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z Transforms 
 

(Digital Systems Made eZ) 
 

The z-transform 

• The discrete equivalent is the z-Transform†: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 

 
 
 

Convenient! 
 

†This is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 
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Mathematical 
Models 

Continuous 
time 

Linear 

Time varying 
Time-

invariant  

Nonlinear 

TV TI 

Discrete time 

Linear 

TV TI 

Nonlinear 

TV TI 

Discrete state 

Linear 

TV TI 

Nonlinear 

TV TI 
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What about the Discrete Domain? [Lecture 4-Slide 10] 

LTID 

The z-Transform 

 

• It is defined by: 
 

 
Or in the Laplace domain: 

𝑧 = 𝑒𝑠𝑇 

 

• Thus:    or  

 

 

• I.E., It’s a discrete version of the Laplace: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
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Introduction to Digital Control 
 

By Paul Pounds 
(Mostly ) 

 

Digital control 
Once upon a time… 

• Electromechanical systems were controlled by 

electromechanical compensators 
– Mechanical flywheel governors, capacitors, inductors, resistors, 

relays, valves, solenoids (fun!) 

– But also complex and sensitive! 
 

 

• Humans developed sophisticated tools for designing reliable 

analog controllers 

 

8 May 2013 - ELEC 3004: Systems 8 
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Computer revolution 
• In the 1950s and 60s very smart people developed 

computerised controllers 

• Digital processor implements the control algorithm 

numerically, rather than in discrete hardware 

Minuteman ICBM guidance computer components [CHM] 
8 May 2013 - ELEC 3004: Systems 9 

Many advantages 
• Practical improvement over analog control: 

– Flexible; reprogrammable to implement different control laws 

for different systems 

– Adaptable; control algorithms can be changed on-line, during 

operation 

– Insensitive to environmental conditions; 

 (heat, EMI, vibration, etc) 

– Compact; handful of components on a PCB 

– Cheap 

8 May 2013 - ELEC 3004: Systems 10 
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Ok, so how do we do this? 
 

 

 

We already know about control, right? 

8 May 2013 - ELEC 3004: Systems 11 

What you already know* 
• Signals can be represented by transfer functions in the s-

domain 
 

• Roots of a transfer function’s denominator (poles) indicate the 

stability of the system 
 

• Poles move around under feedback control 
– Feedback can stabilise an unstable system 

 

*If you have no idea what I’m talking about, now is the time to mention it. 

8 May 2013 - ELEC 3004: Systems 12 
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The good news 
 

 

Digital control is just like that! 
 

 

Thanks for coming, see you at the exam! 

 

8 May 2013 - ELEC 3004: Systems 13 

Not so fast 
• While there are discrete analogues for every part of continuous 

systems theory, there are unique and important differences you 

must be familiar with 

 

Virtually every control system you will ever use will be a 

computerised digital controller 

8 May 2013 - ELEC 3004: Systems 14 
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(Simple) control systems have three parts: 

 

 

 

 

 

 

 

 

• The plant is the system to be controlled (e.g. the robot). 

• The sensor measures the output of the plant. 

• The controller sends an input command to the plant based on 

the difference from the actual output and the desired output. 

ELEC 3004: Systems 8 May 2013 - 15 

Feedback Control 

Archetypical control system 

• Consider a continuous control system: 

 

 

 

 

 

 

 
 

• The functions of the controller can be entirely 

represented by a discretised computer system 

H(s) C(s) S 

plant controller 

y(t) r(t) 
u(t) e(t) 

- 

+ 

8 May 2013 - ELEC 3004: Systems 16 
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Simple Controller Goes Digital 

Return to the discrete domain 

• Recall that continuous signals can be represented by a 

series of samples with period T 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x(kT) T 

8 May 2013 - ELEC 3004: Systems 18 
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Zero Order Hold 
• An output value of a synthesised signal is held constant until 

the next value is ready 
– This introduces an effective delay of  T/2 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x 

8 May 2013 - ELEC 3004: Systems 19 

Digitisation 

• Continuous signals sampled with period T 

• kth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

controller 

sampler 

DAC 
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Digitisation 

• Continuous signals sampled with period T 

• kth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

sampler 

y(kT) 

controller 

DAC 

8 May 2013 - ELEC 3004: Systems 21 

Difference equations 

• How to represent differential equations in a computer?  

Difference equations! 

• The output of a difference equation system is a 

function of current and previous values of the input 

and output: 
 

𝑦 𝑡𝑘 = 𝐷 𝑥 𝑡𝑘 , 𝑥 𝑡𝑘−1 , … , 𝑥 𝑡𝑘−𝑛 , 𝑦 𝑡𝑘−1 , … , 𝑦(𝑡𝑘−𝑛)  
 

– We can think of x and y as parameterised in k 

Useful shorthand: 𝑥 𝑡𝑘+𝑖 ≡  𝑥 𝑘 + 𝑖  

8 May 2013 - ELEC 3004: Systems 22 
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Euler’s method* 
• Dynamic systems can be approximated† by recognising that: 

 

 

𝑥 ≅
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇
 

T 

x(tk) 

x(tk+1) 

*Also known as the forward rectangle rule 

†Just an approximation – more on this later 

• As 𝑇 → 0, approximation 

error approaches 0  

8 May 2013 - ELEC 3004: Systems 23 

An example! 

Convert the system  
Y s

𝑋 𝑠
=

𝑠+2

𝑠+1
  into a difference equation with period 

T, using Euler’s method. 
 

1. Rewrite the function as a dynamic system: 
𝑠𝑌 𝑠 + 𝑌 𝑠 = 𝑠𝑋 𝑠 + 2𝑋 𝑠  

Apply inverse Laplace transform: 

𝑦 (𝑡) + 𝑦(𝑡) = 𝑥 (𝑡) + 2𝑥(𝑡) 
 

2. Replace continuous signals with their sampled domain equivalents, 

and differentials with the approximating function 
𝑦 𝑘 + 1 − 𝑦(𝑘) 

𝑇
+ 𝑦 𝑘 =

𝑥 𝑘 + 1 − 𝑥(𝑘) 

𝑇
+ 2𝑥 𝑘  

8 May 2013 - ELEC 3004: Systems 24 
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An example! 
Simplify: 
 

𝑦 𝑘 + 1 − 𝑦(𝑘) + 𝑇𝑦 𝑘 = 𝑥 𝑘 + 1 − 𝑥(𝑘) + 2𝑇𝑥 𝑘  

𝑦 𝑘 + 1 + 𝑇 − 1 𝑦 𝑘 = 𝑥 𝑘 + 1 + 2𝑇 − 1 𝑥 𝑘  

 
𝑦 𝑘 + 1 = 𝑥 𝑘 + 1 + 2𝑇 − 1 𝑥 𝑘 − 𝑇 − 1 𝑦 𝑘  

 

We can implement this in a computer. 

 

Cool, let’s try it! 

 

8 May 2013 - ELEC 3004: Systems 25 

Back to the future 

A quick note on causality: 

• Calculating the “(k+1)th” value of a signal using 
 

𝑦 𝑘 + 1 = 𝑥 𝑘 + 1 + 𝐴𝑥 𝑘 − 𝐵𝑦 𝑘  

 

relies on also knowing the next (future) value of x(t). 
(this requires very advanced technology!) 

 

• Real systems always run with a delay: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

current values future value 

8 May 2013 - ELEC 3004: Systems 26 
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Back to the example! 

(The actual maths bit) 
8 May 2013 - ELEC 3004: Systems 27 

Great! 

 
We already know how to design 

compensators, and now we can 

implement them in a computer. 

 
That means we’re done, right? 

8 May 2013 - ELEC 3004: Systems 28 
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Not quite 

There are unanswered questions: 

• How do we analyse more elaborate systems of these 

difference equation things? 

• What happens as you change T? 
– How would you even choose the right T? 

• What about Nyquist? Or noise? 

• How good are those approximations anyway? 
 

8 May 2013 - ELEC 3004: Systems 29 

Coping with complexity 

• Transfer functions help control complexity 
– Recall the Laplace transform: 

ℒ 𝑓 𝑡 =  𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0

= 𝐹 𝑠  

where 

ℒ 𝑓 𝑡 = 𝑠𝐹(𝑠) 

 

 
Is there a something similar for sampled systems? 

H(s) y(t) x(t) 

8 May 2013 - ELEC 3004: Systems 30 
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Quick Background:  
Pole-Zero Diagrams & The Root Locus 
• The transfer function for a closed-loop system can be easily 

calculated: 

𝑦 = 𝐶𝐻 𝑟 − 𝑦  

𝑦 + 𝐶𝐻𝑦 = 𝐶𝐻𝑟 

∴
𝑦

𝑟
=

𝐶𝐻

1 + 𝐶𝐻
 

 

H C S 

plant controller 

y 
u e 

- 

+ r 

8 April 2014 - ELEC 3004: Systems 31 

Quick Background:  
Pole-Zero Diagrams & The Root Locus 
• We often care about the effect of increasing gain of a control 

compensator design: 
𝑦

𝑟
=

𝑘𝐶𝐻

1 + 𝑘𝐶𝐻
 

Multiplying by denominator: 

𝑦

𝑟
=

𝑘𝐶𝑛𝐻𝑛

𝐶𝑑𝐻𝑑 + 𝑘𝐶𝑛𝐻𝑛
 

H C S y 
u e 

- 

+ r 
k 

characteristic 

polynomial 

8 April 2014 - ELEC 3004: Systems 32 
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Quick Background:  
Pole-Zero Diagrams & The Root Locus 
• Pole positions change with increasing gain 

– The trajectory of closed-loop poles on the pole-zero plot with 

changing k is called the “root locus” 

– This is sometimes quite complex 

 

 

 

 

 
 

 

 

 

(In practice you’d plot these with computers) 

Img(s) 

Re(s) 

Increasing k 
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The z-transform 

• The discrete equivalent is the z-Transform†: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 

 
 
 

Convenient! 
 

†This is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 

8 May 2013 - ELEC 3004: Systems 34 
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The z-transform 
• Some useful properties 

– Delay by 𝒏 samples: 𝒵 𝑓 𝑘 − 𝑛 = 𝑧−𝑛𝐹 𝑧  

– Linear: 𝒵 𝑎𝑓 𝑘 + 𝑏𝑔(𝑘) = a𝐹 𝑧 + 𝑏𝐺(𝑧) 
– Convolution: 𝒵 𝑓 𝑘 ∗ 𝑔(𝑘) =  𝐹 𝑧 𝐺(𝑧) 

 
So, all those block diagram manipulation tools you know and love 

will work just the same! 

 

8 May 2013 - ELEC 3004: Systems 35 

The z-transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 

 
𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2 + 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin𝑎𝑇

𝑧2− 2cos𝑎𝑇 𝑧 + 1 
 

8 May 2013 - ELEC 3004: Systems 36 
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• Makes it easy to analyse feedback systems governed by 

difference equations 

•  For any complex number 

 

• Forward Analysis:   

 

• Backward Synthesis  

(for any fixed r > 0 on which the Z-transform converges):  

 

 

ELEC 3004: Systems 8 May 2013 - 37 

Why z-Transform 

• First-order linear constant coefficient difference equation: 

 

 

ELEC 3004: Systems 8 May 2013 - 38 

z-Transforms for Difference Equations 
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z-Transforms for Difference Equations 

 

ELEC 3004: Systems 8 May 2013 - 40 

Region of Convergence (ROC) Plots 
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The ROC is always defined by circles  

     centered around the origin. 

 

 

 

 

Right-sided signals have “outsided” ROCs. 

 

 

Left-sided signals have “insided” ROCs. 

(with ∀r within 0<r<r0) 

ELEC 3004: Systems 8 May 2013 - 41 

Properties of the ROC 

 

ELEC 3004: Systems 8 May 2013 - 42 

Combinations of Signals 
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Higher-order difference equations 

Final value theorem 

• An important question: what is the steady-state output 

a stable system at 𝑡 = ∞? 
– For continuous systems, this is found by: 

lim
𝑡→∞

 𝑥 𝑡 = lim
𝑠→0

 𝑠𝑋 𝑠  

 

– The discrete equivalent is: 

lim
𝑘→∞

 𝑥 𝑘 = lim
𝑧→1

 (1 − 𝑧−1)𝑋(𝑧) 

 

(Provided the system is stable) 

8 May 2013 - ELEC 3004: Systems 44 
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An example! 
• Back to our difference equation: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

becomes 

𝑌 𝑧 = 𝑋 𝑧 + 𝐴𝑧−1𝑋 𝑧 − 𝐵𝑧−1𝑌(𝑧)  
(𝑧 + 𝐵)𝑌(𝑧)  = (𝑧 + 𝐴)𝑋 𝑧  

 

which yields the transfer function: 
 

𝑌(𝑧)

𝑋(𝑧)
=
𝑧 + 𝐴

𝑧 + 𝐵
 

 

Note: It is also not uncommon to see systems expressed as polynomials in 𝑧−𝑛 

8 May 2013 - ELEC 3004: Systems 45 

This looks familiar… 
 

• Compare: 
Y s

𝑋 𝑠
=

𝑠+2

𝑠+1
  vs  

𝑌(𝑧)

𝑋(𝑧)
=

𝑧+𝐴

𝑧+𝐵
 

 

How are the Laplace and z domain representations related? 

 

 

8 May 2013 - ELEC 3004: Systems 46 
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Consider the simplest system 

• Take a first-order response: 

𝑓 𝑡 = 𝑒−𝑎𝑡 ⇒ ℒ 𝑓 𝑡 =
1

𝑠 + 𝑎
 

• The discrete version is: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
 

 

The equivalent system poles are related by 
 

𝑧 = 𝑒𝑠𝑇 
 

That sounds somewhat profound… but what does it mean? 

8 May 2013 - ELEC 3004: Systems 47 

The z-Plane 
• z-domain poles and zeros can be plotted just like s-domain 

poles and zeros: 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 
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Deep insight #1 

The mapping between continuous and discrete poles and 

zeros acts like a distortion of the plane 

Img(z) 

Re(z) 

Img(s) 

Re(s) 

1 

max frequency 
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The z-plane 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 

8 May 2013 - ELEC 3004: Systems 50 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

! 
8 May 2013 - ELEC 3004: Systems 53 

Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 

-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

𝑧 = 𝑒𝑠𝑇  where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 

0.1 

0.2 

0.3 

0.4 

0.5 
0.6 

0.7 

0.8 

0.9 

𝜔𝑛 =
𝜋

2𝑇
 

3𝜋
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7𝜋

10𝑇
 

9𝜋
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2𝜋
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1 

2𝜋

5𝑇
 

𝜔𝑛 =
𝜋

𝑇
 

𝜁 = 0 

3𝜋

10𝑇
 

𝜋

5𝑇
 

𝜋

10𝑇
 

𝜋
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Quick refresher: the root locus 
• The transfer function for a closed-loop system can be easily 

calculated: 

𝑦 = 𝐶𝐻 𝑟 − 𝑦  

𝑦 + 𝐶𝐻𝑦 = 𝐶𝐻𝑟 

∴
𝑦

𝑟
=

𝐶𝐻

1 + 𝐶𝐻
 

 

H C S 

plant controller 

y 
u e 

- 

+ r 
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Quick refresher: the root locus 
• We often care about the effect of increasing gain of a control 

compensator design: 
𝑦

𝑟
=

𝑘𝐶𝐻

1 + 𝑘𝐶𝐻
 

Multiplying by denominator: 

𝑦

𝑟
=

𝑘𝐶𝑛𝐻𝑛

𝐶𝑑𝐻𝑑 + 𝑘𝐶𝑛𝐻𝑛
 

H C S y 
u e 

- 

+ r 
k 

characteristic 

polynomial 
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Quick refresher: the root locus 
• Pole positions change with increasing gain 

– The trajectory of poles on the pole-zero plot with changing k is 

called the “root locus” 

– This is sometimes quite complex 

 

 

 

 

 
 

 

 

 

 

 

(In practice you’d plot these with computers) 

Img(s) 

Re(s) 

Increasing k 
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z-plane stability 
• In the z-domain, the unit circle is the system stability bound 

 

 

Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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z-plane stability 
• In the z-domain, the unit circle is the system stability bound 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

   
     

  
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z-plane stability 
• The z-plane root-locus in closed loop feedback behaves just 

like the s-plane: 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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Deep insight #2 
Gains that stabilise continuous systems can actually destabilise 

digital systems! 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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Quick plug* 

• Most of this is based on Chapter 8 of  

“Feedback Control of Dynamic Systems”            by 

Franklin, Powell and Emami-Naeini. 

* No, they’re not paying me – it’s just a really good book! 
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