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through the attenuator to the receiver. In this manner,
the gain versus the cathode-potential-difference curve of
Fig. 17 was obtained. This figure corresponds rather
closely with the theoretical curve of propagation con-
stant versus the inhomogeneity factor, shown in Fig. 1.
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Fig. 17-Gain versus cathode-potential-difference characteristics
of the two-velocity-type electron-wave tube.

At a frequency of 3000 Mc and a total current of 15 ma,
a net gain of 46 db was obtained, even though no at-
tempt was made to match either the input or output
circuits. The lack of appropriate match is responsible
for the fact that the gain curve assumes negative values
when the electronic gain is not sufficient to overcome the
losses due to mismatch. At the peak of the curve, it is
estimated that the electronic gain is of the order of 80
db.
The curves of output voltage versus the potential of

the drift tube were shown in Figs. 8 and 9. Fig. 9 shows
this characteristic for the electron-wave tube of the

space-charge type illustrated in Fig. 5. The shape of this
curve corresponds rather closely with the shape of the
theoretical curve given in Fig. 7. Fig. 8 shows the output
voltage versus drift-potential characteristic for the two-
velocity-type electron-wave tube. When the drift-tube
voltage is high, the tube behaves like the two-cavity
klystron amplifier. As the drift voltage is lowered the
gain gradually increases, due to the space-charge inter-
action effect, and achieves a maximum which is ap-
proximately 60 db higher than the output achieved with
klystron operation. With further reduction of the drift-
tube potential the output drops rather rapidly, because
the space-charge conditions become unfavorable; that is,
the inhomogeneity factor becomes too large.
The electronic bandwidth was measured by measur-

ing the gain of the tube over a frequency range from
2000 to 3000 Mc and retuning the input and output cir-
cuits for each frequency. It was observed that the gain
of the tube was essentially constant over this frequency
range, thus confirming the theoretical prediction of
electronic bandwidth of over 30 per cent at the gain of
80 db.
The electron-wave tube, because of its remarkable

property of achieving energy amplification without the
use of any resonant or waveguiding structures in the
amplifying region of the tube, promises to offer a satis-
factory solution to the problem of generation and
amplification of energy at millimeter wavelengths, and
thus will aid in expediting the exploitation of that por-
tion of the electromagnetic spectrum.
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Communication in the Presence of Noise*
CLAUDE E. SHANNONt, MEMBER, IRE

Summary-A method is developed for representing any com-
munication system geometrically. Messages and the corresponding
signals are points in two "function spaces," and the modulation
process is a mapping of one space into the other. Using this repre-
sentation, a number of results in communication theory are deduced
concerning expansion and compression of bandwidth and the
threshold effect. Formulas are found for the maxmum rate of trans-
mission of binary digits over a system when the signal is perturbed
by various types of noise. Some of the properties of "ideal" systems
which transmit at this maxmum rate are discussed. The equivalent
number of binary digits per second for certain information sources
is calculated.

* Decimal classification: 621.38. Original manuscript received by
the Institute, July 23, 1940. Presented, 1948 IRE National Conven-
tion, New York, N. Y., March 24, 1948; and IRE New York Section,
New York, N. Y., November 12, 1947.
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I. INTRODUCTION

A GENERAL COMMUNICATIONS system is
shown schematically in Fig. 1. It consists essen-
tially of five elements.

1. An information source. The source selects one mes-
sage from a set of possible messages to be transmitted to
the receiving terminal. The message may be of various
types; for example, a sequence of letters or numbers, as
in telegraphy or teletype, or a continuous function of
timef(t), as in radio or telephony.

2. The transmitter. This operates on the message in
some way and produces a signal suitable for transmis-
sion to the receiving point over the channel. In teleph-
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In the late 1940s, Claude Shannon published a series of 
papers which introduced his information theory. 

•  It revolutionised communications systems. 



Bandlimited Signals 
•  A signal is just a function of time x(t) 

–  But it has some physical significance, e.g., a voltage waveform 

•  A bandlimited signal is one where the frequency components 
lie between a minimum and maximum frequency 
–  We can force a signal to be bandlimited by passing it through a 

filter 



Nyquist’s Sampling Theorem 
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ony, this operation consists of merely changing sound
pressure into a proportional electrical current. In teleg-

the channel capacity may be defined as

C9g2 M
T,= -oo T
T--a T

Fig. 1-General communications system.

raphy, we have an encoding operation which produces a

sequence of dots, dashes, and spaces corresponding to
the letters of the message. To take a more complex
example, in the case of multiplex PCM telephony the
different speech functions must be sampled, compressed,
quantized and encoded, and finally interleaved properly
to construct the signal.

3. The channel. This is merely the medium used to
transmit the signal from the transmitting to the receiv-
ing point. It may be a pair of wires, a coaxial cable, a

band of radio frequencies, etc. During transmission, or

at the receiving terminal, the signal may be perturbed
by noise or distortion. Noise and distortion may be dif-
ferentiated on the basis that distortion is a fixed opera-

tion applied to the signal, while noise involves statistical
and unpredictable perturbations. Distortion can, in
principle, be corrected by applying the inverse opera-

tion, while a perturbation due to noise cannot always be
removed, since the signal does not always undergo the
same change during transmission.

4. The receiver. This operates on the received signal
and attempts to reproduce, from it, the original mes--
sage. Ordinarily it will perform approximately the math-
ematical inverse of the operations of the transmitter, al-
though they may differ somewhat with best design in
order to combat noise.

5. The destination. This is the person or thing for
whom the message is intended.

Following Nyquist' and Hartley,2 it is convenient to
use a logarithmic measure of information. If a device has
n possible positions it can, by definition, store logbn units
of information. The choice of the base b amounts to a

choice of unit, since logb n = logb c log, n. We will use the
base 2 and call the resulting units binary digits or bits.
A group of m relays or flip-flop circuits has 2'" possible
sets of positions, and can therefore store log2 2m =m bits.

If it is possible to distinguish reliably M different sig-
nal functions of duration T on a channel, we can say
that the channel can transmit log2 M bits in time T. The
rate of transmission is then log2 M/T. More precisely,

1 H. Nyquist, "Certain factors affecting telegraph speed," Bell
Syst. Tech. Jour., vol. 3, p. 324; April, 1924.

2 R. V. L. Hartley, "The transmission of information," Bell Sys.
Tech. Jour., vol. 3, p. 535-564; July, 1928.

A precise meaning will be given later to the requirement
of reliable resolution of the M signals.

II. THE SAMPLING THEOREM

Let us suppose that the channel has a certain band-
width W in cps starting at zero frequency, and that we
are allowed to use this channel for a certain period of
time T. Without any further restrictions this would
mean that we can use as signal functions any functions
of time whose spectra lie entirely within the band W,
and whose time functions lie within the interval T. Al-
though it is not possible to fulfill both of these condi-
tions exactly, it is possible to keep the spectrum within
the band W, and to have the time function very small
outside the interval T. Can we describe in a more useful
way the functions which satisfy these conditions? One
answer is the following:
THEOREM 1: If a function f(t) contains no frequencies

higher than W cps, it is completely determined by giving
its ordinates at a series of points spaced 1/2W seconds
apart.

This is a fact which is common knowledge in the com-

munication art. The intuitive justification is that, if f(t)
contains no frequencies higher than W, it cannot
change to a substantially new value in a time less than
one-half cycle of the highest frequency, that is, 1/2 W. A
mathematical proof showing that this is not onily ap-

proximately, but exactly, true can be given as follows.
Let F(w) be the spectrum of f(t). Then

1 a00
f(t) = 2f7( )eF(w,)eitdw

+29rW
=

2
F(w)ewtodco,

-1_2iW

(2)

(3)

since F(c) is assumed zero outside the band W. If we
let

n
t=-

2W (4)

where n is any positive or negative integer, we obtain

f (2T) = 27r 2W7F(w)ei-2W do. (5)

On the left are the values of f(t) at the sampling points.
The integral on the right will be recognized as essen-

tially the nth coefficient in a Fourier-series expansion of
the function F(w), taking the interval - W to + W as a

fundamental period. This means that the values of the
samples f(n2W) determine the Fourier coefficients in
the series expansion of F(w). Thus they determine F(w,),
since F(w) is zero for frequencies greater than W, and for

(1)
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Signals ⟺ Samples 

•  Nyquist’s theorem says that every 
bandlimited signal can be represented by 
a string of numbers, its samples 

•  It’s very convenient to work with just the 
samples 
– We can work on signals in a computer 
–  Just need some device to convert between 

signals and samples 
– This is what an analog-to-digital converter 

and a digital-to-analog converter do 



Signals as Vectors 

•  When we sample a signal, we get a 
string of numbers 

•  A snippet of the signal is a finite 
string of numbers 
– We can store this as a vector 

–  If we take n samples, Shannon realised 
it’s useful to think of these samples as a 
point in n-dimensional space 



Shannon’s Model of a 
Communications System 

•  The message is something we’d like to transmit, e.g., some text, our 
voice, a picture, usually represented as a bitstream 

•  The signal is the way we convey the message as, say, an EM 
waveform 

•  In between transmitter and receiver is the channel which modifies 
the signal, e.g., attenuation, ‘ghosting’ 

•  Noise (and interference) corrupts the signal 
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3. The channel. This is merely the medium used to
transmit the signal from the transmitting to the receiv-
ing point. It may be a pair of wires, a coaxial cable, a

band of radio frequencies, etc. During transmission, or
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ematical inverse of the operations of the transmitter, al-
though they may differ somewhat with best design in
order to combat noise.
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whom the message is intended.

Following Nyquist' and Hartley,2 it is convenient to
use a logarithmic measure of information. If a device has
n possible positions it can, by definition, store logbn units
of information. The choice of the base b amounts to a

choice of unit, since logb n = logb c log, n. We will use the
base 2 and call the resulting units binary digits or bits.
A group of m relays or flip-flop circuits has 2'" possible
sets of positions, and can therefore store log2 2m =m bits.

If it is possible to distinguish reliably M different sig-
nal functions of duration T on a channel, we can say
that the channel can transmit log2 M bits in time T. The
rate of transmission is then log2 M/T. More precisely,
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A precise meaning will be given later to the requirement
of reliable resolution of the M signals.
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Let us suppose that the channel has a certain band-
width W in cps starting at zero frequency, and that we
are allowed to use this channel for a certain period of
time T. Without any further restrictions this would
mean that we can use as signal functions any functions
of time whose spectra lie entirely within the band W,
and whose time functions lie within the interval T. Al-
though it is not possible to fulfill both of these condi-
tions exactly, it is possible to keep the spectrum within
the band W, and to have the time function very small
outside the interval T. Can we describe in a more useful
way the functions which satisfy these conditions? One
answer is the following:
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This is a fact which is common knowledge in the com-
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contains no frequencies higher than W, it cannot
change to a substantially new value in a time less than
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Quadrature Amplitude 
Modulation 

•  A typical transmitter takes a few bits at a time and 
maps it to a phasor voltage at a particular carrier 
frequency 
–  This is both amplitude and phase modulation 
–  A particular format known as quadrature amplitude 

modulation (QAM) is commonly used 
•  The codebook mapping bit strings to phasors is known 

as the constellation 
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Multi-Dimensional 
Constellations 

•  Note the regular arrangement of 
points in space for QAM 
–  This is a lattice 

•  The points are spread out to 
make them less susceptible to 
noise 

•  They can’t be spread out too far 
because length of the vectors 
corresponds to power usage 

•  Shannon realised that groups of 
samples, as vectors, could make 
multi-dimensional constellations 
–  Excellent (in fact complete!) noise 

immunity 



Lattices for Communications 

•  It turns out that there exist lattices (regular 
arrangements of points in space) that make the 
best possible constellations 

•  But which lattices precisely?  Unsolved 
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