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Linear Difference Equations

g = f(€ny. s €k U, - -5 Uke1).

Up = —@1Uk—1 —Q2Uk—2—" " — Qplg—n +bpeg +breg_1+- -+ bpee -,

Vug = ug — ug-1 (first difference),

V2up = Vug — Vg (second difference),

Vi, = VP luy — Vg (nth difference).

Uk = Uk,
gy = ug — Vg,

Up_o = up — 2Vug + Vz?z;c.

agV2uy, — (ay + 2a2)Vug + (az + a1 + 1)ug = boey.




Assume a form of the solution

zK:
e k: “order of difference”

« k: delay
Azk: Azk‘_'l—{—AzkiE.
l=z14272
2=z+1.

DT Causality & BIBO Stability

+ Causality:
h[n]=0,n<0

—y[n] = i h [k)x [n — K] or =y [n]
k=0

Then output is Causal:
y[n] = i hklz[n—k] = i z [k]h [n — K]
k=0

k=0

And, DT LTI is BIBO stable if:
Z |h[k]] < oo

k=—00

Input is Causal if: z[n] =0,n <0

i z [k)h [n — k]

k=—o0




Impulse Response (Graphically)

an LTI system to the unit impulse:

ri[u]

LTI System

By time invariance, we know

[ — k
R system

And by linearity, we know

ad[n — k] + cad[n — ko

| LTI System

uln]

LTI System

-

e

uinl= Y ulkldn -]

ke—no

Let's define the impulse response, h[n], as the result of applying

hln]

hln — k|

.!Ill’P:H - L‘li + r)gh[u - .'.'g}

y[n]

0

yln] = Z ulklhln — k]

k=—oc

0 matrix X o vector?

How do you multiply an infinite matrix?

* First let’s multiply circulant matrices...
— A circulant matrix can be descibed completely by its first row or column

aq aq a Ap—1

p—1 o a Up—2 | | L ‘
A= |Gn-2 an-1 @0 an-3| = |\h Zh Z*h --- ZN-1j

aq a9 as agp

u[0]
. i u[1] N-1
Multiply by ulk] = | | L || % } -
‘ : k=0

For circulant matrices, matrix multiplication reduces to a weighted
combination of shifted impulse responses




Two Types of Systems

« Linear shift-invariant:  Linear time-invariant system

N-—1

y=Y_ulk]Z"
k=0 o
Yy = Z u[k‘]]?kh
Z: Shift operator h=—00
Z - ug uy, ug ug. . u,,_L]r = [ty—y. up. uy. . . ... H”_::I.
R: Unit delay operator
R-[... . ug. ul.ug.u;‘....]'j. =[ .. u_p ug,ug.. .. r

Impulse Response of Both Types

y[n] = é;f[n — 1] + u[n]

1 1
y[n] = §u [n—1] + Eu[n]

/.'[fl: =0
ff:(]: =1
J—1] = 0
1 ]
y|0] = 5 hj2] =
1
y[1] = b) hin] = {n n <0
Y2 =0 ()" n>0




Impulse Response of Both Types

yln] = %_l/[)l — 1]+ uln]
[n]

Finite impulse response” (FIR) “Infinite impulse response” (IIR)

=» Digital Filters

» Wikipedia Says:

A digital filter is a system that performs mathematical operations on a sampled,
discrete-time signal to reduce or enhance certain aspects of that signal.

» Basically we have a transfer function or
... a difference equation

In the Z-domain:
H(z) = B2 = bo+-brz L4boz 24 tdbyz N
A(Z) 1+a1271+a22*2_|_,__+alw_ziﬂ,[

This is a recursive form with inputs (Numerator) and outputs (Denominator)
=> “lIR infinite impulse response” behaviour

If the denominator is made equal to unity (i.e. no feedback)

=> then this becomes an FIR or finite impulse response filter.



http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Discrete-time
http://en.wikipedia.org/wiki/Discrete-time
http://en.wikipedia.org/wiki/Discrete-time
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)

=» Digital Filters Types

FIR
From H(z2):
D HW) = ho+hie ™ 4ot hy_geile
n—1 n—1
= thﬂ)ar;—iz.'q:-.ini‘_u
t=0

i=0

-> Filter becomes a “multiply,
accumulate, and delay” system:

n—1
ylt) = Zh,—u(r‘ —7)

yln] = bo‘x[”] +biz[n — 1]+ - - + bya[n — N]

IR

Impulse response function
that is non-zero over an
infinite length of time.

FIR Properties

* Require no feedback.
« Are inherently stable.

» They can easily be designed to be linear phase by making the

coefficient sequence symmetric

* Flexibility in shaping their magnitude response
« Very Fast Implementation (based around FFTS)

» The main disadvantage of FIR filters is that considerably more
computation power in a general purpose processor is required
compared to an IIR filter with similar sharpness or selectivity,
especially when low frequency (relative to the sample rate)

cutoffs are needed.



http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Linear_phase
http://en.wikipedia.org/wiki/Selectivity_(electronic)

FIR as a class of LTI Filters

« Transfer function of the filter is

Y(2) _ Saobezh
X(z) 1+ ij,\rzl apz~k

« Finite Impulse Response (FIR) Filters: (N =0, no feedback)
= From H(z):

H(w) = hn+"?|f7i&*"'+hu Lfﬁi n—lew

n—1 n—1
= E hycostw —i g hy sintw
i=0 t=0

H(z) =

 H(w) is periodic and conjugate
= Consider o € [0, n]

FIR Filters

 Let us consider an FIR filter of length M
* Order N=M-1 (watch out!)
» Order = number of delays

M-1 M-1

y(n) = Z brx (n —k) = Z h(k)x(n—k)

k=0 k=0

T[h,_»‘:b [] = unit delay
®--®

¥

I




FIR Impulse Response

Obtain the impulse response immediately with x(n)= 6(n):

M—-1

hn)=uy(n)= Z b0 (n —k) =b,
k=0

The impulse response is of finite length M (good!)

FIR filters have only zeros (no poles) (as they must, N=0 !!)
— Hence known also as all-zero filters

FIR filters also known as feedforward or non-recursive, or
transversal filters

FIR & Linear Phase

» The phase response of the
filter is a linear

a) FIR Filter (Type ) having Linear Phase b) FIR Filter (Type IV) having Linear Phase

function of frequency e e

« Linear phase has o f
constant group delay, all B e wr er e+ er e as wn
freq uency Com ponents have ) IR Filter having MNeon-Linear Phase o) FIR Filter having Mon-Linear Phase
equal delay times. .= No w NI T af T

1 0.7

distortion due to different time ":
delays of different frequencies < 1

045 I 1 I 1 a 1 1 I
0 02 04 05 08 1 0 02z 04 06 08

b
TT T T T T 17T
TTTTTTT7T
T B )

Ref: Wikipedia (Linear Phase

* FIR Filters with:
n=—oo h[n] - sin(w-(n—a)+B) =0



http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Group_delay
http://en.wikipedia.org/wiki/Linear_phase

FIR & Linear Phase = Four Types

&) FIR Filter (Type ) having Linear Phase b) FIR Filter (Type IV) having Linear Phase

1 T T
05 -

,4
TTTTTTTTT

E

02 04 06 08 1

Ref: Wikipedia (Linear Phase

E

02 04 06 08 1

Impulse response # coefs | H (w) Type
hin)=h(M —1-n) |Odd | e w1 (f (A=) 4230 (MD72 (Mo _ k) cos (w.‘\')) 1
hin)=h(M—-1-n) Even (J"'“"(““"“’QZZ(E N2, (& — k) cos (w("*l,)) 2
hin)=—h(M—1-n)|0dd [ e-il-1/2=m/2] (2 TN g (ML k) sin (-,,-A-)) 3
h(n)=—-h(M—-1-mn) | Even e ile(M=1)/2=n/2]g Ziﬂ:!fl) *h (# - kr) sin (uJ (l'\' - l,)) 4
» Type 1: most versatile
» Type 2: frequency response is always 0 at o=n
(not suitable as a high-pass)
* Type 3 and 4: introduce a n/2 phase shift, 0 at ®=0
(not suitable as a high-pass)
FIR Filter Design
» How to get all these coefficients?
H(w) =| ho+hie ™+ 4 hy_qge 771 »"[”] '
PYY Y
FIR Design Methods: =

1. Impulse Response Truncation
+ Simplest

— Undesirable frequency domain-characteristics, not very useful

2. Windowing Design Method
+ Simple

— Not optimal (not minimum order for a given performance level)

3. Optimal filter design methods
+ “More optimal”
— Less simple...

10


http://en.wikipedia.org/wiki/Linear_phase

FIR Filter Design & Operation
Ex: Lowpass FIR filter
 Set Impulse response (order n = 21)

* “Determine” h(t)
— h(t) is a 20 element vector that we’ll use to as a weighted sum

T
021 .

o @ %0

01 @

— o
+2
- O0p
=

01k

-0.2F
L L
0 2 4

* FFT (“Magic”) gives F%equency Response & Phase

L L L L L L L
6 8 10 12 14 16 18 20

o T AN
~J \ | ‘|._‘ |

[H (w)]

Why is this “hard”? Looking at the Low-Pass Example

B lif |w| <w.
Hq () _{ 0if we < |w| <=

» Why is this hard?
— Shouldn’t it be “easy” ??
... Just hit it with some FFT “magic” and then keep the bands we

want and then hit it with some Inverse-FFT “supermagic”???

— Remember we need a “system” that does this
“rectangle function” in frequency

— Let’s consider what that means...
« It basically suggests we need an Inverse FFT of a “rectangle function”




Flashback: Fourier Series & Rectangular Functions

§: Fourier Tranform

371 {mct (g)} _ sinc(t) § {rect (t)} = sinc (;)

m

x(=1) J x()
=) /M
Pt "llTl"

f t | ‘

Ref: http://cnx.org/content/m26719/1.1/
http: com/input/?i=IFFT%28sinc%28%629%29

Ref: http://cnx.org/content/m32899/1.8/
http://www.thefouriertransform.com/pairs/box.php

See:

» Table 7.1 (p. 702) Entry 17
& Table 9.1 (p. 852) Entry 7

Flashback: Fourier Series & Rectangular Functions [2]

» The sinc function might look familiar
— This is the frequency content of a square wave (box)

on

“ Ref: http: 1a.com/input/2i=FFT%28rect%281%629%29
/1 /content/m32899/1.8/

« This also applies to signal reconstruction!
=>» Whittaker—Shannon interpolation formula

— This says that the “better way” to go from Discrete to Continuous
(i.e. Dto A) is not ZOH, but rather via the sinc!

z(t) =>5L_ x[n]-sinc (t_,}LT)

12


http://cnx.org/content/m32899/1.8/
http://cnx.org/content/m32899/1.8/
http://www.thefouriertransform.com/pairs/box.php
http://www.thefouriertransform.com/pairs/box.php
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http://cnx.org/content/m26719/1.1/
http://www.wolframalpha.com/input/?i=IFFT(sinc(f))
http://www.wolframalpha.com/input/?i=IFFT(sinc(f))
http://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
http://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
http://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
http://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
http://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula
http://www.wolframalpha.com/input/?i=FFT(rect(t))
http://www.wolframalpha.com/input/?i=FFT(rect(t))
http://cnx.org/content/m32899/1.8/
http://cnx.org/content/m32899/1.8/
http://cnx.org/content/m32899/1.8/

~ FIR and Low Pass Filters...

B + However!!
1if |w| <w,

Oifw, <|w|<m

Hli ("V‘) = {

infinite in duration
Has impulse response:

We SINW.N
ha(n) = .

T Wenl

Thus, to filter an impulse train _
with an ideal low-pass filter use: | And, this cannot be

(1) = (z_g_;,_x a[n] - 6 (t —nT)) +sinc (%)

a sinc is non-causal and

implemented in practice ®

" we need to know all samples of the
input, both in the past and in the futuré

Plan 0: Impulse Response Truncation

Maybe we saw this coming...
=~ Clip off the sinc at some large n
7 (n) = sin (nwe)

for |n| <M and 0 otherwise
™

* Ripples in both passband/stopband
and the transition not abrupt (i.e., a transition band).
* As M-, transition band-> 0 (as expected!)

13


http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter

=» FIR Filters: Window Function Design Method

» Windowing: a generalization of the truncation idea

* There many, many “window” functions:
— Rectangular
— Triangular
— Hanning
— Hamming
— Blackman
— Kaiser
— Lanczos
— Many More ... (see: http://en.wikipedia.org/wiki/Window_function)

LGl

Some Window Functions [1]

1. Rectangular

w(n) =1

Rectangular window Fourier transform

0 I I — — —
A0 -

. decibels

-130
-40-30-20-10 0 10 20 30 40
samples bins

L

14


http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Window_function

Windowing and its effects/terminology

[Wi(w)|

(dB) Mainlobe

Sidelobes

... Rolloff rate

i

Lathi, Fig. 7.45

..30 -

0 27 10w

LGl

Some More Window Functions ...

2. Triangular window

N-1
n—=5=-

w(n) =1— |—x51—
2

Triangular window Fourier transform
T T

130
-40-30-20-10 0 10 20 30 40
samples bins

» And Bartlett Windows
— A slightly narrower variant with zero weight at both ends:

N-1
n—=m5=-
N—-1
2

w(n) =1—

L

15



Some More Window Functions...

3. Generalized Hamming Windows

w(n) = a—f cos (F7%)
- Hanning Window
— w(n) =0.5 (1 — COS (2“—”))

Hann window

samples

- Hamming’s Window

Fourier transform

T T 0 T T T T 7T
[ | <10 i ! —

w
S
T

5 a=054, 8=1—a=046

v
S
T

, decibels

-130
-40-30-20-10 0 10 20 30 40
samples bins

LGl

Some More Window Functions...

4. Blackman—Harris Windows
— A generalization of the Hamming family,
— Adds more shifted sinc functions for less side-lobe levels

_ 2mn 4mn 6mn
w(n) = ag—a COS (m)—i—ag cos (N_l)—ag cos (m)

Blackman-Harris window Fourier transform

1T 113 o0 S S ——

30
-40-30-20-10 0 10 20 30 40
samples bins

L

16



Some More Window Functions...

5. Kaiser window

— A DPSS (discrete prolate spheroidal sequence)

— Maximize the energy concentration in the main lobe

— w(n) =

Io(fra\/l—(j\?fl—l)Q)

lo(mar)

—  Where: |, is the zero-th order modified Bessel function of the

first kind, and usually a = 3.

Kaiser window (a = 3)

Fourier transform

. decibels
S

-1
0 N-1
samples

LGl

—T—T | N —

bins.

0 T

-40-30-20-10 0 10 20 30 40

Comparison of Alternative Windows —Time Domain

Windaow functions M=16

1

09

08f -

07F

068

05

04

0.2

02

017

T

-

A

/__\\"-\-.

Hanning
= Hamming

— - Blackman H

o

Sample number

15 punskaya, Slide 90

17



Adding Order

+ Transition and Smoothness
— Increased Size

Punskaya, Slide 94

Comparison of Alternative Windows
Frequency Domain

Fourier transforms of windows M=16

: —— Hanning
20k .. : . — — Hamming
P : — - Blackman
o -
-20 -
\
\
= \
-40 - \ .
-80 -
\
\ \
-80 L \ .
W \
'
-100 L
0 2 35

Punskaya, Slide 91

18



Summary Characteristics of Common Window Functions

Rolloff Peak

' Mainlobe Rate Sidelobe Peak 20log;od
No. Window w(f) Width (dB/oct) level (dB) B
B 1 4
1 Rectangular: rect = T -6 -13.3 -21dB
87
) Bartlett: A | —— il ~12 —26.5
2 2T T
2; 87
3 Hanning: 0.5 |1+ cos (IL,)] ,; —18 -31.5 -44dB
Hamming: 0.54 + 0.46 cos ( == i 6 427
amming: 0.54 + 0.46 cos | —— — - —42. .
4 2 ST T -53dB
2nt 4t 127
5 Blackman: 0.42 +0.5cos (| — ) +0.08cos [ — ) - —18 —58.1
; (5) +omear (%) 2 74dB

o)

Kaiser: —=— = 0<a<10 — —6 —59.9 (a = 8:168
6 aisel @) <a 7 (o )

Lathi, Table 7.3
Punskaya, Slide 92

FIR: Rectangular & Hanning Windows
» Rectangular » Hanning
) .M=16 -3 -2 -1 [ 2 3
M=16
=» Hanning: Less ripples, but wider transition band sy, Side 53
‘ ,

19



Windowed FIR Property 1:
Equal transition bandwidth

— H(e?¥)
1+ o //
Moo NSy Ha(e?¥)
1— 4 —

.
L/

o 1 : T

SEAN
oo
1 |
— = Aw,,
| |
' ] W (ei(w-0))
/\ -
0
' )
VARV,

Punskaya, Slide 96

 Equal transition bandwidth on both sides
of the ideal cutoff frequency

Windowed FIR Property 2:
Peak Errors same in Passband & Stopband

]
— H(e%)
1+ o //
oG- Ha(e)
1 -0 Vi T é/
7 .
I
| b

N

s '
vl
' i
—1 = AW,
Ll I
' ' W (eile—0))
/\ -
0
' )
U

 Peak approximation error in the passband (1+6 = 1-9)
is equal to that in the stopband (6 = -0)

Punskaya, Slide 96

20



Windowed FIR Property 3:

Mainlobe Width
1 4 o< /// =)
l I NS “f/’,)/ Hg(e?*)
= I
A N ]
:/\ / ” “”u H’j
\/: :\/ 0

Punskaya, Slide 99

» The distance between approximation error peaks is
approximately equal to the width of the mainlobe Aw,,

Windowed FIR Property 4:
Mainlobe Width [2]

1+ o e

I ‘ / o 0
RV

Punskaya, Slide 96

« The width of the mainlobe is wider than
the transition bandwidth

21



Windowed FIR Property 5:
Peak Ad is determined by the window shape

- H(e3¥)
1+ o+ ,/’/
- Ha(eiw)
1— & — =

]
S S w
]

[
b\t
VW
we
|
| ]
— = Aw,,
' ]
1 | Wedlw m)
/\ -
]
] I -
VRV
Punskaya, Slide 96

 peak approximation error is determined by
the window shape, independent of the filter order

FIR Filter Design

» How to get all these coefficients?

H(w) =| ho+ hu'fi"' - f!,J_l(‘*“”*““ )-[,,] _
- 1P
FIR Design Methods: OO ey e

1. Impulse Response Truncation

+ Simplest

— Undesirable frequency domain-characteristics, not very useful
2. Windowing Design Method

+ Simple

— Not optimal (not minimum order for a given performance level)
3. Optimal filter design methods

+ “More optimal”

— Less simple...

22



FIR Filter Design & Operation
Ex: Lowpass FIR filter
 Set Impulse response (order n = 21)

* “Determine” h(t)
— h(t) is a 20 element vector that we’ll use to as a weighted sum

T
021 .

o @ %0

01 @

— o
+2
- O0p
=

01k

-0.2F
L L
0 2 4

* FFT (“Magic”) gives F%equency Response & Phase

L L L L L L L
6 8 10 12 14 16 18 20

o T AN
~J \ | ‘|._‘ |

[H (w)]

Why is this “hard”? Looking at the Low-Pass Example

B lif |w| <w.
Hq () _{ 0if we < |w| <=

» Why is this hard?
— Shouldn’t it be “easy” ??
... Just hit it with some FFT “magic” and then keep the bands we

want and then hit it with some Inverse-FFT “supermagic”???

— Remember we need a “system” that does this
“rectangle function” in frequency

— Let’s consider what that means...
« It basically suggests we need an Inverse FFT of a “rectangle function”




Flashback: Fourier Series & Rectangular Functions

§: Fourier Tranform

371 {mct (g)} _ sinc(t) § {rect (t)} = sinc (;)

m

x(=1) J x()
=) /M
Pt "llTl"

f t | ‘

Ref: http://cnx.org/content/m26719/1.1/
http: com/input/?i=IFFT%28sinc%28%629%29

Ref: http://cnx.org/content/m32899/1.8/
http://www.thefouriertransform.com/pairs/box.php

See:

» Table 7.1 (p. 702) Entry 17
& Table 9.1 (p. 852) Entry 7

Flashback: Fourier Series & Rectangular Functions [2]

» The sinc function might look familiar
— This is the frequency content of a square wave (box)

on

“ Ref: http: 1a.com/input/2i=FFT%28rect%281%629%29
/1 /content/m32899/1.8/

« This also applies to signal reconstruction!
=>» Whittaker—Shannon interpolation formula

— This says that the “better way” to go from Discrete to Continuous
(i.e. Dto A) is not ZOH, but rather via the sinc!

z(t) =>5L_ x[n]-sinc (t_,}LT)

24
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~ FIR and Low Pass Filters...

B + However!!
1if |w| <w,

Oifw, <|w|<m

Hli ("V‘) = {

infinite in duration
Has impulse response:

We SINW.N
ha(n) = .

T Wenl

Thus, to filter an impulse train _
with an ideal low-pass filter use: | And, this cannot be

(1) = (z_g_;,_x a[n] - 6 (t —nT)) +sinc (%)

a sinc is non-causal and

implemented in practice ®

" we need to know all samples of the
input, both in the past and in the futuré

Plan 0: Impulse Response Truncation

Maybe we saw this coming...
=~ Clip off the sinc at some large n
7 (n) = sin (nwe)

for |n| <M and 0 otherwise
™

* Ripples in both passband/stopband
and the transition not abrupt (i.e., a transition band).
* As M-, transition band-> 0 (as expected!)
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=» FIR Filters: Window Function Design Method

» Windowing: a generalization of the truncation idea

* There many, many “window” functions:
— Rectangular
— Triangular
— Hanning
— Hamming
— Blackman
— Kaiser
— Lanczos
— Many More ... (see: http://en.wikipedia.org/wiki/Window_function)

LGl

Some Window Functions [1]

1. Rectangular

w(n) =1

Rectangular window Fourier transform
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L
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Windowing and its effects/terminology

[Wi(w)|

(dB) Mainlobe

Sidelobes

... Rolloff rate

i

Lathi, Fig. 7.45
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Some More Window Functions ...

2. Triangular window

N-1
n—=5=-

w(n) =1— |—x51—
2

Triangular window Fourier transform
T T

130
-40-30-20-10 0 10 20 30 40
samples bins

» And Bartlett Windows
— A slightly narrower variant with zero weight at both ends:

N-1
n—=m5=-
N—-1
2

w(n) =1—

L
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Some More Window Functions...

3. Generalized Hamming Windows

w(n) = a—f cos (F7%)
- Hanning Window
— w(n) =0.5 (1 — COS (2“—”))

Hann window

samples

- Hamming’s Window

Fourier transform

T T 0 T T T T 7T
[ | <10 i ! —

w
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5 a=054, 8=1—a=046
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Some More Window Functions...

4. Blackman—Harris Windows
— A generalization of the Hamming family,
— Adds more shifted sinc functions for less side-lobe levels

_ 2mn 4mn 6mn
w(n) = ag—a COS (m)—i—ag cos (N_l)—ag cos (m)

Blackman-Harris window Fourier transform

1T 113 o0 S S ——

30
-40-30-20-10 0 10 20 30 40
samples bins

L
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Some More Window Functions...

5. Kaiser window

— A DPSS (discrete prolate spheroidal sequence)

— Maximize the energy concentration in the main lobe

— w(n) =

Io(fra\/l—(j\?fl—l)Q)

lo(mar)

—  Where: |, is the zero-th order modified Bessel function of the

first kind, and usually a = 3.

Kaiser window (a = 3)

Fourier transform

. decibels
S

-1
0 N-1
samples

LGl

—T—T | N —

bins.
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Comparison of Alternative Windows —Time Domain

Windaow functions M=16
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15 punskaya, Slide 90
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Comparison of Alternative Windows
Frequency Domain

Fourier transforms of windows M=16

T T T T
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o
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Summary Characteristics of Common Window Functions

=]

6

No. Window w(f) Width

Rolloff
Mainlobe Rate

—6

1
Rectangular: rect ( )
T

: &
Bartlett: A — o —12
2T T

~|

> N 2t 87
Hanning: 0.5 [] + cos (IL)] IY —18
!
Hamming: 0.54 + 0.46 cos (:;E) STY -6
2t 4t 127
Blackman: 0.42 + 0.5 cos (IL) + 0.08 cos (TT ) 77_77 -18
{ 1?2
b lagf1-4 (—)
’ V . 1127
Kaiser: —— — 0<a<10 e —6
Iy(a) T

(dB/oct)

Peak
Sidelobe Peak 20log g0
level (dB)
-133 -21dB
—26.5
-315 -44dB
AT -53dB
—58.1

-74dB

—59.9 (x = 8:168)

Lathi, Table 7.3
Punskaya, Slide 92
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FIR: Rectangular & Hanning Windows

» Rectangular

M=16

« Hanning
| kR
0.7} ‘:
o
04f |
o ~ ~
" [irealisec g windo
;

=>» Hanning: Less ripples, but wider transition band

Punskaya, Slide 93

Adding Order

+ Transition and Smoothness
— Increased Size

Punskaya, Slide 94
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Windowed FIR Property 1:
Equal transition bandwidth

— H(e?¥)
1+ o //
Moo NSy Ha(e?¥)
1— 4 —

.
L/

o 1 : T

SEAN
oo
1 |
— = Aw,,
| |
' ] W (ei(w-0))
/\ -
0
' )
VARV,

Punskaya, Slide 96

 Equal transition bandwidth on both sides
of the ideal cutoff frequency

Windowed FIR Property 2:
Peak Errors same in Passband & Stopband

]
— H(e%)
1+ o //
oG- Ha(e)
1 -0 Vi T é/
7 .
I
| b

N

s '
vl
' i
—1 = AW,
Ll I
' ' W (eile—0))
/\ -
0
' )
U

 Peak approximation error in the passband (1+6 = 1-9)
is equal to that in the stopband (6 = -0)

Punskaya, Slide 96
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Windowed FIR Property 3:

Mainlobe Width
1 4 o< /// =)
l I NS “f/’,)/ Hg(e?*)
= I
A N ]
:/\ / ” “”u H’j
\/: :\/ 0

Punskaya, Slide 99

» The distance between approximation error peaks is
approximately equal to the width of the mainlobe Aw,,

Windowed FIR Property 4:
Mainlobe Width [2]

1+ o e

I ‘ / o 0
RV

Punskaya, Slide 96

« The width of the mainlobe is wider than
the transition bandwidth
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Windowed FIR Property 5:
Peak Ad is determined by the window shape

H(eiw)

AN Ha(e?%)
- ! //

| : -
1
o \

"W
we
'
1 |
— = Aw,,
| |
! | W ",H.d Br)
/\ -
0
' )
VRV

Punskaya, Slide 96

 peak approximation error is determined by
the window shape, independent of the filter order

Window Design Method Design Terminology

s P

SRARSARE NS 1{__/ Ha(e?™)

Punskaya, Slide 96

Where:
* o, cutoff frequency

8: maximum
passband ripple

Aw: transition bandwidth

Aw,,: width of the
window mainlobe
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Passband / stopband ripples

o, and o, Corner Frequencies

Passband / stopband ripples are often expressed in dB:
« passhand ripple = 20 log,, (1+5,) dB

* peak-to-peak passband ripple = 20 log,, (1+23,) dB

« minimum stopband attenuation = -20 log,, (5;) dB

Passband / stopband ripples

o, and w,: Corner Frequencies

Passband / stopband ripples are often expressed in dB:

» passhand ripple =26+tog (5,8 = 20 log,, (5,) dB

* peak-to-peak passband ripple = 26-teg(t+25;)yd¢B
= 20 log,, (25,) dB

« minimum stopband attenuation =—=20-legm-(ég-0B—
=20 log,, (5,) dB
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Summary of Design Procedure

=

Select a suitable window function
2. Specify an ideal response Hy(®)
3. Compute the coefficients of the ideal filter hy(n)

4. Multiply the ideal coefficients by the window function to
give the filter coefficients

5. Evaluate the frequency response of the resulting filter and
iterate if necessary (e.g. by increasing M if the specified
constraints have not been satisfied).

Punskaya, Slide 105

Windowed Filter Design Example

» Design a type | low-pass filter with:

— op=0.2n
— ws=0.3n .
- 0=0.01 . - H(ei®)
L4 0 e i
b NG A Ha(e)
Lo o
. ; Au
s ! ! |
Rt
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Windowed Filter Design Example:
Step 1: Select a suitable Window Function

6
L]

Rolloff  Peak
Sidelobe Peak 20log;0d

Mai e
0.  Window w(t) Width (dBloct)  level (dB)

Recangtr ot (1) = -6 -133 -21dB
18 315 -44dB

7 - a1 -53dB

0.08 cos (“;’) 1? 18 58.1 74dB

el

aaaaaa
Io(@)

LP with: wp=0.2n, »s=0.3%, 3=0.01

« 6=0.01: The required peak error spec:

-20l0g10 (8) = —40 dB
Main-lobe width:

0 ®,=0.31-0.2 =0.17 > 0.1x = 8n /M
—> Filter length M >80 & Filter order N > 79
« BUT, Type-I filters have even order so N = 80

} Hanning Window

Windowed Filter Design Example:
Step 2: Specify the Ideal Response

From Property 1 (Midpoint rule)

) o, = (o + wp)/2 = (0.21+0.3m)/2 = 0.257

An ideal response will be:

1 if |o|<0.25x
H;(w) = )
1 () { 0 if 025m<|w<m
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Windowed Filter Design Example:
Step 3: Compute the coefficients of the ideal filter

 The ideal filter coefficients hy are given by the
Inverse Discrete time Fourier transform of Hy()
x(n) = % :X (W) ed“dw = % [*:r ¥ dw

We SINWeN

T

Wen

+ Delayed impulse response (to make it causal)
E(n) —_ (n %)

== Coefficients of the ideal filter (via equation or IFFT):

sin (0.57 (n — 40))
7 (n — 40)

h(n)=

Windowed Filter Design Example:
Step 4: Multiply to obtain the filter coefficients

sin (0.57 (n — 40))

= () = 40y

w(n) = 0.54 — 0.46 COS (QWWH)

» Multiply by a Hamming window function for the passband:
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Windowed Filter Design Example:
Step 5: Evaluate the Frequency Response and lterate

» The frequency response is computed as the DFT
of the filter coefficient vector

« If the resulting filter does not meet the specifications, then:
— Adjust the ideal filter frequency response
(for example, move the band edge) and repeat (step 2)
— Adjust the filter length and repeat (step 4)
— change the window (& filter length) (step 4)

* And/Or consult with Matlab:
- FIR1 and FIR2

- B=FIR2 (N, F,M) : Designs a Nth order FIR digital filter with

Windowed Filter Design Example:
Consulting Matlab:

« FIR1 and FIR2
- B=FIR2 (N, F,M) : Designs a Nth order FIR digital filter

- F and M specify frequency and magnitude breakpoints for the
filter such that plot(N,F,M) shows a plot of desired frequency

— Frequencies F must be in increasing order between 0 and Fs/2,
with Fs corresponding to the sample rate.

— B is the vector of length N+1,
it is real, has linear phase and symmetric coefficients

— Default window is Hamming — others can be specified
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In Conclusion

* FIR Filters are digital (can not be implemented in analog) and
exploit the difference and delay operators

« A window based design builds on the notion of a truncation of
the “ideal” box-car or rectangular low-pass filter in the
Frequency domain (which is a sinc function in the time domain)

» Other Design Methods exist:
— Least-Square Design
— Equiripple Design
— Remez method
— The Parks-McClellan Remez algorithm
— Optimisation routines ...
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