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Digital control

Once upon a time...

» Electromechanical systems were controlled by
electromechanical compensators
— Mechanical flywheel governors, capacitors, inductors, resistors,
relays, valves, solenoids (fun!)
— But also complex and sensitive!

« Humans developed sophisticated tools for designing reliable
analog controllers ll

Digital control

=>»Idea: Digital computers in real-time control

— Transform approach (classical control)
« Root-locus methods (pretty much the same as METR 3200)
 Bode’s frequency response methods (these change compared to METR 3200)

— State-space approach (modern control)

- Model Making: Control of frequency response as well as
Least Squares Parameter Estimation




Many advantages

« Practical improvement over analog control:

— Flexible; reprogrammable to implement different control laws
for different systems

— Adaptable; control algorithms can be changed on-line, during
operation

— Insensitive to environmental conditions;

(heat, EMI, vibration, etc)
— Compact; handful of components on a PCB
— Cheap

Feedback Control

(Simple) control systems have three parts:

Yd

E+>—- controller — plant y

|— sensor

» The plant is the system to be controlled (e.g. the robot).
» The sensor measures the output of the plant.

 The controller sends an input command to the plant based on
the difference from the actual output and the desired output.




Archetypical control system

« Consider a continuous control system:

| |
+ —_e(t) u(t)
rt) —E—>  C(s) > H(s) > Y(1)
: ) controller : plant
I I
| 1
b e e e e e e I

 The functions of the controller can be entirely
represented by a discretised computer system

Simple Controller Goes Digital
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plant: y[n] =y[n — 1] — Tu[n — 1]
sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]

Complex system behaviors, depending on K
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sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]

Complex system behaviors, depending on K




Return to the discrete domain

« Recall that continuous signals can be represented by a
series of samples with period T

X T x(KT)

—

ST, T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

Zero Order Hold

« An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t




How to Handle the Digitization?

(z-Transforms)

6May2014- 14
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The z-transform
* In practice, you’ll use look-up tables or computer tools (ie. Matlab)

to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT Z
s+a z—e T
1 kTe=akT zTe T
(s + a)? (z — e—aT)2
1 sin(akT) zsinaT
2+ 2 22— (2cosaT)z + 1




Zero-order-hold (ZOH)

M X(KT) [ Zero-order | h(t)

Sampler Hold _—

» Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0, the output
h(t) = z(0)[1(t) — 1(t —T)] +=(T)[1(t —T) — 1(t — 2T)] +

= Z X(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

Transfer function of Zero-order-hold (ZOH)

» Recall the Laplace Transforms (£) of:
LIEMW) =1 L[f(t —kT)] = F(s)e *Ts

) efkTs
LE(t—kT)] = "5 L1t —kT)] =
» Thus the £ of h(t) becomes:
C[R(1)] = E[fi X(KT)L(t - kT) - 1(t - (k+1)T)]]
k=0
o0 00 —RT& —(k+1)Ts
— Z z(ET)L[1(t - kT) - 1(t - (k+1)T)] = Z m(kT)[ _¢ S ]
“?:—OO e—kTs _ e—(k+1)Ts 00 k:OT 1_eTs = )
= S 2(kT) - =3 ;r(ch) e HTs — — 3 a(kT)e *Ts
k=0 S k=0 k=0




Transfer function of Zero-order-hold (ZOH)

... Continuing the £ of h(t) ...

Clh(1)] = L[ x(KT)H[1(t - kT) - 1(t - (k+1)T)]]

Qo k=0 o0 E—R:Tﬁ‘ e—(k'-{-l)Ts

— z(ET)L[1(t - kT) - 1(t - (k+1)T)] = Z z(kT)[- - ]
0 k=0 8 8

| i x(kT)e_kTs - e‘_(kﬂm = f x(kT)ﬂe—kTs I i o(KT)e— kTS
k=0 ® k=0 ¢ 5 k=0
= X(s) =L | a(kT)6t —kT)| = Y a(kT)e *s
k=0 k=0
_—1s > _ -—Ts
CH(s) = LID)] =Y wkT)e T = 2T x(s)
k=0
=>» Thus, giving the transfer function as: ( )
_ H(s) 1—eTs Z 1—e ol
GzoH(s) = X(s) = s > Gzop (2) = S
L(ZOH)=??? : Whatis it?
1—e1s 1—eTs
Ts <
*  Wikipedia  Lathi

7| + Franklin, Powell, Workman
|| + Franklin, Powell, Emani-Naeini
» Dorf & Bishop

« Oxford Discrete Systems:
(Mark Cannon)

« MIT 6.002 (Russ Tedrake)
+ Matlab
Proof!

The “difference” is
that Wikipedia pre-
multiplies by 1/T




Coping with complexity

« Transfer functions help control complexity
— Recall the Laplace transform:

LF() = j (e stdt = F(s)
0

where

L{f(O} = sF(s)

X(t) ——{ H() — y()

Is there a something similar for sampled systems?

The z-transform

« The discrete equivalent is the z-Transformf:
20} = ) Rz =F(2)
k=0

and

Z{f(k - D}=z""F(2)

XK) —— F@@ — y(K

Convenient!

+This is not an approximation, but approximations are easier to derive
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The z-transform

» Some useful properties
— Delay by n samples: Z{f(k —n)} = z7"F(z)
— Linear: Z{af (k) + bg(k)} =aF(z) + bG(z)
— Convolution: Z{f (k) * g(k)} = F(2)G(2)

will work just the same!

So, all those block diagram manipulation tools you know and love

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie
to find the z-transform of your functions

. Matlab)

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTe~ 9T
(s +a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 22— (2cosaT)z + 1
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Why z-Transform

Makes it easy to analyse feedback systems governed by
difference equations
For any complex number — ==re™  ull <Y ()

Forward Analysis: Y()= Y hlk=*
k=—o00

Backward Synthesis

(for any fixed r > 0 on which the Z-transform converges):

y[n] = 2—2 [Qr Y(re?)(re’ ) dw

z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu|n]

h[n]

W] = {ba n =0,

0 otherwise.

o0 o0 |L
H(z) =Z ba*2F = bz (?) =1 when |z| > |al.
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z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

yln] = ayln — 1] + bu[r]

y[n] — ay[n — 1] = bu|n]

A

-+

Y(z) —az 'Y (2) = bU(2)

H(z) = ?Ei; =1 _zz_l,when does it converge?
Digitisation
 Continuous signals sampled with period T
« kth control value computed at t, = KT
. T TTTT- T T === ====" 1
r(t) | + _e(KD)[ u(kT) u(t) y(t)
5 (KT) D|ffer_ence > DAC > H(s) >
| r(kT) A equations :
|
|
: .
I |
I |
|
|
KT
! LU o o
: sampler,
D e a
controller
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Digitisation

« Continuous signals sampled with period T
« kth control value computed at t, = kT

r(t) | + _e(KD)[ o u(kT) () y(t)
—0 To o o [ PAC ) HO) [T

| r(kT) r :
I A
. T ;
: LU |
|
I
|
I N
| y(kT) ADC € O \C :
: sampler,
________ controlier ~~~ "~~~ 7"

Difference equations

» How to represent differential equations in a computer?
Difference equations!

» The output of a difference equation system is a
function of current and previous values of the input
and output:

y(tr) = D(x(ty), x(tg—1), oo X(tg—n), Y (t=1), oo, Y(t—n))

— We can think of x and y as parameterised in k
Useful shorthand: x(t;,;) = x(k + 1)

14



Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1) —x(k)
T

IR

X

* AsT — 0, approximation
error approaches 0

*Also known as the forward rectangle rule
tJust an approximation — more on this later

An example!
Convert the system % = ::—i into a difference equation with period

T, using Euler’s method.

1. Rewrite the function as a dynamic system:
sY(s) + Y(s) = sX(s) + 2X(s)
Apply inverse Laplace transform:
y(©) +y() = x(t) + 2x(t)

2. Replace continuous signals with their sampled domain equivalents,
and differentials with the approximating function

y(k + 1;— y(k) () = x(k + 1;— x(k) T 2x(l)

15



An example!

Simplify:

y(k+1)—y(k) + Ty(k) = x(k +1) — x(k) + 2Tx(k)
yk+ 1)+ (T —-1Dyk) =x(k+1)+ Q2T — 1Dx(k)

yk+1)=x(k+ 1)+ Q2T — Dx(k) — (T — Dy(k)

We can implement this in a computer.

Cool, let’s try it!

Back to the future

A quick note on causality:
* Calculating the “(k+1)th” value of a signal using

y(k+1)=x(k+1)+ Ax(k) — By(k)

relies on also knowing the next (fqture) value of x(}t).

Y Y
future value current values

(this requires very advanced technology!)

* Real systems always run with a delay:
y(k) =x(k) + Ax(k — 1) — By(k — 1)

16



Back to the example!

T = 0.02; //period of 50 Hz, a number pulled from thin air
A = 2*T-1; //pre-calculated control constants
B = T-1;
while (1)
{
if (interrupt_flag) //this triggers every 20 ms
{
x0 = x; //save previous values
y0 = y;
x = update_input(); //get latest x value
v = X + A*x0 - B*y0; //do the difference eguations
update_output (y) ; //write out current value

(The actual maths bit)

ELEC 3004: Systems 6 May 2014 - 34

Region of Convergence (ROC) Plots

H(z) = = 2| > al

U(z) 1—azV

ELEC 3004: Systems 6 May 2014 - 35
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Properties of the ROC

=>The ROC is always defined by circles
centered around the origin.

h[k]r—* is absolutely summable, where r = |z|.

=>» Right-sided signals have “outsided” ROCs.

rg < r < oo are also in the ROC.

=> Left-sided signals have “insided” ROCs.
(with Vr within 0<r<r)

if 3ng such that h[n] = 0 ¥n < ng, then if g € ROC, then ¥r with

Combinations of Signals

i) ba™ n =10 (] 0

ur [n] = ya[n| =

g 0 n <0 : —b
a =

ROC for ayy1[n] + asya[n]

aﬂ,

(8]

n=0

n <0
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Higher-order difference equations

y[n] = ajy[n—1]+asy[n—2|+azy[n— 3]+ bouln] +bjun—1]+. ..

Easy to take the Z-transform

Y(2) = a127Y (2) + ag2"2Y (2) + azz Y (2) + boU (2) + . . .

b[) —1—513_1 + 593_1 4+ ...

H(z) = ~

T l—apzl —agz2 —agz 3+ ...

Final value theorem

« An important question: what is the steady-state output
a stable system at t = ?
— For continuous systems, this is found by:
fim x(8) =l X9

— The discrete equivalent is:
Jim x(k) = lim (1 — z HX(2)
—00 zZ—

(Provided the system is stable)

19



An example!

 Back to our difference equation:
y(k) = x(k) + Ax(k — 1) — By(k — 1)
becomes
Y(z) =X(2) + Az7X(2) — Bz71Y(2)
(z+B)Y(2) =(z+A)X(2)

which yields the transfer function:
Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™™

This looks familiar. ..

» Compare:
V) _ stz o V@) _ z4a
X(s)  s+1 X(z) z+B

How are the Laplace and z domain representations related?

20



Consider the simplest system

 Take a first-order response:

1
f©) =™ = Lf (0} = ——
e The discrete version is:
fORT) = €™ = 2{f (0} = ——=

The equivalent system poles are related by
z=eT

That sounds somewhat profound... but what does it mean?

The z-Plane

 z-domain poles and zeros can be plotted just like s-domain
poles and zeros:

Img(s) Img(2)

X
Re(s) §> § 1 Re(2)
X

21



Deep insight #1

The mapping between continuous and discrete poles and
zeros acts like a distortion of the plane

max frequency
Img(s) <—\ Img(2)
X
Re(s) X Re(2)
X /1
X
The z-plane

» We can understand system response by pole location in the z-

plane

[Adapted from Franklin, Powell and Emami-Naeini]

Re(z)

22



Effect of pole positions

» We can understand system response by pole location in the z-
plane

I\'\‘; ----------- o

%o 9o ¢ o o

Most like the s-plane

Re(z)

Effect of pole positions

» We can understand system response by pole location in the z-
plane

AN AN

\ARVARV A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-

plane

AAAAN

VVVV VY

Re(z)

Damping and natural frequency

z=eSTwheres = —(w, + jwp/1 — {2

10 -

,,,,,,,,,,,,,,

0.8~

06/

0.4 -

—————————————————————————————————————————————

A

1p 08 -06 04 -02

0

02 04 06 08 10
[Adapted from Franklin, Powell and Emami-Naeini]
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z-plane stability

* In the z-domain, the unit circle is the system stability bound

Img(s) 4 Img(2)

Re(s) Re(z)
1

.

unit circle

z-plane stability

* In the z-domain, the unit circle is the system stability bound

Img(s) Img(z) @
>
?
% >
Re(s) § 1 Re(2)




z-plane stability

» The z-plane root-locus in closed loop feedback behaves just
like the s-plane:

4 Img(s) 2 Img(2) @ I
X .
X K v
Re(s) Re(2)
il
X
X

Deep insight #2

Gains that stabilise continuous systems can actually destabilise
digital systems!

Img(s) 4 Img(2)

%o

Re(s) X Re(z)
;1
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Example:

* Is this system stable?

u(k) =09u(k—1) —0.2ulk —2)

o Time-shift it:

(k52) = 0.9u (k + 1) — §.2u (k)
. z-Tra f?’( / /

1)z —=0.924+02=0

» Characteristic Roots:
z=0.5,7z=0.4 = STABLE!
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