	Http://elec3004.com
Digital Control	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 9	
elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u>	May 6, 2014

Week	Date	Lecture Title
1	4-Mar	Introduction & Systems Overview
	6-Mar	[Linear Dynamical Systems]
	11-Mar	Signals as Vectors & Systems as Maps
2	13-Mar	[Signals]
2	18-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	20-Mar	[Sampling]
4	25-Mar	System Analysis & Convolution
4	27-Mar	[Convolution & FT]
5	1-Apr	Frequency Response & Filter Analysis
5	3-Apr	[Filters]
6	8-Apr	Discrete Systems & Z-Transforms
0	10-Apr	[Z-Transforms]
7	15-Apr	Introduction to Digital Control
	17-Apr	[Feedback]
8	29-Apr	Digital Filters
0	1-May	[Digital Filters]
9	6-May	Digital Control Design
	8-May	[Digitial Control]
10	13-May	Stability of Digital Systems
10	15-May	[Stability]
11	20-May	State-Space
11	22-May	Controllability & Observability
12	27-May	PID Control & System Identification
12	29-May	Digitial Control System Hardware
13	3-Jun	Applications in Industry & Information Theory & Communications
	5-Jun	Summary and Course Review

Digital control

Once upon a time...

- Electromechanical systems were controlled by electromechanical compensators
 - Mechanical flywheel governors, capacitors, inductors, resistors, relays, valves, solenoids (fun!)
 - But also complex and sensitive!
- Humans developed sophisticated tools for designing reliable analog controllers

Digital control Once upon a time... Electromechanical systems were controlled by electromechanical compensators Mechanical flywheel governors, capacitors, inductors, resistors, relays, valves, solenoids (fun!) But also complex and sensitive! FIdea: Digital computers in real-time control Transform approach (classical control) Root-locus methods (pretty much the same as METR 3200) Bode's frequency response methods (these change compared to METR 3200) State-space approach (modern control) Andel Making: Control of frequency response as well as Least Squares Parameter Estimation

Many advantages

- Practical improvement over analog control:
 - Flexible; reprogrammable to implement different control laws for different systems
 - Adaptable; control algorithms can be changed on-line, during operation
 - Insensitive to environmental conditions; (heat, EMI, vibration, etc)
 - Compact; handful of components on a PCB
 - Cheap

How to Handle the Digitization?

(z-Transforms)

6 May 2014 - **14**

The *z*-transform

ELEC 3004: Systems

• In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the *z*-transform of your functions

F(s)	F(kt)	F(z)
1	1	$\frac{Z}{z-1}$
<u> </u>	kT	Z = 1 Tz
$\frac{1}{s^2}$		$\frac{1}{(z-1)^2}$
	e^{-akT}	$\frac{Z}{-a^{T}}$
$\frac{s+a}{1}$	-1-77	$z - e^{-\alpha T}$
$\frac{1}{(s+a)^2}$	kTe ^{-ak1}	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$
$\frac{1}{r^2 + r^2}$	sin(<i>akT</i>)	$\frac{z \sin aT}{z^2 - (2 \cos aT)z + 1}$

ELEC 3004: Systems

6 May 2014 - 1

Transfer function of Zero-order-hold (ZOH)
... Continuing the
$$\mathcal{L}$$
 of h(t) ...
 $\mathcal{L}[h(t)] = \mathcal{L}[\sum_{k=0}^{\infty} x(kT)[1(t-kT) - 1(t-(k+1)T)]]$
 $= \sum_{k=0}^{\infty} x(kT)\mathcal{L}[1(t-kT) - 1(t-(k+1)T)] = \sum_{k=0}^{\infty} x(kT)[\frac{e^{-kTs}}{s} - \frac{e^{-(k+1)Ts}}{s}]$
 $= \sum_{k=0}^{\infty} x(kT)\frac{e^{-kTs} - e^{-(k+1)Ts}}{s} = \sum_{k=0}^{\infty} x(kT)\frac{1-e^{-Ts}}{s}e^{-kTs} = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\rightarrow X(s) = \mathcal{L}\left[\sum_{k=0}^{\infty} x(kT)\delta(t-kT)\right] = \sum_{k=0}^{\infty} x(kT)e^{-kTs}$
 $\therefore H(s) = \mathcal{L}[h(t)] = \frac{1-e^{-Ts}}{s}\sum_{k=0}^{\infty} x(kT)e^{-kTs} = \frac{1-e^{-Ts}}{s}X(s)$
 \Rightarrow Thus, giving the transfer function as:
 $G_{ZOH}(s) = \frac{H(s)}{X(s)} = \frac{1-e^{-Ts}}{s} \xrightarrow{Z} G_{ZOH}(z) = \frac{(1-e^{-aT})}{z-e^{-aT}}$

Г

$\mathcal{L}(ZOH) = ???$: What is it?							
$\frac{1 - e^{-Ts}}{Ts}$	$\frac{1 - e^{-Ts}}{s}$						
<complex-block><complex-block></complex-block></complex-block>	 Lathi Franklin, Powell, Workman Franklin, Powell, Emani-Naeini Dorf & Bishop Oxford Discrete Systems: (Mark Cannon) MIT 6.002 (Russ Tedrake) Matlab Proof! 						
ELEC 3004: Systems	6 May 2014 - 19						

The *z*-transform

- Some useful properties
 - Delay by \hat{n} samples: $\mathcal{Z}{f(k-n)} = z^{-n}F(z)$
 - Linear: $Z{af(k) + bg(k)} = aF(z) + bG(z)$
 - Convolution: $Z{f(k) * g(k)} = F(z)G(z)$

So, all those block diagram manipulation tools you know and love will work just the same!

 The <i>z</i>-transform In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the <i>z</i>-transform of your functions 								
	F (s)	F(kt)	F (z)					
	$\frac{1}{s}$	1	$\frac{z}{z-1}$					
	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$					
	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z - e^{-aT}}$					
	$\frac{1}{(s+a)^2}$	kTe ^{-akT}	$\frac{zTe^{-aT}}{(z-e^{-aT})^2}$					
	$\frac{1}{s^2 + a^2}$	sin(akT)	$\frac{z\sin aT}{z^2 - (2\cos aT)z + 1}$					
ELEC 3004: System	s			6 May 2014 - 23				

Why z-Transform

• For any complex number $z = re^{j\omega}$ $y[n] \xleftarrow{\mathcal{Z}} Y(z)$

• Forward Analysis:
$$Y(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}$$

• Backward Synthesis (for any fixed r > 0 on which the Z-transform converges):

$$y[n] = \frac{1}{2\pi} \int_{2\pi} Y(r e^{j\omega}) (r e^{j\omega})^n d\omega$$

An example! Convert the system $\frac{Y(s)}{X(s)} = \frac{s+2}{s+1}$ into a difference equation with period T, using Euler's method. 1. Rewrite the function as a dynamic system: SY(s) + Y(s) = sX(s) + 2X(s)Apply inverse Laplace transform: $\dot{Y}(t) + Y(t) = \dot{x}(t) + 2x(t)$ 2. Replace continuous signals with their sampled domain equivalents, and differentials with the approximating function $\frac{Y(k+1) - Y(k)}{T} + Y(k) = \frac{x(k+1) - x(k)}{T} + 2x(k)$

Simplify:

ELEC 3004: Systems

$$y(k+1) - y(k) + Ty(k) = x(k+1) - x(k) + 2Tx(k)$$
$$y(k+1) + (T-1)y(k) = x(k+1) + (2T-1)x(k)$$

$$y(k+1) = x(k+1) + (2T-1)x(k) - (T-1)y(k)$$

We can implement this in a computer.

Cool, let's try it!

Back to the future
A quick note on causality:
Calculating the "(k+1)th" value of a signal using

μ(k+1) = x(k+1) + Ax(k) - By(k)

relies on also knowing the next (future) value of x(t).

ture value
current values

this requires very advanced technology!

Real systems always run with a delay:

μ(k) = x(k) + Ax(k - 1) - By(k - 1)

Back to the example!

An example!

• Back to our difference equation: y(k) = x(k) + Ax(k-1) - By(k-1)

becomes

$$Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z) (z + B)Y(z) = (z + A)X(z)$$

which yields the transfer function:

$$\frac{Y(z)}{X(z)} = \frac{z+A}{z+B}$$

Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}

• Take a first-order response:

$$f(t) = e^{-at} \Rightarrow \mathcal{L}{f(t)} = \frac{1}{s+a}$$

• The discrete version is:

$$f(kT) = e^{-akT} \Rightarrow \mathcal{Z}{f(k)} = \frac{z}{z - e^{-aT}}$$

The equivalent system poles are related by

 $z = e^{sT}$

That sounds somewhat profound... but what does it mean?

