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Frequency Response

Fourier Series = Fourier Transforms

ELEC 3004: Systems

| April2014- 3

Typical Linear Processors

« Convolution
Cross Correlation
Auto Correlation

Cosine Transform

Sine Transform

Fourier Transform

h(n,k)=h(n-k)
h(n,k)=h(n+K)
h(n,k)=x(k-n)

h(n,k)= cos(% nk)
h(n,k)= sin(% nkj
h(n,k)= exp(j ZW” nk)




Transform Analysis

+ Signal measured (or known) as a function of an independent
variable
— e.g., time:y = f(t)

» However, this independent variable may not be the most
appropriate/informative
— e.g., frequency: Y = f(w)

 Therefore, need to transform from one domain to the other

- e.g., time < frequency
— As used by the human ear (and eye)

Signal processing uses Fourier, Laplace, & z transforms etc

Sinusoids and Linear Systems

x(t) or x(n) y(t) or y(n)
h(t) or h(n)

it X(t) = Acos(w,t+6,)
o X(n) = Acos(w,nt+6,)

then in steady state
y(t) = AC(w,) cos(w,t + 6, + A w,))
y(n) = AC(w,T)cos(w,nt+ 6, +O(w,T))




Sinusoids and Linear Systems

» The pair of numbers C(w0) and q(wQ) are the complex gain of
the system at the frequency wO .

» They are respectively, the magnitude response and the phase
response at the frequency wo .

y(t) = AC(w,) cos(w,t + 6, + 8(w,))
y(n) = AC(w,T)cos(w,nt + 6, + N, T))

Why Use Sinusoids?

* Why probe system with sinusoids?

+ Sinusoids are eigenfunctions of linear systems???

» What the hell does that mean?

» Sinusoid in implies sinusoid out

* Only need to know phase and magnitude (two parameters) to
fully describe output rather than whole waveform
— sine + sine = sine
— derivative of sine = sine (phase shifted - cos)
— integral of sine = sine (-cos)

« Sinusoids maintain orthogonality after sampling (not true of
most orthogonal sets)




Frequency Response

Fourier Series = Fourier Transforms
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Fourier Series

+ Deal with continuous-time periodic signals.
« Discrete frequency spectra.

A Periodic Signal
f(t)

AVAVAN ANVANFANN

VooV U ur

Source: URI ELE436




Two Forms for Fourier Series

Sinusoidal a, < 2nnt & . 27nnt
f)=—+) a cos——+ > b sin—
Form ®) 2 nzzll " T ; " T

2 (T2
a, =— .[ f (t) cos now,tdt
2 T2 T J-112
a, == f(tyt
T b, =2  )sin neogtdt
) TJ:W (t)sin ne,

Complex
Form:

= ] 1 ¢Ti2 .
_ Jnwgt _ — Jnwyt
f(t)= n}@j ce C =1 j_m f (t)e " dt

Source: URI ELE436

Fourier Series

 Any finite power, periodic, signal x(t)
— period T

* can be represented as (e0) summation of
— sine and cosine waves

« Called: Trigonometrical Fourier Series

X(t) = % + i A, cos(nw,t) + B, sin(nw,t)

n=.

* Fundamental frequency wy,=24T rad/s or 1/T Hz
* DC (average) value A, /2




y =f(t)

Amplitude

0 s ‘ s ‘ ‘
0 1 2 3 4 5 6 7 8
frequency (f)

Frequency representation (spectrum) shows signal contains:
» 2Hz and 5Hz components (sinewaves) of equal amplitude

Fourier Series Coefficients

» An & Bn calculated from the signal, x(t)
— called: Fourier coefficients

T/.2

2
A =7 | X(t) cos(nw,t)dt n=012,---
-T/2
2 T/.2
B, =— | x(t)sin(nw,t)dt n=123,---
T -
-T/2

Note: Limits of integration can vary,
provided they cover one period
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Fourier Series Coefficients

» Approximation with 1st, 3rd, 5th, & 7th Harmonics added,
note:
— ‘Ringing’ on edges due to series truncation
— Often referred to as Gibb’s phenomenon
 Fourier series converges to original signal if
— Dirichlet conditions satisfied
— Closer approximation with more harmonics

Example: Square wave

1 O<t<l
Xt)=4 -1, 1<t<2;

X(t+2). « periodic! i.e., x(t + 2) = x(t)

2
A, =Ix(t)cos(n;zt)dt Icos(n;rt)dt jcos(n;zt)dt
0
Sm —sm(n;zt) No cos terms as sin(nt) =0V n
A, ={ } { } =0 x(t) has odd symmetry
nr |
2
B, =£x(t)sm(n;zt)dt jsm(n;zt)dt .[sm(nzzt)dt cos(2nm) =1 n
B { cos n;zt} {—cos(nﬂt)} __cos(mz)+i+i_cos(n;r)
nz A nz nz nz nz

=a(l—cos(n7r)) Sin terms only

10



Example: Square wave

Therefore, Trigonometric Fourier series is,

X(t) = i% (1—cos(nzx))sin(nzt)

n=1
Expanding the terms gives,

X(t) = %sin(ﬂt) (fundamental)

+0 (second harmonic) - Only odd harmonics;

+3i5|n(372t) (th|rd harmoniC) *ln proportion
T
+0 (fourth harmonic) 1,1/3,1/5,1/7,...
* Higher harmonics
contribute less;
+etc * Therefore, converges

+Sisin(5;zt) (fifth harmonic)
T

How to Deal with Aperiodic Signal?

A Periodic Signal
f(t)

V \/ TV

If T—>o0, what happens?

Source: URI ELE436
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Fourier Integral

i 1 e1i2 )
jnogt — — jnogt
f=ce Cy =7 [ fr (e ™dt
& 2n 1 o
Z|:T1J-T/2 f (T)e ]nmordr:|ejnu)ot (’00 :? q — __0
1 & . ot
_Tnz[jﬂ fr (e " foge
1< 12 Nwgt neg
- ZU fy (e " o an
1
2n

[ \T. tr@e e jerdo

Let Ao =w, _z2n
T

T o>o=do=An~0

Source: URI ELE436

Fourier Integral

f(t)_— = U f(D)e- "’”dr}e"”tdoo

F(io)

f©) = [ Fioe*"do  Synthesis

F(jo)= j“; f (t)e tdt Analysis

Source: URI ELE436
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Fourier Series vs. Fourier Integral

Fourier © i .
Series: | f®) = chel”‘”otl Period Function
1 ¢ti2 i .
&=, f (e "'dtf Discrete Spectra
Fourier T Non-Period
Integral: f(t)zﬂjwlz(]m)e] dmI Function
F(jo)= ji f (t)e 'dt l Continuous Spectra

Complex Fourier Series (CFS)

+ Also called Exponential * FS as a Complex phasor
Fourier series summation
— As it uses Euler’s relation

Aexp(jw,t) = Acos(w,t) + JAsin(w,t)

which implies,
cos(nw,t) = exp (Jnwot) +29XP (= inwgt)
sin(nw,t) = exp (jnw,t) ;J‘_i‘Xp (— jnw,t)
+00
= I Where X,, are the
X(t) - Z X " exp ( anot) CFS coefficients
N=—o00

13



Complex Fourier Coefficients

« Again, Xn calculated from < Only one set of coefficients,

X(t) Xn
— but, generally they are
complex
+T/2
1 .
X, == jx(t)exp(—anot)dt
T —T/2

Remember: fundamental w, = 2n/T !

Relationships

» There is a simple
relationship between

— trigonometrical and

— complex Fourier
coefficients,

« A .
07y Constrained to be
. symmetrical, i.e.,
ﬂ’ n>o0: complex conjugate
X, =1, 2. .
At By n<0. X=X,
2 ]

Therefore, can calculate simplest form and convert

14



Example: Complex FS

« Consider the pulse train » Has complex Fourier series:
signal
A o<f|<%; T
2 A
x(t)=4 0, %< It <T; H H
X(t+T).
-
1 T/2 1 /2
X = = Ix(t) exp(— jnagt)dt = = .[Aexp(— jnagt)dt
: T -T/2 T ~7/2
Note: x ) )
by /T ... _ —-Ar o — Jnw,t —exp JNw,7 Note: n is the
no,Tt 2 2 ind. variable

Example: Complex FS

* Which using Euler’s identity
reduces to:

_Arsin(nw, 7/2) A

X, T w12 TT sa(nw, z/2)
w2
T
Note: letting €= naéor
op (- j0)-ex(j0) boet) = cos(e): ven
=cos(—8)+ jsin(—8)—(cos()+ jsin(@)) sinto)=-sin(o): odd
=cos(6)- jsin(#)—cos()- jsin(f) = —2jsin()

15



Dirichlet Conditions

For Fourier series to converge, o

f(t) must be: I | (1) dt < oo

* defined & single valued “o0

+ continuous and have a finite number of finite discontinuities
within a periodic interval, and

* piecewise continuous in periodic interval, as must ’(t)

be absolutely integrable; i.e.,
— i.e., have finite energy

 have a finite number of finite discontinuities within a finite
interval, and

 have a finite number of maxima and minima within a finite
interval

Note: Periodic signals have FT, if we use impulse functions, 5(w)

Frequency Response

Fourier Series = Fourier Transforms

ELEC 3004: Systems | April 2014 - 46



Fourier Transform

» A Fourier Transform is an integral transform that re-expresses
a function in terms of different sine waves of varying
amplitudes, wavelengths, and phases.

1-D Example:

« When you let these three waves interfere with each other you
get your original wave function!

Source: Tufts Uni Sykes Group

ELEC 3004: Systems | April 2014 - 47

Fourier Series

« What we have produced is a processor to calculate one
coefficient of the complex Fourier Series

 Fourier Series Coefficients = Heterodyne and average over
observation interval T

2

D
T

T 27
C =~ [h(tye ' “dt
0

ELEC 3004: Systems | April 2014 - 48
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Fourier Transform

« If we change the limits of integration to the entire real
line, remove the division by T, and make the frequency
variable continuous, we get the Fourier Transform

C(w) = Th(t)eiwtdt

ELEC 3004: Systems | April 2014 - 49

Fourier Transform (is not the Fourier Series per se)
Continuous Discrete
Time Time
Q B
3 Fourier ISCrete
= Series Fourier
o Transform
Q Continuous .
S . Fourier
2 SOUEG Transform
L Transform
< e ——
Source: URI ELE436

ELEC 3004: Systems | April 2014 - 50



Fourier Transform

« Fourier series
— Only applicable to periodic signals

 Real world signals are rarely periodic

» Develop Fourier transform by
— Examining a periodic signal
— Extending the period to infinity

Fourier Transform

e Problem:as T — oo, Xn—> 0
— i.e., Fourier coefficients vanish!

« Solution: re-define coefficients
—Xn’=T xXn
e AST >

— (harmonic frequency) nwO — w (continuous freq.)
— (discrete spectrum) Xn” — X(w) (continuous spect.)
— w0 (fundamental freq.) reduces — dw (differential)

» Summation becomes integration

19



Fourier Transform Pair

Inverse Fourier Transform:

f(©) = | F(i)e™do| Synthesis

Fourier Transform:

F(jo)=[" f@e™dt|  Analysis

Source! - URI ELE436

Continuous Spectra

F(jo) =] f(t)e ™ dt

Fi(o)
F(jo) = Fe(jo) + jF (j) g
_ o)
= F(jo)|e®? |
- ~ - Phase
Magnitude

Source: URI ELE436




Pulse widtht =1

Time limited

T

T

!

T

rect(t)

! I I I

-2

0
time (t)

2 4 6 8 10
Infinite bandwidth

X(w)

sinc(w/2m)

-0.5
-20

Angular frequency (w)

Pulse width t = 2

X(t

0.2r

T

T

!

T

rect(t/2)

! I I I

-10 -8

0
time (t)

2 4 6 8 10
Parseval’s Theorem

X(w)

051

-/

2 sinc(w/rt)

-0.5
-10

5 10

Angular frequency (w)
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Pulse width t =4

X(t

0.4r
0.2r

T T T

rect(t/4)

0
-10

10

X(w)

-1
-10

Angular frequency (w)

10

Pulse width t =8

0.81

x(t

0.21

T T T

rect(t/8)

-10

-2 0 2
time (t)

10

X(w)

Angular frequency (w)

10

22



Symmetry: F{sinc(t/2x)} = 2= rect(-w) Infinite time

l T T T
L sinc(t/2n)
0.5} R
0 [ -
_0.25 L 1 L 1 L L Il
-40 -30 -20 -10 0 10 20 30 40
time (t) Finite bandwidth
21| )
| 2w rect(-w) |
g L 4
X T
O L L L 1 1 1 Il Il Il
-5 -4 -3 -2 -1 0 1 2 3 4 5

Angular frequency (w) ‘Ideal’ Lowpass filter

Properties of Fourier Transform

 Linearity
— F{ax(t)+by®)}=aXw)+bYWw)
« Time and frequency scaling
— F {x(at)} = 1/a X(w/a)
— broader in time = narrower in frequency
+ and vice versa
« Symmetry (duality)
— 2mx(-w) = [X(t) exp(-jwt)dt

* i.e., Fourier transform ‘pairs’
] p

Time limited signal limited has infinite bandwidth;
Signal of finite bandwidth has infinite time support

23



Properties of Fourier Transform

o if... e Then...

X(t) is real o X(-w) = X(wW)*

— R{X(W)} is even
— 3 {X(w)}isodd

— |X(w)| is even
— ZX(w) is odd
« X(t) is real and even « X(w) is real and even
* X(t) is real and odd » X(w) is imaginary and odd

Fourier Transforms

X(w)=6(w-a,

Note: cos(wyt) has « energy! But is dual of 5(w — w)

X(t)

)
j

X{(t)=F i)( (o)

1 .
x(t)zgexp(Ja)ot)

X(t) = cos(w,t)
(real & even)

| X(w) = n[8(w-wo)

+ 3(W+wp)]

| (real and even)

24



Fourier Transforms

Note: sin & cos have same Mag spectrum
Phase is only difference

X(t) = sin(wt)
(real and odd)

’-H 2
<. X(w) = jr[S(w-+wp)
Al - 5(W-wp)]
(imaginary & odd)
_WO 0 WO 3 4

Properties of Fourier Transform

« Time Shift
— F{x(t- o)} = exp(-j aw)X(w)
« time shift = phase shift

« Convolution and multiplication
= F{X(®) * y(O)} = X(W) - Y(W)
* i.e., implement convolution in Fourier domain
= F{x(®) - y(©} = /21 (X(w) * Y(w))

* i.e., Fourier interpretation of multiplication (e.g., frequency modulation)

25



Magnitude and Phase of exp(-j aw)

T T T T

1.2 -
as
1 2
= cos? +
5 %8 7 sin2=1
T o6 i
<o
0.4 |
0.2 -
0 1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
Frequency (rad/s)
200 \
__ 100 B
g o
3
pe
=100 E
-200 1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
Frequency (rad/s)
modifies phase cnly
X(t) = rect(t) X(w) = sinc(w/2r)
. 1 .
1
0.5 1
ZOH
OH . F
< 0
0 -0.5
h(t) = rect(t) H(w) = sinc(w/2x)
1
1
0.5
< 0
0 -0.5
x(t)*h(t) = tri(t) X(W)H(W) = siné(w/2n)
1
F 0.5
FOH o
0 0
-1 0 1 2 -20 -10 0 10 20
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More properties of the FT

+ Differentiation in time
* Integration in time

F {Ex(t)} = joX (o)
dt Differentiation = x®
(Note: HPF & DC x zero)

F {j;x(t)dt} :jia) X (@)+7X(0)5(w)

Integration = /o + DC offset (LPF
& opposite of differentiation)

More Fourier Transforms

See Tutorial 2 for proof...

f(t) =X8(t - n4t) = III(t) F(W) = (2dA)Z3(w - 27n/4)

t
f(t) = X5(t - 2nAt)

F(w) = (2A44t) 28(w - zn/At)

F

1]

S W
impulse train, ‘comb’ or ‘Shah’ function

27



More Fourier Transforms

Limit of previous as At — o« and At — 0 respectively
Note: f(t) = 1 has « energy! But is dual of §(t) ©

(t) = 8(t) F(w) = 1
F
—
t w
f(t) = 1 F(w) = 275(w)
F
—_
"t W

Note: u(t) also has o energy! But F{u(t)} = F{/5(t)} i.e., apply integration property

Interpretation of Fourier Transform

» Represents (usually finite energy) signals

— as sum of cosine waves
« atall possible frequencies
* |[X(w)|dw/27 is amplitude of cosine wave
— i.e., in frequency band w to w + dw
o ZX(w) is phase shift of cosine wave

« Also represents finite power, periodic signals
— Using d(w)

« Distribution with frequency of
— both magnitude & phase
— called a Frequency spectrum (continuous)

28



Negative Frequency

* Q: What is negative frequency?
« A: A mathematical convenience

Trigonometrical FS
— periodic signal is made up from
— sum 0 to o of sine and cosines ‘harmonics’

Complex FS and the FT

— use exp(xjwt) instead of cos(wt) and sin(wt)
— signal is sum from 0 to oo of exp(xjwt)

— same as sum -oo to oo of exp(-jwt)

— which is more compact (i.e., less chalk!)

Negative Frequency

imag

L Ael = A(cos(wt) + jsin(wt))

A, +ve frequency

Acos(—wt)+ jAsin(—wt)

Wt he
: A(cos(wt) - jsin(wt))

—»

\ real

'S

-ve frequency

29



Fourier Image Examples

Fourier Magnitude and Phase Bridge spectra look similar

20*log10(abs(fft(Lena))) angle(fft(Lena))

Magnitude

0.5
‘random’
range(+m)

o c P
0 10 20 30 40 50 60 70 80 90 100
Frequency




Magnitude and Phase Only

ifft(abs(fft(Lena)) + angle(0)) ifft(abs(fft(Bridge)) + angle(fft(Lena)))

LS PES

Lena magnitude only Lena phase + bridge magnitude

@ Note: titles are illustrative only and are not the actual Matlab commands used!

Questions

o If F{x()} = X(W)
~ F{x(20)} =2
~ F{x(t4)} =

- F{5(t)} ="

. F{1}="

L

31



Questions

o IfF{X(t)} = X(w)
— F{x(2t)} = 1/2X(w/2)
* narrower in t = broader in freq
— F{x(t/4)} = 4X(4w)
* broader in t = narrower in freq (but increased amplitude)
- Fa)}r=1
— i.e. flat spectrum (all frequencies equally)
« F{1}=3(w)
— i.e. impulse at DC only

Frequency

» How often the signal repeats
+ Can be analyzed through Fourier Transform

f
signal (t) ‘ signal(f)
* Examples: time &_1 frequency
| |

—MAAAAA— i

<, o o

32



Noise
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Source: Prof. M. Siegel, CMU

Note: this picture illustrates the concepts but it is not quantitatively precise

Noise [2]

Various Types:

« Thermal (white):
— Johnson noise, from thermal energy inherent in mass.

Flicker or 1/f noise:
— Pink noise
— More noise at lower frequency

Shot noise:
— Noise from quantum effects as current flows across a semiconductor barrier

Avalanche noise:
— Noise from junction at breakdown (circuit at discharge)

33



How to beat the noise

« Filtering (Narrow-banding): Only look at particular portion of
frequency space

* Multiple measurements ...

* Other (modulation, etc.) ...

phase

signal
noise

frequency

Noise € Uncertainty

«  Uncertainty:
All measurement has some approximation

A. Statistical uncertainty: quantified by mean & variance
B. Systematic uncertainty: non-random error sources

« Law of Propagation of Uncertainty
—  Combined uncertainty is root squared

uc=\/u%—|—u%+...-|—u%

34



Treating Uncertainty with Multiple Measurements

) e (ime average
‘
Xfi’)(,.)
t
™ ()
AW Y N LSS AN
y

ensemble average

1. Over time: multiple readings of a quantity
over time
“stationary” or “ergodic” system
Sometimes called “integrating”

2. Over space: single measurement (summed)
from multiple sensors each distributed in
space

3. Same Measurand: multiple measurements
take of the same observable guantity by
multiple, related instruments

e.g., measure position & velocity
simultaneously

- Basic “sensor fusion”

—[,—1, —1 1771
Ofinal = |01~ + 05 +"'+0n]

Multiple Measurements Example

» What time was it when this picture was taken?
» What was the temperature in the room?

L
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Filters

Lowpass .|~ Bandpass

N L
LA N

» e-

\

Highpass Bandstop (Notch)

» Frequency-shaping filters: LTI systems that change the shape
of the spectrum

» Frequency-selective filters: Systems that pass some
frequencies undistorted and attenuate others

Filters

' Lowpass Specified Values:

Jll(jmy‘

* Gp = minimum passband gain
Typically:
1
Gp=—== —-3dB
p \/5
+ Gs = maximum stopband gain
— Low, not zero (sorry?!)

— For realizable filters, the gain cannot
be zero over a finite band (Paley-
Wiener condition)

e Transition Band:

Highpass © transition from the passband to the
stopband =» wp# ©s
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Filter Design & z-Transform

Filter Type Mapping Design Parameters
Low-pass PN AL, _ sinl(o, — /)/2]
1 —az! sinf(ew, + @!)/2]

@, = desired cutoff frequency

High-pass 7 - _lte o= SOl ¥ al)/2)
1+ az-! cos[(w, — @!)/2]
w!. = desired cutoff frequency
Bandpass | 2~ — _ 2~ 122B/(B+ DIz +1(B — /(B + 1] o = Slwa +wa)/2]
[(B—=D/(B+ D]z = [20B/(B+ D]z~ + 1 cos[(we — we)/2]
B = cotl(w:2 — wai)/2] tan(w, /2)

.y = desired lower cutoff frequency

w2 = desired upper cutoff frequency
Bandstop st F2 = [2e/B 4 D) 13 = B/ + B o = Sla +wa)/2)
[(1=pB) /(0 + Pz = Ref(B+ Dz + 1 cos[(we — we2)/2]

B = tan[(w.a — w)/2] tan(w, /2)

wy = desired lower cutoff frequency
.y = desired upper cutoff frequency

Butterworth Filters

 Butterworth: Smooth in the pass-band
 The amplitude response |H(jw)| of an nt" order Butterworth
low pass filter is given by:

B ()] = s

i ()

E P 1
|H(JUJ|:W B ()i (—ju) = () =

» The normalized case (o.=1)

1

1+ w2n

Recall that: |H (jw)|? = H (jw) H (—jw)
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Butterworth Filters

!
[ H(jow)l

0.707 |+

ideal (n = o)

Butterworth Filters of Increasing Order:
Seeing this Using a Pole-Zero Diagram

* Increasing the order, increases the number of poles:

n=1 n=2

. Y

S

-1

=>»0dd orders (n=1,3,5...):
» Have a pole on the Real Axis

=>Even orders (n=2,4,6...):
» Have a pole on the off axis

Angle between
poles:
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Butterworth Filters: Pole-Zero Diagram

n=1 n=2 n=3 n=4

% ¥
X
% T4
i mid / w3/ /

 Since H(s) is stable and causal, its poles must lie in the LHP
 Poles of -H(s) are those in the RHP

« Poles lie on the unit circle (for a normalized filter)

n is the order of
X the filter
H s5) =
> H (s) (s —51) (s —52)...(5 — spn)
Where: )
sp = ¢ (Zkin—1) \
= cos é’—;'(QA:Tn — 1) + jsin %{2&7 Fn—1) k=1,23 .. .n

Butterworth Filters: 4! Order Filter Example

1 = n=3

* Plugging in for n=4, k=1,...4:
- - — - — l —— —
(s + 0.3827 — 50.9239) (s 4 0.3827 + j0.9239)(s + 0.9239 — 50.3827)(s + 0.9239 + 50.3827)
1
(52 4 0.7654s + 1)(s2 + 1.8478s + 1)

1
5% 1 2.6131s3 + 3.414252 1 2.6131s + 1

H(s) =

» We can generalize =» Butterworth Table

< o - i . i This is for 3dB
2 1.41421356 bandwidth at
3 2.00000000 2.00000000 _

4 261312503 3.41421356  2.61312503 o.~1

5 3.23606798 5.23606798  5.23606798  3.23606798
6 3.86370331 7.46410162 9.14162017  7.46410162  3.86370331
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Butterworth Filters: Scaling Back (from Normalized)

» Start with Normalized equation & Table
* Replace o with = in the filter equation

« For example:
for f,=100Hz = ®»,=200x rad/sec

From the Butterworth table: for n=2, alz\/z
Thus:

H(s) =

1
(@)%ﬁ(ﬁ)ﬁ
= 242007v/2+440,00072

Butterworth: Determination of Filter Order

+ Define G, as the gain of a lowpass Butterworth filter at o= ,
« Then:

We

2n
Gy = 20logo |H (jws)| = —101log [1 + (‘il) ]

2n]

Gp=—10log [1 + <ﬁ> J
And thus: We
. 2n
Gs = —10log l:l+ <wi> }
Or alternatively: w Y g wem

']“_ &, /10t 'J I/ [1() -G, /10 _ 4 ‘

Solving for n gives:
log Kl[)---d_,-/lo _ 1) / (10—(;;/10 . ]ﬂ

n = —

2log(we/wp)

PS. See Lathi 4.10 (p. 453) for an example in MATLAB
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Chebyshev Filters

!
| H(jw)| PH (jw) |

w—

 equal-ripple:
Because all the ripples in the passband are of equal height

« If we reduce the ripple, the passband behaviour improves, but
it does so at the cost of stopband behaviour

Chebyshev Filters

» Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-
order Butterworth filter, but this is achieved at the expense of inferior passband
behavior (rippling)

=>» For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

» The amplitude response of a normalized Chebvshev lowpass filter is:

1
[H(jw)l = =

V’fl + €20, % (w)

Where Cn(w), the nth-order Chebyshev polynomial, is given by:

n Cr(w)
Cwlw) = cos (ncos™ w)
Cpn(w) = cosh (n cosh 1m) 01
1 w
H i . 2 2w?-1
and where C,, is given by: ”
3 4wd-3w
4 8wt-8wl+1l
5 16w’ — 20w3 + 5w
6 32w — 48w 4+ 18w?% — 1
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Normalized Chebyshev Properties

 It’s normalized: The passband is O<w<1

« Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband

« Number of ripples: there is a total of n maxima and minima
over the passband 0<w<1

1, n:odd

o (2 - 0, n:odd |H(0) = 1 o
7 (0) {1‘ MDA s =\ i nieven

- e ripple height > 7 = \/1 4 €2

* The Amplitude at =1: %= \/1:73

« For Chebyshev filters, the ripple r dB takes the place of G,

Determination of Filter Order

« The gainisgiven by: ¢ = —10log [1 +¢*C.%(w))
Thus, the gain at o, is: 20,2 (w,) = 10-G+/10 _ |

+ Solving:

1 10-6:/10 _1]"*
= — cosh™ T B
cosh™ (ws) 107710 _ 1 ‘

« General Case:

n=

- 1/2
1 _, [10-Ge/10 _1]™
cosh™? { |

S —
cosh™ (ws/wp)




Chebyshev Pole Zero Diagram

» Whereas Butterworth poles lie on a semi-circle,
The poles of an nt-order normalized Chebyshev filter lie on a
semiellipse of the major and minor semiaxes:

a = sinh (lsinh_l (lD & b= cosh (lsinh‘l (i))
n € n €

And the poles are at the locations:

1
H(s)=
(s (s—s51)(s—52)...(s—sn)
s = {(Zkzn )= ]sinh r+jcos [% coshz, k=1,..., n

Ex: Chebyshev Pole Zero Diagram for n=3

Procedure:

1. Draw two semicircles of radii aand b
(from the previous slide).

3 2. Draw radial lines along the corresponding

R Butterworth angles (n/n) and locate the
nth-order Butterworth poles (shown by
crosses) on the two circles.

: 3. The location of the ki Chebyshev pole is
ja b the intersection of the horizontal
" projection and the vertical projection from
the corresponding kth Butterworth poles
on the outer and the inner circle,
respectively.

60"
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Chebyshev Values / Table

K, K
H(‘?) = — b . 7 ) o
C'uls) s"+ap_1s" 1+ - +a15+ag
ag n odd
]\"n = ag - ag
\/1_7? = ﬁ/'é() n even
n ap a az a3
1 1.9652267 1 db ripple
2 1.1025103 1.0977343 (f=1)
3 0.4913067 1.2384092 0.9883412
4 0.2756276 0.7426194 1.4539248 0.9528114

Other Filter Types:

Chebyshev Type Il = Inverse Chebyshev Filters

the stopband.
= Cheby2 in MATLAB

[HW)I* =1~ [He(l/w)®
Where: H, is the Chebyshev filter system from before

« $$%$ (or number of elements):

GZCZ(I/LU)
1+ e2C2(1/w)

« Chebyshev filters passband has ripples and the stopband is smooth.
« Instead: this has passband have smooth response and ripples in

=> Exhibits maximally flat passband response and equi-ripple stopband

 Passband behavior, especially for small o, is better than Chebyshev
« Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)
 Less time-delay (or phase loss) than that of the Chebyshev

 Both needs the same order n to meet a set of specifications.

ChEby < Inverse ChebySheV < Butterworth (of the same performance [not order])
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Other Filter Types:
Elliptic Filters (or Cauer) Filters

 Allow ripple in both the passband and the stopband,
=>» we can achieve tighter transition band

[H{iw)| = ———=
V"l Fe2Rn 2 (w)
Where: R, is the n-order Chebyshev rational function determined from a given ripple spec.
€ controli the ripple
Gp=7——

* Most eﬁ“ic+ient m)
— the largest ratio of the passhand gain to stopband gain
— or for a given ratio of passband to stopband gain, it requires the
smallest transition band

= in MATLAB: ellipord followed by ellip

Filter Type Passband Stopband Transition | MATLAB Design
P Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheb
Chebyshev Type Il i
heby?2
(Inverse Chebyshev) No Yes Tight cheby
Eliptic Yes Yes Tightest ellip
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