	Htp://elec3004.com
Digital Filters	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 8	
elec3004@itee.uq.edu.au <u>http://robotics.itee.uq.edu.au/~elec3004/</u> © 2014 School of Information Technology and Electrical Engineering at The University of Queensland	April 29, 2014

	<u>Juuic.</u>	Y i mula
Week	Date	Lecture Title
1	4-Mar	Introduction & Systems Overview
	6-Mar	[Linear Dynamical Systems]
2	11-Mar	Signals as Vectors & Systems as Maps
_	13-Mar	[Signals]
3	18-Mar	Sampling & Data Acquisition & Antialiasing Filters
-	20-Mar	[Sampling]
4	25-Mar	System Analysis & Convolution
	27-Mar	[Convolution & FT]
5	1-Apr	Frequency Response & Filter Analysis
	3-Apr	[Filters]
6	8-Apr	Discrete Systems & Z-Transforms
10-Apr[Z-Transfor		[Z-Transforms]
7	15-Apr	Introduction to Digital Control
<i>'</i>	17-Apr	[Feedback]
8	29-Apr	Digital Filters
Ŭ	1-May	[Digital Filters]
	6-May	Digital Control Design
9	8-May	[Digitial Control]
10	13-May	Stability of Digital Systems
10	15-May	[Stability]
1.1	20-May	State-Space
11	22-May	Controllability & Observability
10	27-May	PID Control & System Identification
12	29-May	Digitial Control System Hardware
	3-Jun	Applications in Industry & Information Theory & Communications
13	5-Jun	Summary and Course Review

FIR Properties

- Require no feedback.
- Are inherently stable.
- They can easily be designed to be <u>linear phase</u> by making the coefficient sequence symmetric
- Flexibility in shaping their magnitude response
- Very Fast Implementation (based around FFTs)
- The main disadvantage of FIR filters is that considerably more computation power in a general purpose processor is required compared to an IIR filter with similar sharpness or <u>selectivity</u>, especially when low frequency (relative to the sample rate) cutoffs are needed.

ELEC 3004: Systems

9 April 2014 - **14**

FIR as a class of LTI Filters

• Transfer function of the filter is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

 Finite Impulse Response (FIR) Filters: (N = 0, no feedback)
 →From H(z): H(ω) = h₀ + h₁e^{-iω} + ··· + h_{n-1}e^{-i(n-1)ω}

$$\begin{aligned} H(\omega) &= h_0 + h_1 e^{-i\omega} + \dots + h_{n-1} e^{-i(n-1)} \\ &= \sum_{t=0}^{n-1} h_t \cos t\omega - i \sum_{t=0}^{n-1} h_t \sin t\omega \end{aligned}$$

- : H(ω) is periodic and conjugate
- \therefore Consider $\omega \in [0, \pi]$

ELEC 3004: Systems

FIR Impulse Response

Obtain the impulse response immediately with $x(n) = \delta(n)$:

$$h(n) = y(n) = \sum_{k=0}^{M-1} b_k \delta(n-k) = b_n$$

- The impulse response is of finite length *M* (good!)
- FIR filters have only zeros (no poles) (as they must, N=0 !!)
 Hence known also as all-zero filters
- FIR filters also known as **feedforward** or **non-recursive**, or **transversal** filters

ELEC 3004: Systems

0.	Window w(t)	Mainlobe Width	Rolloff Rate (dB/oct)	Peak Sidelobe level (dB)	Peak 20log ₁₀
	Rectangular: rect $\left(\frac{t}{T}\right)$	$\frac{4\pi}{T}$	-6	-13.3	-21dB
	Bartlett: $\Delta\left(\frac{t}{2T}\right)$	$\frac{8\pi}{T}$	-12	-26.5	
	Hanning: $0.5 \left[1 + \cos \left(\frac{2\pi t}{T} \right) \right]$	$\frac{8\pi}{T}$	-18	-31.5	-44dB
	Hamming: $0.54 + 0.46 \cos\left(\frac{2\pi t}{T}\right)$	$\frac{8\pi}{T}$	-6	-42.7	-53 dB
	Blackman: $0.42 + 0.5 \cos\left(\frac{2\pi t}{T}\right) + 0.08 \cos\left(\frac{4\pi t}{T}\right)$	$\frac{12\pi}{T}$	-18	-58.1	-74dB
	Kaiser: $\frac{I_0 \left[\alpha \sqrt{1 - 4 \left(\frac{t}{T} \right)^2} \right]}{I_0(\alpha)} 0 \le \alpha \le 10$	$\frac{11.2\pi}{T}$	-6	$-59.9 \ (\alpha = 8.168)$	

Windowed Filter Design Example:
Consulting Matlab:
 FIR1 and FIR2 B=FIR2 (N, F, M): Designs a Nth order FIR digital filter
 F and M specify frequency and magnitude breakpoints for the filter such that plot(N,F,M) shows a plot of desired frequency
 Frequencies F must be in increasing order between 0 and Fs/2, with Fs corresponding to the sample rate.
 B is the vector of length N+1, it is real, has linear phase and symmetric coefficients
 Default window is Hamming – others can be specified

In Conclusion

- FIR Filters are digital (can not be implemented in analog) and exploit the difference and delay operators
- A window based design builds on the notion of a truncation of the "ideal" box-car or rectangular low-pass filter in the Frequency domain (which is a sinc function in the time domain)
- Other Design Methods exist:
 - Least-Square Design
 - Equiripple Design
 - Remez method
 - The Parks-McClellan Remez algorithm
 - Optimisation routines ...

ELEC 3004: Systems

29 April 2014 - **79**