v\ (t),...,v,(t), and the
highest order of the derivatives of v;(f) in the differential equations is g;. Then we
can choose

. i =1 :
0i(t), Ba(t), i (8), . .., v{ "V (1) i=1,2,...,p
as the state variables. In this case, the total number of state variables is Y7, ¢;.
After the state variables are chosen, usually named z; (t), zo(t), . . ., z,.(t), we
put them into a vector
(1)
za(t)
x(t) =) € R™.
(P

This vector is called a state vector. Here and in the sequel, we use bold font
letters to denote vectors (or matrices) and vector-valued (or matrix-valued) func-
tions, whereas we use normal font letters to denote scalars and scalar-valued
[unctions. Then the set of mixed ordered differential equations can be converted
into a set of first-order differential equations plus an algebraic equation

#(t) = fl=(t), u(t), t] (2.16)
y(t) = gl=(t), u(t),1] (2.17)

34 Chapter 2 Modeling and Simulation

where u(t) € R is the input, y(¢) € R is the output,

file(t), u(t), t]
falee(), u(t), 1]

Flz(t), u(t), 1] = 'R" xR x R — R"

falm(t), ult), 1]
is a vector-valued function, and
glz(t),ut),t] : R" xRxR—-R

is a scalar-valued function. The number of state variables n is called the order
of the system. The set of first-order differential equations (2.16) is called the
state equation of the system. The algebraic equation (2.17) is called the out-
put equation of the system. Together they form the state space model of the
system.,

We always assume that the system starts operation at time ¢t = 0; namely,
we assume that the input u(t) is a unilateral signal whose value before the ini-
tial time is zero. To determine the state vector x(t) from the differential equation
(2.16), the input u(t) alone is not sufficient. According to Definition 2.1, the ini-
tial value of the state 2(0) is also needed. This initial value is called the initial
condition. To conform to our standard mathematical treatment of signals, we
also view x(t) as a unilateral function. If the initial condition is nonzero, then
x(t) has a jump discontinuity at ¢ = 0 and its derivative #(t) contains impulse
functions.

Among the models of the systems discussed in Section 2.1, the one for the
active RLC circuit has already been put in the state space form.

EXAMPLE 2.2

For the pendulum system introduced in the last section, the differential equation
model directly obtained from Newton’s second law is

ML26(t) = 7;(t) — MgLsin 0(t)

with input 7;(¢) and output 6(t). Renaming z;(t) = 0(t), zo(t) = 6(t), u(t) = 7:(t),
y(t) = 0(t), we obtain the state space model

a(t)] z2(t)
[Za(t) } T | —MgLsinzy (L) + u(t)
ML?
y(t) = z1(t)

26][0]

Section 2.2 State Space Model and Linearization 35

EXAMPLE 2.3
The magnetic suspension system has the differential equation model
; dift) _
d*y(t) i2(t)
M— =-K Mg.
dt? wey M "

Choose z(t) = i(t), za(t) = y(t),z3(t) = y(t),u(t) = v(t), and we get the state
space model |
u(t) — Ry (t) ‘-

iy (t) 5 .':
d5(t] | = z3(t) a
dy(t) Kz3(t)
- Mazy(t)
y(t) = za(t)
with

x1(0) i(0)

z2(0) | = | »(0)

z3(0) (0)

Definition 2.4. A system is said to be linear if it can be described by linear
differential equations, in particular, if the functions f and g in its state space
model are linear functions of @(t) and w(t).

For a linear system, the state space model takes the following matrix form:
&(t) = A(t)z(t) + b(t)u(t)
y(t) = c(H)a(t) + d(t)u(t)
where A(t) € R™"*™ is an n x n matrix, possibly depending on time ¢, and b(t) €
R™*! and ¢(t) € R**™ are, respectively, column and row vectors depending possibly

on time ¢. For example, the RLC circuit in Section 2.1 is a linear system and its
state space equations were already in the matrix form as in (2.7) and (2.8) \

Theorem 2.5 (Superposition Principle). Assume that a linear system
has zero initial condition. If input wu;(f) produces output ¥;(t) and input J
ua(t) produces output ya(t), then input aju(t) + agua(t) produces output .
a1y1(t) + aoya(t) for all oy, an € R.

Proof. With zero initial condition, if input u, (t) produces output (¢) and
input wz(t) produces output ya(t), then there are @(tf) and xy(t) with
1(0) = 0 and x5(0) = 0 satisfying ;

@1 (t) = A()z1 (1) + b(t)uy (t)
i (t) = e(t)x: (t) + d(t)ua ()

36 Chapter 2 Modeling and Simulation

and
Ba(t) = A(t)m(t) + b(t)ua(2)
y2(t) = e(t)ma(t) + d(t)ua(t).
If we add the two state equations and the two output equations, respectively,

and define u(t) = aguy(t) + aoua(t), @(t) = ayxi(t) + aoxs(t), and y(t) =
a1y (t) + aaya(t), then we obtain 2(0) = 0 and

2(t) = A(t)z(t) + b(t)u(t)

y(t) = e(t)a(t) + d(t)u(t).
This implies that y(t) is the output of the system with zero initial condition
and input wu(t). O
Definition 2.6. A system is said to be time-invariant if it can be de-

scribed by differential equations with constant coefficients, in particular, if
the functions f and g in its state space model do not depend on the time ¢

explicitly.
All examples of real physical systems considered so far are time-invariant
systems.
Theorem 2.7. Assume that a time-invariant system has zero initial condi-
tion. Also assume that zero input generates zero output. If input u(f) pro-
duces output y(t), then input w(t — 7) produces output y(¢ — 7) for all 7>0.
A linear time-invariant (LTI) system has the following form of state space
model:
z(t) = Az(t) + bu(t)
y(t) = cz(t) + du(t)

where A € R™*" b€ R"*! ¢ e R'*", and d € R are constant matrices.

EXAMPLE 2.8

The DC motor system is an LTI system. Indeed, in the position control case, if
we choose the state variables, input and output variables as z; (t) = i,(f), 22(t) =
0(t), z3(t) = w(t),u(t) = va(t),y(t) = O(t), then the state space equation can be
written as

R, K 1
#1(t) La Le 21 (t) L,
?53 = 0 0 1 22% +1 0 |ul?)
3 K K 3
e 0
z1(t)
y=[0 1 0] =)
z3(t)

Section 2.2 State Space Model and Linearization 37

In the speed control case, if we choose x(t) = i,(f), z2(t) = w(t),u(t) = valt),
y(t) = w(t), then we obtain

[@ (1)] _ _ﬁ—: _%{f [z1(t)] + Liﬂ u(t)
o (t) KoKy L®® .
T J

In the rest of this section, we will study how to approximate a nonlinear
system by a linear one. Such a process is called linearization.

We will deal only with time-invariant systems. Assume that a system is
described by a state space model.

&(t) = fle(t), u(t)]
y(t) = glae(t), u(t)]

and f and g are continuously differentiable functions, i.e., f and g are sufficiently
smooth functions.

Definition 2.9. A triple of constant vectors (o, Zg,%0) € R x R™ x R is said
to be an operating point of the system if

0= f(zo, uo)
Yo = g(xo, ug).
The physical meaning of an operating point is that if the system has initial

condition &g and a constant input wug is applied, then the state and output will stay
at constant values @y and yo, respectively, for all time, i.e.,

u(t) = ug, z(0) = zop = x(t) = mo, y(t) = Yo
Since f and g are sufficiently smooth, we can conclude that
u(t) — up and x(0) — xp are small = x(t) — zo and y(t) — yo are small.
Denote
u(t) = u(t) —uo
Z(t) = z(t) —xo

Il
g2

3(t) = y(t) — o
Replace f and g by their differentials:

co OF| o OF| oo)
x(t) = el O 2(t) + - @(t) + high-order terms
u=ug u=ug
ik 08 . dg = :
P(t) = x| - z(t) + o - i(t) + high-order terms

U= u=ug

38 Chapter 2 Modeling and Simulation

where
ofh 9h afy
g B d—'-l’l ().’f:u ﬂ B 'd.u ﬂ - dg 8g
oxr % U,}n odu % " Oz | 8z, T Oz,
or, = Ozn Ou

Since a(t), £(t), y(t) are small, we can neglect the high-order terms and approximate
the original system by the following linear system:

&(t) = A&(t) + ba(t)
y(t) = ex(t) + du(t)

where
af af
A==) b= — 3
633 T=y du =g
uU=1ug u=1ug
dg . dg
cC = — a= — .
(9:!2 T=@0 ! O |w=xp
u=1ug uU=1uq

This linear system is called a linearized system of the original nonlinear system.

EXAMPLE 2.10

The magnetic suspension system is a nonlinear system described by state space
equation

u(t) — Ra (t)

&1 (1) =
£a(t) 74 (1)
Mz 7Y

y() = za(2).

A usual control problem is to lift the ball to a certain height and suspend it at that
height. Hence we wish to linearize it around an operating point with y(¢) = yo.
To get the operating point, solve equations

Uo*RﬁL‘m
0= — =
L
0=$3U
0= __ai
A4!E2(}

Yo = T20.

Section 2.3 Transfer Functions and Impulse Responses 3!

ThiS gi ves %
Z1p VMagyo i
ug = R/ Mgyo, Zy | = Yo v Yo =1%o

T30 0

which means that to suspend the ball at height ¥ in the steady state, one need
to apply a constant voltage u(t) = R/ Mgy to the coil. Denote the deviations o
the input, state, and output variables from the operating point by

u(t) = u(t) — up = u(t) — R\/ Mgy
x1(t) — VMgyo

Z(t) = o(t) — w0 = z2(t) — Yo
5!,'3(!5)

y(t) = y(t) - vo-
Now, the linearized model of the deviation variables is
@(t) = A&(t) + bi(t)
i(t) = ci(t) + di(t)

where
;' i 0 0 1
' af L of T,
I = = 0 0 1 = = =
| A ox |z=zq 7 g 2 5 du |z=zo 9 :
i u=ug u=ugnp
(Myo yo
|
i g - _ 99 -
ﬂ c_a_ﬂ:m:mo—[o 1 0], d—%m:mn_o'
| wU=1p u=up
2.3 TRANSFER FUNCTIONS AND IMPULSE RESPONSES
Consider an LTI system described by state space equation
a&(t) = Ax(t) + bu(t)
(y(t) = ca(t) + du(t).
¥ Take the Laplace transform with zero initial conditions:
sX(s) = AX(s)+bU(s) (2.18)
Y(s) — X (s) +dU(s). (2.19)
Now a set of differential equations in the time domain becomes a set of alge-
braic equations in the frequency domain. There are a total of n + 1 equations in
+(2.18)-(2.19) and we can use them to eliminate the n variables in X (s) to obtain
an equation relating the input U(s) and the output Y(s). Linear algebra now gives

40 Chapter 2 Modeling and Simulation

a formal method of capturing this process. From (2.18), we get
X(s) = (sI — A)"'bU(s).
Plugging it into (2.19), we obtain

Y(s)
U(s)

=c(sI — A)"'b+d,

i.e., the ratio of the Laplace transform of the output over that of the input is a
fixed function independent of the input.

Definition 2.11. The transfer function of an LTI system is the ratio of
the Laplace transform of the output over that of the input when the initial
condition is zero, i.e.,

_Y(s)

G(s) = U(s)’

EXAMPLE 2.12

Let us continue to consider the DC motor system in Example 2.8. In the position
control case, the transfer function is

R, K, =1 1
i L %
G(s)=[0 1 0] 0 s -~ 0
K; Ky
Lk g 2L 0
7 0 s+ 7
B Ki/(LaJ)
© s(s+ Ra/La)(s + K¢ /J) + K Ky /(LaJ)s
Ky

T LadS® + (Rad + K;Lg)s® + (R Ky + K Ky)s'

One may feel that the inverse of the 3 x 3 matrix is hard to compute, but the
computation can be significantly simplified if one notices that only the element in
the second row and the first column of the inverse is needed since all other elements
will be multiplied by zero when forming the transfer function. Computing only one
element is, of course, much simpler than computing all elements in the inverse. In

the speed control case, the transfer function is
s+ % % 1
Gs)=[0 1] 2 ¢ La
ol 0
T 3
_ Ki/(LgdJ)
(s + Ra/La)(s+ Ky /J) + K¢ Ky /(LoJ)
Ky

" LaJs? + (RaJ + K;Lq)s + (RaK s + K¢ Kp) '

e

Section 2.3 Transfer Functions and Impulse Responses 41

For systems with a small number of state variables, it is probably more conve-
nient to obtain the transfer function by directly manipulating the Laplace transform
of the state space model (2.18) and (2.19). For example, in the speed control case,
the Laplace transform of the state space model is

aX1(8) = —%Xl(s) - f"xz(s) + %U(s)
s¥ale) = %Xl () — Kfog(s)
Y (s) = Xo(s).

Substitute X;(s) from the second equation into the first equation and note that
Y (s) = Xz(s) from the third equation. We then get

J R, K\, K]y 1,
% (+3) (+7) + 22| v - v

_Y(s) K,

T U(s) LoJs?+ (RoJ+ KfLg)s + (R Ky + K Ky)'

the same result as the one obtained by matrix inversion.

Consequently,

G(s)

EXAMPLE 2.13

Let us continue with Example 2.10, the magnetic suspension system. The transfer
function of the linearized model is

=

R 1

S+I 0 0 ¥

G(s)=[0 1 0] 0 s —1 0
g g

—_= = 0
Myo wo

i b W X
My L - —2\/9%0

The transfer function of an LTT system with a state space model is always a
ratio of two polynomials -~
b
G(s) =)
a(s)
where b(s) is called the numerator polynomial and a(s) is called the denominator

polynomial. We assume that polynomials b(s) and a(s) are coprime, i.c., they do
not have common factors.

42 Chapter 2 Modeling and Simulation

The ratio of two polynomials is also called a rational function. So the
transfer function of an LTT system with a state space model is a rational function.
We often denote a transfer function, or any rational function, in either of the
following forms
B e
C apst +ay st + - tay

G(s)

or
G(S) - I((S ﬁ Zl}(S ﬁ 2.'2) o (S - Zm)'
(s—p1)(s—p2)---(s—pn)

The first form is called the unfactored form and the second form is called the
factored form. Here zy, 20, ..., 2y, the roots of b(s), are called the zeros of G/(s)
and py,pa, ..., pn, the roots of a(s), are called the poles of G(s). K is called the
(high frequency) gain of G(s). The factored form is also called the zero-pole-
gain form.

Several additional definitions will be needed. A transfer function or system
G(s) is said to be proper if degb(s) < dega(s), or equivalently |G(c0)| < oco. It
is said to be strictly proper if degb(s) < dega(s), or equivalently G(co) = 0.
It is said to be bi-proper if degb(s) = dega(s), or equivalently 0 # |G(00)| # co.
Transfer functions obtained from state space models are always proper, but
occasionally nonproper transfer functions appear in abnormal cases. For a proper
transfer function, the difference dega(s) — degb(s) is called the relative degree
of G(s), and dega(s) is called the order or degree of G(s). G(0) is called the
DC gain of G(s). Notice the difference between (high frequency) gain and DC
gain.

In the transfer function of a state space model

cadj(sI — A) b

deilT—4) 9

G(s)=c(sI — A)'b+d=

where adj means the adjugate of a matrix (see Appendix B), if there is no common
factor on the above denominator and numerator, then a(s) = det(sI — A), i.e.,
a(s) is the characteristic polynomial of matrix A, and the poles of the system are
the eigenvalues of A. If there are common factors on the above denominator and
numerator, then a(s) is only a factor of det(sI — A) and the poles of the system
are part of the eigenvalues of A. In this case, some of the eigenvalues of A do
not appear as the poles of the transfer function G(s). They become hidden from
the transfer function and hence are called the hidden poles. This again is an
abnormal phenomenon and is prone to trouble. Extra care needs to be taken in
this case. We will assume that this does not happen in our development.
In MATLAB, one can represent a polynomial

p(s) = pos™ +p18™ 4+ py,

———

by a vector
p=[p P -+ pa].

e

Section 2.4 Simplifying Block Diagrams 43

To find the roots of p(s), we can type
>> roots(p)

One often needs to compute the sums and products of polynomials. Let
p(s) =82 +25° + 35 +4, q(s) =5s+6.
Represent them in MATLAB by

>> p=[1 2 3 4]1;
>> g=[5 6];

However, neither of the following commands

>> p+q
>> p*q

would give you what you want since the first requires the two vectors to have the
same dimension and the second is, in general, not defined at all. For polynomial
addition, one has to augment either p or ¢ with enough zeros so that they have the
same dimension. For the example above, we should do

>> p+[0 0 q);
For polynomial multiplication, one has to use the command “conv”:
>> conv(p,q)

One may find these inconvenient and counterintuitive. In Section 2.6, we will
present an alternative way of representing and operating polynomials in MATLAB.

Since the transfer function G(s) of an LTI system is the ratio of the output
Laplace transform Y'(s) and the input Laplace transform U(s), if U(s) = 1, i.e.,
u(t) = &(t), then Y (s) = G(s) and y(t) = L '[G(s)] = g(t). Hence the inverse
Laplace transform of G(s), denoted by g(t), is called the impulse response.

2.4 SIMPLIFYING BLOCK DIAGRAMS

Interconnected systems are often conveniently represented by block diagrams. For
example, the system in the last section Y (s) = G(s)U(s) can be represented using
the block diagram in Figure 2.9.

U(s) o ¥(s)

FIGURE 2.9: Block diagram representation.

Block diagrams are particularly useful when dealing with complex systems
consisting of collections of interconnected subsystems. They can be simplified using
the equivalence relationships in Table 2.1.

We shall now see how a complex system block diagram can be simplified.

44 Chapter 2 Modeling and Simulation

> G ,-_,. — GGy —

Gy
— G
- — C;—» —_— G+ Gy
G,

Y

G »
N G 8
“|1-GH

H

TABLE 2.1: Equivalent block diagrams.

EXAMPLE 2.14

Consider the simple feedback system shown in Figure 2.10. To find the relationship
between r and y, we shall write down all the equations:

Y(s) = P(s)U(s), U(s)=C(s)E(s), E(s)=F(s)R(s)— H(s)Y(s).

Lol Rs) ol Cls)

r

P(s) >

H(s)

A

FIGURE 2.10: A simple feedback system.

——

e ———

1

Section 2.4 Simplifying Block Diagrams 45

We shall now eliminate the intermediate variables, E(s) and U(s), to get
Y(s) = P(s)C(s) [F(s)R(s) — H(s)Y (s)] .
Thus solving Y (s), we get

___P()C(s)F(s)
(o) = 1 PGICHHEG)

R(s)

i.e., the transfer function from R(s) to Y (s) is given by

Y(s) _ Ps)C()F(s)
R(s) 14 P(s)C(s)H(s)

EXAMPLE 2.15

Consider the feedback control system shown in Figure 2.11. Here we omitted the
variable s in the transfer function notation to make the expressions more compact.

» F
'R 9
= Gy Gy Gy >
D -
Hy H, |

Hy |

FIGURE 2.11: Original diagram of Example 2.15.

We shall compute the transfer function from R to Y. Thus, we shall assume
D = 0 and we can simplify the block diagram by first closing the two inner loops:
G1 — Hy — G loop and Gy — Hy — (3 loop, which results in the block diagram
in Figure 2.12. We then move the first summing junction to the place of the second
summing junction to get the block diagram in Figure 2.13. Finally, closing the
loop, we have

(2G5
Y gL 1+ G3H,
R 1=0GH; i GGy G Hg 7

T 1+4G3H: 1-GiH;
B GaG3(F — FG H, +G1)
T GiH, + G3Hy; — G1G3H Hy — G1G2G3H;y '

46 Chapter 2 Modeling and Simulation

-

» F
G G Y
R - Gy F 3 =
1 - G,H, 1+ G3H,
D
H] -

FIGURE 2.12: Block diagram of Example 2.15 with inner loops closed.

> F
@] G b
i >]‘ 62 = 2 -
1 — G H,y 1+ G:H,
D
GIHJ
1= G]H]

FIGURE 2.13: Further simplified block diagram of Example 2.15.

We can also find the transfer function from D to Y as

GGy
K - 1+ GsHj
D GaGy G1Hjy

1+ G3H, 1-G1H,;
- GaGa(1 — Gy Hy)
T A= Gi1Hy + GaHy — G1GsH1Hy — G1G2G3Hy'

In general, block diagrams can always be simplified by using the block diagram i
algebra as shown in Table 2.1. '

2.5 TRANSFER FUNCTION MODELING

The modeling of complicated interconnected LTI systems can be done in the Laplace
transform domain using transfer functions and block diagrams in cases when the
transfer functions of the subsystems are known.

Let us use an armature-controlled DC motor with a load torque, shown in
Figure 2.7, as an example to see how this can be done. Let us consider the case
when the load not only contains an inertia torque proportional to the angular accel-
eration and a friction torque proportional to the angular velocity, but also includes

E

Section 2.5 Transfer Function Modeling 47

a nonzero possibly time-varying torque 74(t) independent of the angular position,
velocity, and acceleration. Such a system can be considered as an interconnected
system with electrical, magnetic, and mechanical subsystems.

First notice that in the electrical part, we have

Io(s) = T Vals) = Vo) (2.20)
Then the torque generated by the motor is given by
Tin(8) = Ky1,(5). (2.21) -
We also know that the back emf voltage is given by
Vo(s) = Kp2(s). (2.22)
The mechanical part has relations
0s) = 5 () — () (223)

and

0(s) = 9(s)

where Ty(s) is the Laplace transform of a possible load torque. Combining all of
these equations, we can see that the block diagram of the whole system is as in
Figure 2.14. Simplifying the block diagram gives

gl == 1 s Va(s)
Sy = $((Las + Ra)(Js + Kj) + K Ky [Ke ~(Las+Ra)] [Tu(s)]
Td
Uy i I Tm . 1 w 1 0
Letr| | & Is+ K, s

Ky =

FIGURE 2.14: Block diagram of an armature-controlled DC motor.

Another illustrative example is a field-controlled DC motor shown in
Figure 2.15. A field-controlled DC motor has the same structure as an armature-
controlled DC motor. The difference is that in the field-controlled case, the arma-
ture current i,(t) is set to be constant but the field circuit is used to control the
varying torque. In this case, the torque is related to the field current as

T (t) = Kiig(t) (2.24)
where i7(t) is the field current. In the Laplace domain, we have
Tla) = Kelels) (2.25)

where I;(s) is the Laplace transform of ig(t).

1
|

48 Chapter 2 Modeling and Simulation

—ANVA- i, = constant

FIGURE 2.15: A field-controlled DC motor system.

The field current is generated by a field voltage through a field circuit and
satisfies the following equation:

@) 4 pyig() (2:26)

which, in terms of Laplace transforms, gives

I_,'(S) . 1
Vi(s) Lps+ Ry’ (aat)

Combining equations (2.23), (2.25), and (2.27), we get

1 . Vi(s)
(Mﬁﬁmh+mpmﬂ*hﬁﬁm[ﬂ@}

An interconnection block diagram for the system is shown in Figure 2.16.

O(s) =

Vr 1 i[Tm 1 ® 1 0
—_— | K, =
Rp+ Lygs Js + K s

FIGURE 2.16: Block diagram of a field-controlled DC motor.

2.6 MATLAB MANIPULATION OF LTI SYSTEMS

In the MATLAB Control Systems Toolbox, a system can be represented by a single
variable, no matter whether it is described by a state space model or by transfer
function model. Suppose that we have a system described by its state space model:

mp[ﬂA;Fm+H}m

yt)=[2 1]=()

and we wish to name it as . Then the following sequence of commands assigns
the variable F' with its state space description:

>> A=[0 17 =1 -2]
>> B=[0 ; 1];

Section 2.6 MATLAB Manipulation of LTI Systems 49

>> C=[2 114
>> D=0;
>> F=ss5(A,B,C,D);

Suppose we now have a system described by its transfer function model

s+ 2
s24+25+1

and we wish to name it as G. The following sequence of commands assigns the
variable G with its transfer function description:

>> num=[1 2];
>> den=[1 2 1];
>> G=tf (num,den) ;

The different descriptions of a system can be easily converted from one to
another. The command

>> F=tf(F);

converts the description of F' from state space to transfer function. By doing this
we can [ind that F' and G are actually the same system since they have the same
transfer function. Also the command

>> G=ss(G);

converts the description of G from transfer function to state space. However, we
do not necessarily get exactly the same state space description as the original I al-
though G and I have the same transler function. This is because a system may have
different state space descriptions. Now F' is in transfer function form. Let us run

>> F=ss5(F);

We will observe that this state space description of F is different from the original
state space description of IV, but is actually the same as the state space description
of (¢ obtained from the conversion. This is because by running the transfer function
~ to state space conversion, the computer program chooses, among many possibili-
ties, a particular canonical form of the state space description. If the very original
state space description is not of this canonical form, then a state space to transfer
function to state space conversion will not give the same thing back. The original
state space description of F' is forever lost after the “ss” to “tf” conversion.

For a system F' in either the state space form or the transfer function form,
commands

>> [A,B,C,D]=ssdata(F);
>> [num,den]=tfdata(F);

give back the parameter matrices of its state space description and the numerator
and denomination coefficients of its transfer function respectively. Owing to the
nonuniqueness of the state space model for a given transfer function, one may

]

50 Chapter 2 Modeling and Simulation

wonder which choice the first command takes if F' is in transfer function form. It
turns out that the same canonical form as that chosen by the command “ss(F)” is
also chosen here.

The use of the LTI system variable brings much convenience. To find out the
poles and zeros of system F'| instead of computing the denominator and numerator
polynomials of transfer function F(s) and then using the command “roots”, we can
simply do

>> pole(F);
Liliid
l.' and
>> zero(F);

Here the actual form of F' is immaterial. To compute the sum and product of
systems, we can simply run

>> F+G;
and
>> F*G;
H Here F' and G may take different forms. The following commands have obvious
i meanings:
>> F-G;
and
>> F/G;

When doing the last operation, one may run into trouble when G is strictly proper
and either F' or (G is in state space form since the inverse of a strictly proper system
cannot be represented by a state space system. Nevertheless, no problem will arise
if both £ and G are in transfer function form unless G(s) = 0. The feedback
connection of two systems are computed easily:

>> feedback(F,G)

computes
F
1+ FG
and
>> feedback(F,G,1)
computes
F
1—-FG’

LTT system variables give another way of representing and operating polyno-
mials, simply by interpreting them as transfer functions with 1 as the denominator

Section 2.7 Simulation and Implementation of Systems 51

polynomials. In this case, the operations on polynomials, such as addition and
multiplication, can be done in a way closer to natural language. Again, take

p(s) =8> +2s% +354+4, q(s)=5s+6
as an example. The commands

>> p=tf([1 2 3 4],1);
>> g=tf([5 6],1);

assign p and ¢ to be appropriate transfer functions with 1 as denominators, i.e.,
polynomials. Addition and multiplication can then be done in the following natural
way without worrying about dimension compatibility and complications caused by
vector multiplication:

>> ptq
>> P*q

2.7 SIMULATION AND IMPLEMENTATION OF SYSTEMS

2.7.1

We have seen how to model a physical system using differential equations and how
to convert the model into a transfer function. In many situations, we also need to
carry out the inverse process. For example, in system simulation, we often need
to build a physical system with a given transfer function to observe the behavior
of the system represented by the transfer function. In control implementation, we
need to build a physical controller from the designed controller transfer function to
connect it with the plant to form a feedback loop. The process of building a real
physical system with a given transfer function is called realization. Unlike the
modeling process of finding transfer functions from physical systems, the inverse

“realization process is highly nonunique, in terms of the kind of physical components

used and the many possible configurations and structures. Although nowadays such
a job is more and more accomplished by computer software, the traditional way of
using hardware components is still of great theoretical and practical value. In the
majority of such system simulation and implementation, op-amp circuits are used.

Hardware simulation and implementation

Let a system be given by a proper nth order transfer function

n n—1 .
Ol = 20 B b dsaddy g

a(s) aps®+ a1+ 4ap’

The op-amp circuit shown in Figure 2.17 gives a realization of G(s). To show this,
notice that

apz™(t) = —a ™V (t) — - - - — anz(t) + u(t).
Taking the Laplace transforms with zero initial conditions, we get -
aps" X (s) = —a1s" 1 X(8) — - — an X (8) + U(s).

This gives us

a(s)X(s) =U(s).

52

Chapter 2 Modeling and Simulation

-*‘ by

’——F b]
— b,
) .r(=" gy g J
ay ~<J
ay) [

a

n

FIGURE 2.17: Controller form realization.

Also, notice that
y(t) = boz ™ (t) + bz (t) + - - + baz(t).
Taking the Laplace transforms with zero initial conditions, we get
Y (s) = bos™ X(s) + bys™ ' X () + - - + by X (5) = b(s) X ().

Hence
Y(s) _ b(s)
U(s) ~ a(s)’
This realization is called a controller form realization.
The op-amp circuit in Figure 2.17 has a natural state space model. If we
follow our tradition of assigning the voltages across capacitors, which are hidden in

the integrators, then the state vector becomes

.’I:(ﬂ'_l)(t)
ot)=|
a(t)
x(t)
The corresponding state space model is
PR S R 1
Qg ag g ag
gw=|+ ™ 0 O fa@+ |0 |u)
L T s 1 0 0
[ay Ap—1 (e7% bo
)= b —bo—> o< bhmp— b b”—b—] i
y(t) - =1 00— 0 ;r:(t)+a0u(t)

Section 2.7 Simulation and Implementation of Systems 53

This state space model, of course, gives a transfer function exactly the same as the

given one.
Another realization of the same system is given by the circuit shown in Figure
2.18. To show this, notice that

agy(t) = a1 (t) + bou(t)
Z1(t) = xo(t) — ayy(t) + byult)

En—1(t) = zn(t) — @n_1y(t) + bn_yu(t)
Tn(t) = —any(t) + byu(t).

K m
- bl |
’bnfl
X) X [X Y
sl b, I B e S [1/ay >
ay
Q) |

Ay

FIGURE 2.18: Observer form realization.
Taking the Laplace transforms with zero initial conditions, we get

aoY (s) = X1(s) + bolU(s)

sX1(s) = Xa(s) —a1Y(s) + 01 U(s)

8Xn-1(8) = Xn(5) — an-1Y (8) + bp—1U(s)
sXn(s) = —anY(s) + b, U(s).
Multiplying the above equations by s™, s®~1,..., s, 1, respectively, and adding them
altogether, one can see that the variables X (s), ..., X, (s) are all cancelled and the
resulting equation is

a(s)Y(s) = b(s)U(s).

So we also get

Y(s) _ bls)
U(s) a(s)

54

Chapter 2 Modeling and Simulation

This realization is called the observer form realization. It also has a state space
model. Let us again assign the voltage across capacitors as state variables. The
state vector then becomes

a(t)
x(t) = :
Tolt)
The corresponding state space model is
I [b b2]
ag ()]
R N - : o
@(t) = T TR | x(t) + B = boa 1| ult)
ag agp
=28 G e B bi. = buﬁ’l
L Qo J L ap |
[1 b
y®)=|— 0 - 0] z(t)+ =ud).
L Qo agp

2.7.2 Software simulation and implementation

MATLAB provides certain tools for the numerical computation of system re-
sponses. For a system represented by a variable G, regardless of whether it is
in the transfer function form or state space form, to compute its impulse response,
i.e., its response to the unit impulse input d(¢), one can use

>> [y,t]=impulse(G);
To find its step response, i.e., its response to the unit step input o(t), one can use
>> [y,t]l=step(G);

To calculate a system response with respect to a more general input signal
than impulse and step, one can use a MATLAB command 1sim. For example, the
following sequence of commands gives the sinusoidal response of the system:

>> £=0:0.1:10;

>> u=sin(t);

>> y=1sim(G,u,t);

Another software product associated with MATLAB is SIMULINK. It can

be used to simulate an interconnected system, represented by a block diagram. Let
us demonstrate its use by a couple of examples.

EXAMPLE 2.16

Consider the unity feedback system shown in Figure 2.19 with a loop transfer

function ;

Hel = s(s+1)

Section 2

¥

| L(s)

Y

FIGURE 2.19: For Examples 2.16 and 2.17.

Simulation and Implementation of Systems 55

The time responses of this system with respect to various kinds of command
signals are simulated using a SIMULINK diagram as shown in Figure 2.20 and are
plotted in Figure 2.21.

oooo —+ 1 - C 1
4 s(s + 1)
Signal Zero-pole Scope
generator
i
To workspace

>

To workspacel

FIGURE 2.20: SIMULINK diagram for Example 2.16.

. %
3 il
2 L
-~
1=+ ../
gy
0
-1
0 L 2 3 4 5
Time ¢ [sec]
L5
1 A
3 NI
o Y
05
=
156770 20 30 20 50

Time ¢ [sec]

1.5
RN
0.5 [
os k4|
o
“1507 90 20 30 40 50
Time ¢ [sec)
L5
1 -~ . .
0.5 (-5 FANFAY
¥ N
0 \ ;
0.5 \7 7
—1 \¢/ \¢/
-15
0 10 20 30 40 50

T'ime ¢ |sec|

FIGURE 2.21: Responses to a ramp signal, a square wave, a sawtooth signal, and a sine wave

for Example 2.16.

