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Lecture Schedule:

Week Date Lecture Title
4-MarjIntroduction & Systems Overview
6-Mar|[Linear Dynamical Systems]

11-Mar|Signals as Vectors & Systems as Maps

1

: 13-Mar|[Signals]

3 18-Mar|Sampling & Data Acquisition & Antialiasing Filters
20-Mar|[Sampling]

4 25-Mar|System Analysis & Convolution

27-Mar|[Convolution & FT]

5 1-AprFrequency Response & Filter Analysis
3-Apr[Filters]

4 8-AprDiscrete Systems & Z-Transforms

10-Apr|[Z-Transforms]
15-AprjIntroduction to Control

7 17-Apr|[Feedback]
8 29-AprDigital Filters
1-May|[Digital Filters]
9 6-May|Introduction to Digital Control
8-May|[Digitial Control]
10 13-May|Stability of Digital Systems
15-May|[Stability]
1 20-May|State-Space
22-May|Controllability & Observability
12 27-May[PID Control & System Identification
29-May|Digitial Control System Hardware
13 3-JunjApplications in Industry & Information Theory & Communications

5-Jun|Summary and Course Review
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Refresher:
Aliasing & Sampling

b2 |

» Nyquist: fu <

 Spectral Folding:

fima.gc[:ﬂ'r) — f - ‘w-fs'

First Some Noise!
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Frequency

» How often the signal repeats
+ Can be analyzed through Fourier Transform

signal (t) é signal(f)

» Exampls:

time Gl frequency
| |

1
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Note: this picture illustrates the concepts but it is not quantitatively precise




Noise [2]

Various Types:

» Thermal (white):
— Johnson noise, from thermal energy inherent in mass.

» Flicker or 1/f noise:
— Pink noise
— More noise at lower frequency

+ Shot noise:
— Noise from quantum effects as current flows across a semiconductor barrier

 Avalanche noise:
— Noise from junction at breakdown (circuit at discharge)

How to beat the noise

» Filtering (Narrow-banding): Only look at particular portion of
frequency space

* Multiple measurements ...

* Other (modulation, etc.) ...

phase

signal
noise

frequency




Noise € Uncertainty

* Uncertainty:
All measurement has some approximation

A. Statistical uncertainty: quantified by mean & variance
B. Systematic uncertainty: non-random error sources

« Law of Propagation of Uncertainty
— Combined uncertainty is root squared

ucz\/u%—l—u%—l—...—ku%

Treating Uncertainty with Multiple Measurements

1. Over time: multiple readings of a quantity
over time
“stationary” or “ergodic” system
Sometimes called “integrating”

> timc average 2. Over space: single measurement (summed)
from multiple sensors each distributed in
space

)

) 3. Same Measurand: multiple measurements
take of the same observable quantity by
multiple, related instruments

: e.g., measure position & velocity
e i) simultaneously

VN, W

\ - Basic “sensor fusion”

ensemble average

_ _ -1
Ofinal = |07 ' o5t o+ onl




Multiple Measurements Example
» What time was it when this picture was taken?
» What was the temperature in the room?

Now: (analog) Filters!
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Filters

Lowpass .|~ Bandpass

N L
LA N

» e-

\

Highpass Bandstop (Notch)

» Frequency-shaping filters: LTI systems that change the shape
of the spectrum

» Frequency-selective filters: Systems that pass some
frequencies undistorted and attenuate others

Filters
e  TOWPASS Specified Values:
* Gp = minimum passband gain
Typically:
1
Gp = —== —3dB
P \/5

+ Gs = maximum stopband gain
— Low, not zero (sorry?!)

— For realizable filters, the gain cannot
be zero over a finite band (Paley-
Wiener condition)

e Transition Band:

Highpass © transition from the passband to the
stopband =» wp# ©s




Filter Design & z-Transform

Filter Type Mapping Design Parameters
Low-pass PN AL, _ sinl(o, — /)/2]
1 —az! sinf(ew, + @!)/2]

@, = desired cutoff frequency

High-pass 7 - _lte o= SOl ¥ al)/2)
1+ az-! cos[(w, — @!)/2]
w!. = desired cutoff frequency
Bandpass | 2~ — _ 2~ 122B/(B+ DIz +1(B — /(B + 1] o = Slwa +wa)/2]
[(B—=D/(B+ D]z = [20B/(B+ D]z~ + 1 cos[(we — we)/2]
B = cotl(w:2 — wai)/2] tan(w, /2)

.y = desired lower cutoff frequency

w2 = desired upper cutoff frequency
Bandstop st F2 = [2e/B 4 D) 13 = B/ + B o = Sla +wa)/2)
[(1=pB) /(0 + Pz = Ref(B+ Dz + 1 cos[(we — we2)/2]

B = tan[(w.a — w)/2] tan(w, /2)

wy = desired lower cutoff frequency
.y = desired upper cutoff frequency

Butterworth Filters

 Butterworth: Smooth in the pass-band
 The amplitude response |H(jw)| of an nt" order Butterworth
low pass filter is given by:

B ()] = s

i ()

E P 1
|H(JUJ|:W B ()i (—ju) = () =

» The normalized case (o.=1)

1

1+ w2n

Recall that: |H (jw)|? = H (jw) H (—jw)




Butterworth Filters

!
[ H(jow)l

0.707 |+

ideal (n = o)

Butterworth Filters of Increasing Order:
Seeing this Using a Pole-Zero Diagram

* Increasing the order, increases the number of poles:

n=1 n=2

. Y

S

-1

=>»0dd orders (n=1,3,5...):
» Have a pole on the Real Axis

=>Even orders (n=2,4,6...):
» Have a pole on the off axis

Angle between
poles:




Butterworth Filters: Pole-Zero Diagram

n=1 n=2 n=3 n=4

% ¥
X
% T4
i mid / w3/ /

 Since H(s) is stable and causal, its poles must lie in the LHP
 Poles of -H(s) are those in the RHP

« Poles lie on the unit circle (for a normalized filter)

n is the order of
X the filter
H s5) =
> H (s) (s —51) (s —52)...(5 — spn)
Where: )
sp = ¢ (Zkin—1) \
= cos é’—;'(QA:Tn — 1) + jsin %{2&7 Fn—1) k=1,23 .. .n

Butterworth Filters: 4! Order Filter Example

1 = n=3

* Plugging in for n=4, k=1,...4:
- - — - — l —— —
(s + 0.3827 — 50.9239) (s 4 0.3827 + j0.9239)(s + 0.9239 — 50.3827)(s + 0.9239 + 50.3827)
1
(52 4 0.7654s + 1)(s2 + 1.8478s + 1)

1
5% 1 2.6131s3 + 3.414252 1 2.6131s + 1

H(s) =

» We can generalize =» Butterworth Table

< o - i . i This is for 3dB
2 1.41421356 bandwidth at
3 2.00000000 2.00000000 _

4 261312503 3.41421356  2.61312503 o.~1

5 3.23606798 5.23606798  5.23606798  3.23606798
6 3.86370331 7.46410162 9.14162017  7.46410162  3.86370331

10



Butterworth Filters: Scaling Back (from Normalized)

» Start with Normalized equation & Table
* Replace o with = in the filter equation

« For example:
for f,=100Hz = ®»,=200x rad/sec

From the Butterworth table: for n=2, alz\/z
Thus:

H(s) =

1
(@)%ﬁ(ﬁ)ﬁ
= 242007v/2+440,00072

Butterworth: Determination of Filter Order

+ Define G, as the gain of a lowpass Butterworth filter at o= ,
« Then:

We

2n
Gy = 20logo |H (jws)| = —101log [1 + (‘il) ]

2n]

Gp=—10log [1 + <ﬁ> J
And thus: We
. 2n
Gs = —10log l:l+ <wi> }
Or alternatively: w Y g wem

']“_ &, /10t 'J I/ [1() -G, /10 _ 4 ‘

Solving for n gives:
log Kl[)---d_,-/lo _ 1) / (10—(;;/10 . ]ﬂ

n = —

2log(we/wp)

PS. See Lathi 4.10 (p. 453) for an example in MATLAB
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Chebyshev Filters

!
| H(jw)| PH (jw) |

w—

 equal-ripple:
Because all the ripples in the passband are of equal height

« If we reduce the ripple, the passband behaviour improves, but
it does so at the cost of stopband behaviour

Chebyshev Filters

» Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-
order Butterworth filter, but this is achieved at the expense of inferior passband
behavior (rippling)

=>» For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

» The amplitude response of a normalized Chebvshev lowpass filter is:

1
[H(jw)l = =

V’fl + €20, % (w)

Where Cn(w), the nth-order Chebyshev polynomial, is given by:

n Cr(w)
Cwlw) = cos (ncos™ w)
Cpn(w) = cosh (n cosh 1m) 01
1 w
H i . 2 2w?-1
and where C,, is given by: ”
3 4wd-3w
4 8wt-8wl+1l
5 16w’ — 20w3 + 5w
6 32w — 48w 4+ 18w?% — 1

12



Normalized Chebyshev Properties

 It’s normalized: The passband is O<w<1

« Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband

« Number of ripples: there is a total of n maxima and minima
over the passband 0<w<1

1, n:odd

o (2 - 0, n:odd |H(0) = 1 o
7 (0) {1‘ MDA s =\ i nieven

- e ripple height > 7 = \/1 4 €2

* The Amplitude at =1: %= \/1:73

« For Chebyshev filters, the ripple r dB takes the place of G,

Determination of Filter Order

« The gainisgiven by: ¢ = —10log [1 +¢*C.%(w))
Thus, the gain at o, is: 20,2 (w,) = 10-G+/10 _ |

+ Solving:

1 10-6:/10 _1]"*
= — cosh™ T B
cosh™ (ws) 107710 _ 1 ‘

« General Case:

n=

- 1/2
1 _, [10-Ge/10 _1]™
cosh™? { |

S —
cosh™ (ws/wp)




Chebyshev Pole Zero Diagram

» Whereas Butterworth poles lie on a semi-circle,
The poles of an nt-order normalized Chebyshev filter lie on a
semiellipse of the major and minor semiaxes:

a = sinh (lsinh_l (lD & b= cosh (lsinh‘l (i))
n € n €

And the poles are at the locations:

1
H(s)=
(s (s—s51)(s—52)...(s—sn)
s = {(Zkzn )= ]sinh r+jcos [% coshz, k=1,..., n

Ex: Chebyshev Pole Zero Diagram for n=3

Procedure:

1. Draw two semicircles of radii aand b
(from the previous slide).

3 2. Draw radial lines along the corresponding

R Butterworth angles (n/n) and locate the
nth-order Butterworth poles (shown by
crosses) on the two circles.

: 3. The location of the ki Chebyshev pole is
ja b the intersection of the horizontal
" projection and the vertical projection from
the corresponding kth Butterworth poles
on the outer and the inner circle,
respectively.

60"

14



Chebyshev Values / Table

K, K
H(‘?) = — b . 7 ) o
C'uls) s"+ap_1s" 1+ - +a15+ag
ag n odd
]\"n = ag - ag
\/1_7? = ﬁ/'é() n even
n ap a az a3
1 1.9652267 1 db ripple
2 1.1025103 1.0977343 (f=1)
3 0.4913067 1.2384092 0.9883412
4 0.2756276 0.7426194 1.4539248 0.9528114

Other Filter Types:

Chebyshev Type Il = Inverse Chebyshev Filters

the stopband.
= Cheby2 in MATLAB

[HW)I* =1~ [He(l/w)®
Where: H, is the Chebyshev filter system from before

« $$%$ (or number of elements):

GZCZ(I/LU)
1+ e2C2(1/w)

« Chebyshev filters passband has ripples and the stopband is smooth.
« Instead: this has passband have smooth response and ripples in

=> Exhibits maximally flat passband response and equi-ripple stopband

 Passband behavior, especially for small o, is better than Chebyshev
« Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)
 Less time-delay (or phase loss) than that of the Chebyshev

 Both needs the same order n to meet a set of specifications.

ChEby < Inverse ChebySheV < Butterworth (of the same performance [not order])

15



Other Filter Types:
Elliptic Filters (or Cauer) Filters

 Allow ripple in both the passband and the stopband,
=>» we can achieve tighter transition band

[H{iw)| = ———=
V"l Fe2Rn 2 (w)
Where: R, is the n-order Chebyshev rational function determined from a given ripple spec.
€ controli the ripple
Gp=7——

* Most eﬁ“ic+ient m)
— the largest ratio of the passhand gain to stopband gain
— or for a given ratio of passband to stopband gain, it requires the
smallest transition band

= in MATLAB: ellipord followed by ellip

Filter Type Passband Stopband Transition | MATLAB Design
P Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheb
Chebyshev Type Il i
heby?2
(Inverse Chebyshev) No Yes Tight cheby
Eliptic Yes Yes Tightest ellip

16



Linear, Discrete

Dynamical Systems

ELEC 3004: Systems
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Linear Difference Equations

g = f(€ny. s €k U, - -5 Uke1).

Up = —@1Uk—1 —Q2Uk—2—" " — Qplg—n +bpeg +breg_1+- -+ bpee -,

Vug = ug — ug-1 (first difference),

V2up = Vug — Vg (second difference),

Vi, = VP luy — Vg (nth difference).

Uk = Uk,
gy = ug — Vg,

Up_o = up — 2Vug + Vz?z;c.

agV2uy, — (ay + 2a2)Vug + (az + a1 + 1)ug = boey.




Assume a form of the solution

YA
e k: “order of difference”

» k: delay
AzF = A1 4 AR
l=z14272
2=z+1.

z Transforms

(Digital Systems Made eZ)

ELEC 3004: Systems

8 April 2014 - 36
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The z-Transform

* ltis defined by: _
z =rel”

Or in the Laplace domain:
z=e5T

- Thus: Y(x)= 3 hK=" or gl <E Y (2)

k=—n0o

* LE., It’s a discrete version of the Laplace:
z
fkT) = e~ = Z{f(k)} = =

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
52 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTeaT
(s + a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 72— (2cosal)z+ 1

19



An example!

 Back to our difference equation:
y(k) = x(k) + Ax(k — 1) — By(k — 1)
becomes
Y(z) =X(2) + Az7X(2) — Bz71Y(2)
(z+B)Y(2) =(z+A)X(2)

which yields the transfer function:
Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™™

This looks familiar. ..

» Compare:
V) _ stz o V@) _ z4a
X(s)  s+1 X(z) z+B

How are the Laplace and z domain representations related?

- Linearity:

1 Z I r
a1y [n] + agye[n] +— a1Y1(2) + aYa(2)

20



The z-Plane

 z-domain poles and zeros can be plotted just like s-domain
poles and zeros:

Img(s) 4 Img(2)

X
» Re(s) ® i 1 Re(z)
X

Deep insight #1

The mapping between continuous and discrete poles and
zeros acts like a distortion of the plane

max frequency
Img(s) <—\ Img(2)

Re(s)

X Re(z)

21



Region of Convergence

+ For the convergence of X(z) we require that

Bl <
« Thus, the ROC is the range of values of z for which |az|< |
or, equivalently, |z| > |a|. Then

l2[>]al

IR
A~

7 Imfz)

Z-Transform Properties: Time Shifting

y2[n] =y[n —no]

-
. Z —NOV o m oo
Yy ['ﬂ- ﬂ{]_ 4 2 } (3) Ya(e™) = Z ylk —nglz="*

k=—00

- Z y:i]z—([+n(3)

l=—0o
. :3—?1[)}/(3)
» Two Special Cases:

« z'%: the unit-delay operator:

xn — 1] = z71X(2) R'=RN{0< |z}

* Z: unit-advance operator:

xn + 1] == zX(2) R'=RN{|z] <}

22



More Z-Transform Properties

« Time Reversal

x[n] < X(z) ROC =R

« Multiplication by z"

x[n] = X(z) ROC = R

(z i
z:J!-‘W”J"‘XJ% R'=|z9|R
\ <0/

« Multiplication by n (or
Differentiation in z):

xlnl ==Xz}  ROC=R

dX(z, .
nx[n]ﬂfz—() R' =R
dz

« Convolution

x,[n] < X,(z) ROC = R,
X,[n] < X,(2) ROC = R,

x,[n] * x,[n] < X,(2)X,(2) R'DR NR,

The z-plane

» We can understand system response by pole location in the z-

plane

[Adapted from Franklin, Powell and Emami-Naeini]

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

rr'/‘

.\'\.\* ........... P
%99 o o

Effect of pole positions

» We can understand system response by pole location in the z-
plane

AN AN

NARVARY A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

AAAAMNAARA e AN
VY VVVV|[VYT

Re(z)

Damping and natural frequency

z=eSTwheres = —(w, + jw,/1 — (2

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,

“',

-1.0 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1.0
[Adapted from Franklin, Powell and Emami-Naeini]
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