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This exam has THREE (3) Sections for a total of 180 Points 
(which very roughly, on the whole, corresponds to ~1 Point/Minute) 

Section 1:  Digital Linear Dynamical Systems......................................... 50 Points (28 %) 

Section 2:  Digital Processing/Filtering of Signals ..................................  60 Points (33 %) 

Section 3:  Digital & State-Space Control ............................................... 70 Points (39 %) 

⇨  Please answer ALL questions + ALL Answers MUST  Be Justified  ⇦ 
(answers alone are not sufficient) 

 

⇨   PLEASE RECORD ALL ANSWERS IN THE ANSWER BOOKLET   ⇦ 
(Any material not in Answer Booklet(s) will not be seen.  In particular, the 
exam paper will not be graded or reviewed.) 

 

 
Section 1:  Digital Linear Dynamical Systems 
Please Record Answers in the Answer Book (4 Questions | 50 Points) 
Please Justify and Explain All Answers 

 

1. Starting With a Little Sampler (10 Points) 

 

 
 

A sampler may be described as a continuous time system with by the function  

𝑦(𝑡) = ∑ 𝑥(𝑡)𝛿(𝑡 − 𝑘𝑇)

∞

𝑘=−∞

 

 

A. Is the sampling operation 

i. Causal?  

ii. Linear? 

iii. Time invariant? 

iv. Invertible? 

B. If 𝒙(𝒕) = 𝐜𝐨𝐬⁡(𝝅𝟐𝒕), please sketch the sampled output 𝑦(𝑡) for 𝑇 = 1. 
(Hint:  What is the frequency of this signal in Hz?) 

 

 

 

2. Matrix Inversion Singled Out (10 Points) 

Assume 𝒙 ∈ ℝ𝑛, can we form a matrix and invert it via (𝒙𝒙𝑇)−1? 

Why or Why Not?  Please explain and be specific. 

 

 

 

  

x(t) y(t)Sampler
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3. Convolution in Order? (15 Points) 

Given:  

𝑥0[𝑘] = [8 3 4 1 5 9 6 7 2] 
ℎ1[𝑘] = [0 1 0] 
ℎ2[𝑘] = [1 0 −1] 
𝑦𝐴[𝑘] = 𝑥0[𝑘] ∗ ℎ1[𝑘] 
𝑦𝐵[𝑘] = 𝑥0[𝑘] ∗ ℎ2[𝑘] 

 

Discuss whether following statements are surely true or surely false or cannot be 

determined given the information.   

 

A. The convolution 𝑦𝐴[𝑘] = 𝑥0[𝑘] ∗ ℎ1[𝑘] is 

yA[k] = [ 2     7     6     9     5     1     4     3     8 ] 
B. The convolution  𝑦𝐵[𝑘] = 𝑥0[𝑘] ∗ ℎ2[𝑘] is 

yB[k] = [  8     3    -4    -2     1     8     1    -2    -4    -7    -2 ] 
C. That time shifting of x and h1 by k0 and k1 is equivalent to time shifting the 

convolution by k0 plus k1 – that is 𝑦𝐴[𝑘 − 𝑘0 − 𝑘1] = 𝑥0[𝑘 − 𝑘0] ∗ ℎ1[𝑘 − 𝑘1]  
D. If 𝑆(𝑥[𝑛]) ≡ ∑ 𝑥[𝑛]𝑛=∞

𝑛=−∞ , then 𝑆(𝑦𝐴) = 𝑆(𝑥0)𝑆(ℎ1) and 𝑆(𝑦𝐵) = 𝑆(𝑥0)𝑆(ℎ2)  
 

 

 

 

 

4. Images of the 𝒵-Plane (15 Points) 

For a first order system with a pole at the locations A, B, C, D, or E as indicated the 

following diagram of the 𝒵-Plane 

 
 

Please briefly sketch the time response associated with each of these locations (i.e., 

you should have 5 small sketches for the typical signal response at each location 

marked A, B, C, D, or E. 
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Section 2:  Digital Processing & Filtering of Signals 
Please Record Answers in the Answer Book (6 Questions | 60 Points) 
Please Justify and Explain All Answers 
 

5. Towards a Perfect Reconstruction (10 Points) 

Consider the melodious signal 

 

𝑥(𝑡) ⁡= ⁡𝑐𝑜𝑠(2𝜋𝑡) ⁡+ ⁡𝑠𝑖𝑛(5𝜋𝑡) ⁡+ ⁡4⁡𝑐𝑜𝑠(3𝜋(𝑡⁡ + ⁡0.5)) 
 

A. What is the minimum sampling frequency ωs (assuming ωs = nπ) and number 

of samples Ns that will allow resolution of all the frequencies and their perfect 

reconstruction? 

B. If you were to reconstruct with an ideal lowpass filter, what cut-off frequency 

should it have? 

C. What reconstruction algorithm (e.g., “Whittaker–Shannon interpolation”, 

“ZOH”, “FOH”, etc.) would give the best reconstruction for the least 

bandwidth (number of recorded samples)? 

 

 

 

6. Moving on to the Cocktail Party Problem (10 Points) 

Imagine we want to sample a signal of fine piano notes from the song Under Paris 

Skies.  A section of this song is 𝑥(𝑡) = 5 sin(880𝜋 ⋅ 𝑡) + sin⁡( 522𝜋 ⋅ 𝑡), but sadly we 

also have noise 𝑛(𝑡) = 0.1 sin(3000𝜋 ⋅ 𝑡), thus recording, 𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡). 
 

A. Please draw the spectrum of |𝑌(𝜔)|of 𝑦(𝑡) 
B. Assume that the signal is sampled with an ideal, proper anti-aliased sampler at  

1,000 Hz.    Please sketch the spectrum of the sampled signal 

C. An impatient student decides to sample some signals without an anti-aliasing 

filter first.  Sketch the spectrum of the recorded signal in this case. 

 

 

 

7. An Impactful Filter (10 Points) 

Airbags uses an accelerometer to detect the impulse of a significant collision. To save 

costs The ATAKAT Airbag Company has decided to use noisier “smartphone grade” 

accelerometers and then filter the signal.  You have been asked to design a FIR filter 

for this purpose.  The impact acceleration is defined as a ½ millisecond impulse of 

greater than 50g acceleration.   Assume there is non-trivial white noise.  In addition,   

the engine vibrates at 42 Hz and the microcontroller has a 10,000 Hz clock. 

 

A. What sample rate would you choose for this problem? 

B. An engineer suggests that it might be better to use the derivative of the 

acceleration signal and measure the jolt (aka jerk).  Is this a good idea?   

C. What type of FIR filter would you chose (if any)?  Why? 
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8. Tuning Out? (10 Points) 

Suppose that for any given frequency 0 < 𝜔0 < 𝜋, you can build a digital notch filter 

with transfer function 𝐻0(𝑧), with a null in the frequency response at 𝜔0. Further, 

suppose that we have a signal, bandlimited to 500 Hz, but with an unwanted signal of 

50 Hz together with its odd harmonics. Design a filter to remove the unwanted 

signals. Explain your reasoning. 

 

 

 

 

 

 

 

9. MAMMA Says (10 Points) 

The “Music and Mood Management Apparatus” robot has been upgraded and needs a 

sound check.  It had an FIR digital filter that has a notch at 5 kHz when used with its 

original microcontroller that had a sampler operating at 11.05 kHz.  However, its new 

hardware now runs faster, with the result that the new sampler runs at a minimum 

frequency of 44.2 kHz.   

 

A. At what frequency is the notch now?  
(Note: assuming the same “now untuned” coefficients) 

B. Where on the 𝒵 plane unit circle should in should the zero(s) be placed (or 

moved to) in a re-designed filter to move the notch back to at 5 kHz? 
(Note: This may be considered as what angle on the unit circle in the 𝒵 plane should the zero 

be placed in a re-designed filter?) 

 

 

 

 

 

 

 

 

10. Good Things Come To Those Who Wait (10 Points) 

Signals have noise – in part because a channel has to be shared and one device’s 

signal is another one’s noise.   

 

A. Briefly explain (and/or show a simple sketch in the frequency domain) what is 

meant by the terms white and pink noise?   

B. One strategy for “beating” the noise is to wait and average (sometimes called 

“integration” by some sensor makers).  Is this a good strategy?  

C. Briefly describe two other strategies for beating the noise. 
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Section 3:  Digital & State-Space Control 
Please Record Answers in the Answer Book (5 Questions | 70 Points) 
Please Justify and Explain All Answers 
 
 

11. Changing Perspective (15 Points) 

Consider a general negative feedback control system with a Plant, G(s), Controller, 

C(s), and Sensor, H(s). 

 
 

A. Imagine that over the course of the operation the plant changes such that it 

transforms from G(s) to G
+
(s) and the error from E(s) to E

+
(s) , where 

𝐺+(𝑠) = 𝐺(𝑠) + Δ𝐺(𝑠) and 𝐸+(𝑠) = 𝐸(𝑠) + Δ𝐸(𝑠).  Determine the value of 

E
+
(s). 

B. In open-loop system the components have to be selected very carefully.  What 

does this suggest about the advantages/disadvantages of a closed loop system 

as it relates to component variation?   

(Please briefly and succinctly explain). 

 

 

12. Properties of a State Transition (15 Points) 

State politics is convoluted, but state transition can feature direct action!  

 

Let’s explore some properties of the state transition matrix,𝚽, for a simple SISO LTI 

system where 𝐴 = [
3 0
0 4

]. 

 

A. 𝚽(t): Please determine 𝚽(t) for this system A. 
(Note: You may leave it in terms of the matrix exponential) 

B. 𝚽(s): Kindly determine: 𝚽(s) for a system A  

C. Characteristic Polynomial:   

Please also find System A’s characteristic polynomial. 

D. Discrete Representation: 

Please express this system as a difference equation (i.e. 𝑥(𝑘 + 1) and 𝑦(𝑘))  
assuming a step input at the first step (𝑢(𝑘)), ZOH sampling, H=I, and  

𝚪 = [
3 1
1 4

]. 

 

  

C(s)

[Controller]

R(s)
G(s)

[General Plant]

H(s)

[Sensor]

+

–

E(s) Y(s)
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13. Easy 𝑷(𝒛)?  (15 Points) 

In a plant, it is decided to have two plants sampled simultaneously in series as: 

 

 
 

 

A. What is a general expression for P(z), the z-transform between u[k] and y[k]? 

(Assume ZOH sampling) 

 

B. If 𝐺1 =
1

(𝑠+1)
 and 𝐺2 =

1

(𝑠+2)
, please determine the discrete time transfer 

function, P(z) again assuming ZOH sampling and a known sampling time, T, 

of T=0.1 seconds.   

 

C. Assess the stability of the system P(z) 

 

D. In a rather desperate “efficiency enhancing” measure at this plant, its chief 

administrator PH (a rather acidic character), decides that it’s more efficient to 

have one sampler per plant.  Thus leading to: 

 

 
 

Briefly comment on how this system compares to the original.   

Is it the same, better, or worse? (i.e. Is PH’s decision wise or foolish?) Why? 

 

 

 

 

 

 

 

 

 

 

 

  

G1(s)
u[k]

Sample

+ ADC

DAC+

Hold

P(z)
y[k]

G2(s)

G1(s)
u[k]

Sample

+ ADC

DAC+

Hold

PH(z)
y[k]

G2(s)
Sample

+ ADC

DAC+

Hold y[k]
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14. Fad Control (15 Points) 

Vice Chancellor Richard Moby loves hype and fads and is always chasing them.    

The VC, who was once featured in a fashion photoshoot, is tired of “the trough of 

disillusionment” and visits Professor Ahab for a formula to get a pretty high ranking.  

The professor suggests that instead of chasing yet another institute on rat tickling; that 

control might determine the timing of the next popular research.   

 

Let’s apply some control theory and find out. We start with the Gartner Hype Cycle 

(shown below) to which we have added some markers (letters A through J). 

 

 
 

It is proposed to design a fast news controller to stay ahead of the buzz and dampen 

negative feedback on the university’s research.  The initial plan to use a PID control 

architecture where 𝐶(𝑠) = 𝐾𝑃 (1 +
1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠) 

 

 
 

A. What points on the graph do we need to determine τ, rise (K), rise slope (K/τ), 

and transport delay (L).  (Please justify your answer) 

B. Given that news is very sensitive to delay, which control type (P, PI, or PID) 

should we use in this case? 

C. Given this, please try to estimate the “control gains” for the controller you 

selected in Part B. 

D. Briefly comment on whether this is a good decision?   
(Hint: Does the hype curve follow the transport delay process assumed.  What would be the 

prescribed decay and does this intuit for this application, etc.) 

 

 

 

  

C(s)

[Controller]

R(s) E(s)
G(s)

[General Plant]

Y(s)
+

–



Semester One Final Examinations, 2015  ELEC3004 Signals, Systems & Control 

Page 10 of 15 

 

15. Time to Unwind (10 Points) 

Of course, all things have a limit – even this exam!  When it comes to actuators in 

plants, a common problem is that they saturate
1
.  When they are paired with an 

integral controller, this leads to an effect known as integrator windup
2
.   

 

The issue is that output of the integral controller (uic) keeps increasing even though 

the actuator has reached its saturation limit (amin/max), thus 𝑢𝑖𝑐 > 𝑎𝑚𝑎𝑥 or  𝑢𝑖𝑐 < 𝑎𝑚𝑖𝑛.  

Let’s consider the first case (𝑢𝑖𝑐 > 𝑎𝑚𝑎𝑥 ), the problem this causes is that the 

increasing control action of uic falls on “deaf ears” and does not reduce the system 

tracking error (e).  Indeed, it will require significant (e) to empty (or discharge) the 

integrator to a reasonable value.   

 

A solution to this is to stop integrating as soon as uic reaches the actuator limit that is 

an “anti-windup” mechanism.  This can be implemented easily in a digital controller 

as a simple limiter (or saturation function/block). 

 

Control Engineer Ishmael (Prof Ahab’s chief assistant) proposes the following design 

with a limiter 

 
 

A. What is the integrator input (the input to the 
1

𝑠
 block) as a function of Tt, es, K, 

Ti, and e ? 

B. What is the signal v going to the actuator model? 

C. What if the actuator model is not tuned correctly and underrepresents what the 

actuator can do.  What will happen then? 

D. It is conjectured that this will exhibit smaller overshoot and settling time, even 

though the control signal to the motors is limited. Is this true?  Please Explain.  

 

 

 

 

END OF EXAMINATION   —   Thank you !!!  

 Is the wonder still there?  ☺ 

                                                      
1
  Here saturation means reach the limits (in this case of the actuator) 

2
  It also leads to a loss of controllability because one cannot drive a motor past its limits; however, when 

states are coupled it may still be possible to affect control action, which motivates an area of 

control/robotics known as “underactuated robotics” 
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Table 1: Commonly used Formulae
The Laplace Transform

F (s) =

∫ ∞
0

f(t)e−st dt

The Z Transform

F (z) =
∞∑
n=0

f [n]z−n

IIR Filter Pre-warp

ωa =
2

∆t
tan

(
ωd∆t

2

)
Bi-linear Transform

s =
2(1− z−1)

∆t(1 + z−1)

FIR Filter Coefficients

cn =
∆t

π

∫ π/∆t

0

Hd(ω) cos(nω∆t) dω

Table 2: Comparison of Fourier representations.

Time
Domain

Periodic Non-periodic

D
is

cr
et

e

Discrete Fourier
Transform

X̃[k] =
1

N

N−1∑
n=0

x̃[n]e−j2πkn/N

x̃[n] =
N−1∑
k=0

X̃[k]ej2πkn/N

Discrete-Time
Fourier Transform

X(ejω) =

∞∑
n=−∞

x[n]e−jωn

x[n] =
1

2π

∫ π

−π
X
(
ejω
)
ejωn dω

P
er

io
di

c

C
on

tin
uo

us

Complex Fourier Series

X[k] =
1

T

∫ T/2

−T/2
x̃(t)e−j2πkt/T dt

x̃(t) =

∞∑
k=−∞

X[k]ej2πkt/T

Fourier Transform

X(jω) =

∫ ∞
−∞

x(t)e−jωt dt

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωt dω

N
on

-p
er

io
di

c

Discrete Continuous Freq.
Domain
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Table 3: Selected Fourier, Laplace and z-transform pairs.

Signal ←→ Transform ROC

x̃[n] =
∞∑

p=−∞

δ[n− pN ]
DFT←−→ X̃[k] =

1

N

x[n] = δ[n]
DTFT←−−→ X(ejω) = 1

x̃(t) =
∞∑

p=−∞

δ(t− pT )
FS←→ X[k] =

1

T

δT [t] =
∞∑

p=−∞

δ(t− pT )
FT←→ X(jω) =

2π

T

∞∑
k=−∞

δ(ω − kω0)

cos(ω0t)
FT←→ X(jω) = πδ(ω − ω0) + πδ(ω + ω0)

sin(ω0t)
FT←→ X(jω) = jπδ(ω + ω0)− jπδ(ω − ω0)

x(t) =

{
1 when |t| 6 T0,
0 otherwise.

FT←→ X(jω) =
2sin(ωT0)

ω

x(t) =
1

πt
sin(ωct)

FT←→ X(jω) =

{
1 when |ω| 6 |ωc|,
0 otherwise.

x(t) = δ(t)
FT←→ X(jω) = 1

x(t) = δ(t− t0)
FT←→ X(jω) = e−jωt0

x(t) = u(t)
FT←→ X(jω) = πδ(w) +

1

jw

x[n] =
ωc
π

sincωcn
DTFT←−−→ X(ejω) =

{
1 when |ω| < |ωc|,
0 otherwise.

x(t) = δ(t)
L←→ X(s) = 1 all s

(unit step) x(t) = u(t)
L←→ X(s) =

1

s

(unit ramp) x(t) = t
L←→ X(s) =

1

s2

x(t) = sin(s0t)
L←→ X(s) =

s0

(s2 + s0
2)

x(t) = cos(s0t)
L←→ X(s) =

s

(s2 + s0
2)

x(t) = es0tu(t)
L←→ X(s) =

1

s− s0

Re{s} > Re{s0}

x[n] = δ[n]
z←→ X(z) = 1 all z

x[n] = δ[n−m]
z←→ X(z) = z−m

x[n] = u[n]
z←→ X(z) =

z

z − 1

x[n] = zn0u[n]
z←→ X(z) =

1

1− z0z−1
|z| > |z0|

x[n] = −zn0u[−n− 1]
z←→ X(z) =

1

1− z0z−1
|z| < |z0|

x[n] = anu[n]
z←→ X(z) =

z

z − a
|z| < |a|
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Table 4: Properties of the Discrete-time Fourier Transform.

Property Time domain Frequency domain

Linearity ax1[n] + bx2[n] aX1(ejω) + bX2(ejω)

Differentiation (fre-
quency)

nx[n] j
dX(ejω)

dω

Time-shift x[n− n0] e−jωn0X(ejω)
Frequency-shift ejω0nx[n] X(ej(ω−ω0))
Convolution x1[n] ∗ x2[n] X1(ejω)X2(ejω)
Modulation x1[n]x2[n] 1

2π
X1(ejω) ~X2(ejω)

Time-reversal x[−n] X(e−jω)
Conjugation x∗[n] X∗(e−jω)
Symmetry (real) Im{x[n]} = 0 X(ejω) = X∗(e−jω)
Symmetry (imag) Re{x[n]} = 0 X(ejω) = −X∗(e−jω)

Parseval
∞∑

n=−∞

|x[n]|2 =
1

2π

∫ π

−π

∣∣X(ejω)
∣∣2 dω

Table 5: Properties of the Fourier series.

Property Time domain Frequency domain

Linearity ax̃1(t) + bx̃2(t) aX1[k] + bX2[k]

Differentiation
(time)

dx̃(t)

dt

j2πk

T
X[k]

Time-shift x̃(t− t0) e−j2πkt0/TX[k]
Frequency-shift ej2πk0t/T x̃(t) X[k − k0]
Convolution x̃1(t) ~ x̃2(t) TX1[k]X2[k]
Modulation x̃1(t)x̃2(t) X1[k] ∗X2[k]
Time-reversal x̃(−t) X[−k]
Conjugation x̃∗(t) X∗[−k]
Symmetry (real) Im{x̃(t)} = 0 X[k] = X∗[−k]
Symmetry (imag) Re{x̃(t)} = 0 X[k] = −X∗[−k]

Parseval
1

T

∫ T/2

−T/2
|x̃(t)|2 dt =

∞∑
k=−∞

|X[k]|2

COPYRIGHT RESERVED Page 13 of 15 TURN OVER
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Table 6: Properties of the Fourier transform.

Property Time domain Frequency domain

Linearity ax̃1(t) + bx̃2(t) aX1(jω) + bX2(jω)
Duality X(jt) 2πx(−ω)

Differentiation
dx(t)

dt
jωX(jω)

Integration
∫ t

−∞
x(τ) dτ 1

jω
X(jω) + πX(j0)δ(ω)

Time-shift x(t− t0) e−jωt0X(jω)
Frequency-shift ejω0tx(t) X(j(ω − ω0))
Convolution x1(t) ∗ x2(t) X1(jω)X2(jω)
Modulation x1(t)x2(t) 1

2π
X1(jω) ∗X2(jω)

Time-reversal x(−t) X(−jω)
Conjugation x∗(t) X∗(−jω)
Symmetry (real) Im{x(t)} = 0 X(jω) = X∗(−jω)
Symmetry (imag) Re{x(t)} = 0 X(jω) = −X∗(−jω)

Scaling x(at)
1

|a|
X

(
jω

a

)
Parseval

∫ ∞
−∞
|x(t)|2 dt =

1

2π

∫ ∞
−∞
|X(jω)|2 dω

Table 7: Properties of the z-transform.

Property Time domain z-domain ROC

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊆ Rx1 ∩Rx2

Time-shift x[n− n0] z−n0X(z) R†x
Scaling in z zn0x[n] X(z/z0) |z0|Rx

Differentiation in z nx[n] −zdX(z)

dz
R†x

Time-reversal x[−n] X(1/z) 1/Rx

Conjugation x∗[n] X∗(z∗) Rx

Symmetry (real) Im{x[n]} = 0 X(z) = X∗(z∗)
Symmetry (imag) Re{X[n]} = 0 X(z) = −X∗(z∗)
Convolution x1[n] ∗ x2[n] X1(z)X2(z) ⊆ Rx1 ∩Rx2

Initial value x[n] = 0, n < 0⇒ x[0] = lim
z→∞

X(z)

† z = 0 or z =∞ may have been added or removed from the ROC.

COPYRIGHT RESERVED Page 14 of 15 TURN OVER



15
ELEC 3004 / 7312: Systems: Signals & Controls

Final Examination – 2015

Table 8: Commonly used window functions.

Rectangular:

wrect[n] =

{
1 when 0 6 n 6M ,
0 otherwise.
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Bartlett (triangular):

wbart[n] =


2n/M when 0 6 n 6M/2,
2− 2n/M when M/2 6 n 6M ,
0 otherwise.

0 0.5 1
−80

−60

−40

−20

0

ω (× π)

20
 lo

g 10
 |W

ba
rt
(e

jω
)|

Hanning:

whann[n] =

{
1
2 −

1
2 cos (2πn/M) when 0 6 n 6M ,

0 otherwise.
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Hamming:

whamm[n] =

{
0.54− 0.46 cos (2πn/M) when 0 6 n 6M ,
0 otherwise.
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Blackman:

wblack[n] =


0.42− 0.5 cos (2πn/M)
+ 0.08 cos (4πn/M)

when 0 6 n 6M ,

0 otherwise.
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Type of Window
Peak Side-Lobe Amplitude

(Relative; dB)
Approximate Width

of Main Lobe
Peak Approximation Error,

20 log10 δ (dB)

Rectangular −13 4π/(M + 1) −21
Bartlett −25 8π/M −25
Hanning −31 8π/M −44
Hamming −41 8π/M −53
Blackman −57 12π/M −74
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