

Week	CILECTURE Title			
Week	A Mar	Introduction & Systems Overview		
1	6-Mar	[Linear Dynamical Systems]		
2	11-Mar	Signals as Vectors & Systems as Maps		
2	13-Mar	[Signals]		
2	18-Mar	Sampling & Data Acquisition & Antialiasing Filters		
3	20-Mar	[Discrete Signals]		
4	25-Mar	Filter Analysis & Filter Design		
4	27-Mar	[Filters]		
5	1-Apr	Digital Filters		
3	3-Apr	[Digital Filters]		
6	8-Apr	Discrete Systems & Z-Transforms		
0	10-Apr	[Z-Transforms]		
7	15-Apr	Convolution & FT & DFT		
/	17-Apr	Frequency Response		
0	29-Apr	Introduction to Control		
0	1-May	[Feedback]		
0	6-May	Introduction to Digital Control		
9	8-May	[Digitial Control]		
10	13-May	Stability of Digital Systems		
10	15-May	[Stability]		
11	20-May	State-Space		
11	22-May	Controllability & Observability		
12	27-May	PID Control & System Identification		
12	29-May	Digitial Control System Hardware		
12	3-Jun	Applications in Industry & Information Theory & Communications		
15	5-Jun	Summary and Course Review		

Signal Size

• The size of any entity is a number that indicates the largeness or strength of that entity. Generally speaking, the signal **amplitude** varies with **time**.

$$S = \int_0^T u(t)dt$$

• However, this will be a defective measure because even for a large signal *x*(*t*), its positive and negative areas could cancel each other, indicating a signal of small size.

Signal Energy

- Consider the area under a signal *x*(*t*) as a possible measure of its size, because it takes account not only of the amplitude but also of the duration.
- Instead we look at it's energy or signal energy

$$E = \int_{-\infty}^{\infty} u^2(t) dt$$

- But this can be **infinite**!
- Not to be confused with mechanical **Energy** -- Not in Joules

Signal Classifications

- Classifications
 - A "pair-wise" way of characterizing the signal by putting it into a "descriptive bin"
 - Ex: How to describe a person well we could measure them (weight, height, power, etc.) or we could sort by category ("North/South-side," Australian, etc.) → Neither is perfect

• Some common classifications:

- 1. Continuous-time and discrete-time signals
- 2. Analog and digital signals
- 3. Periodic and aperiodic signals
- 4. Real and complex signals
- 5. Deterministic and probabilistic signals

Signal Models

3] Sinusoidal & Exponential Signals

 $u(t) = A\cos(\omega t + \phi)$

- A, ω : Amplitude and Frequency (ω =2 π f) ٠
- ϕ : phase angle

(c) (d) Figure 1.21: Sinusoids of complex frequency σ + j ω .

ELEC 3004: Systems

Systems

Further Classifications of Systems

- 1. Linear and nonlinear systems
- 2. Constant-parameter and time-varying-parameter systems
- 3. Instantaneous (memoryless) and dynamic (with memory) systems
- 4. Causal and noncausal systems
- 5. Continuous-time and discrete-time systems
- 6. Analog and digital systems
- 7. Invertible and noninvertible systems
- 8. Stable and unstable systems

QUESTION No SECTION No STUDENT No	- DO WR IN
Calculate derivates of L to find torque	MA
equations	
T DON'T KNOW KNOW	
11/1/1/2/2?	
T'M AN ELECTRECAL	
ENTER	
	QUESTION No

Table 2.1	Variable Through	Integrated Through-	Variable Across	Integrated Across-
System	Element	Variable	Element	Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21} Pressure momentum, γ_{21}
Fluid	Fluid volumetric rate	Volume, V	Pressure difference, P ₂₁	
Thermal	Heat flow rate, q	Heat energy, <i>H</i>	Temperature difference, \mathcal{T}_{21}	

Type of Element	Physical Element	Governing Equation	Energy E or Power ℗	Symbol
	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	
	Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ \cdots \circ F$
Inductive storage	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \xrightarrow{k} \overset{\omega_1}{\longrightarrow} T$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ \cdots \circ P_1$
	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^2$	$v_2 \circ \xrightarrow{i} \overset{C}{\longrightarrow} \circ v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \longrightarrow v_2 - M = v_1 = constant$
Capacitive storage	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \longrightarrow \sigma_2$ $J \longrightarrow \sigma_1 = \sigma_2$ constant
contribute to the party	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}{}^2$	$\mathcal{Q} \xrightarrow{P_2} \mathcal{Q} \xrightarrow{P_1} \mathcal{Q}$
April to a movie to Accurate	Thermal capacitance	$q = C_t \frac{d\mathcal{T}_2}{dt}$	$E=C_{t}\mathcal{T}_{2}$	$q \xrightarrow{\mathbf{r}}_{2} \underbrace{C_{t}}_{\text{constant}} \underbrace{\sigma_{1}}_{1} =$
	Electrical resistance	$i = \frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}{}^2$	$v_2 \circ \overset{R}{\longrightarrow} \circ v_1$
	Translational damper	$F = bv_{21}$	$\mathcal{P} = b v_{21}^2$	$F \longrightarrow v_2$ v_1
Energy dissipators	Rotational damper	$T = b\omega_{21}$	$\mathcal{P} = b\omega_{21}^2$	$T \longrightarrow \omega_2 \longrightarrow \omega_1$
an chailtean ch	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}{}^2$	$P_2 \circ \neg \checkmark \checkmark \circ P_1$
	Thermal resistance	$q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{T}_2 \circ \longrightarrow \mathcal{T}_1$
			Source	ce: Dorf & Bishop, Modern Control Systems, 12th Ed., p.

