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Week Date Lecture Title 

1 
4-Mar Introduction & Systems Overview 

6-Mar [Linear Dynamical Systems] 

2 
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3 
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4 
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8-Apr Discrete Systems & Z-Transforms 

10-Apr [Z-Transforms] 

7 
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8-May [Digitial Control] 

10 
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11 
20-May State-Space 
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5-Jun Summary and Course Review 
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Frequency  Response 
 
 

Fourier Series  Fourier Transforms 
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Typical Linear Processors 
• Convolution h(n,k)=h(n-k) 

• Cross Correlation h(n,k)=h(n+k) 

• Auto Correlation h(n,k)=x(k-n) 

 

• Cosine Transform h(n,k)= 

 

 

• Sine Transform h(n,k)= 
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• Signal measured (or known) as a function of an independent 

variable 
– e.g., time: y = f(t) 

• However, this independent variable may not be the most 

appropriate/informative 
– e.g., frequency: Y = f(w) 

• Therefore, need to transform from one domain to the other 
– e.g., time  frequency 

– As used by the human ear (and eye) 

Transform Analysis 

Signal processing uses Fourier, Laplace, & z transforms etc 
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Sinusoids and Linear Systems 

If  

or 

x t A t( ) cos( )  0 0

x n A nt( ) cos( )  0 0

then in steady state 

h(t) or h(n) 

x(t) or x(n) y(t) or y(n) 

y t AC t( ) ( )cos( ( ))      0 0 0 0

y n AC T nt T( ) ( )cos( ( ))      0 0 0 0
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• The pair of numbers  C(w0) and q(w0) are the complex gain of 

the system at the frequency w0 .  

 

• They are respectively, the magnitude response and the phase 

response at the frequency w0 . 

Sinusoids and Linear Systems 

y t AC t( ) ( )cos( ( ))      0 0 0 0

y n AC T nt T( ) ( )cos( ( ))      0 0 0 0
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• Why probe system with sinusoids? 

• Sinusoids are eigenfunctions of linear systems??? 

• What the hell does that mean? 

• Sinusoid in implies sinusoid out 

• Only need to know phase and magnitude (two parameters) to 

fully describe output rather than whole waveform 
– sine + sine = sine 

– derivative of sine = sine (phase shifted - cos) 

– integral of sine = sine (-cos) 

• Sinusoids maintain orthogonality after sampling (not true of 

most orthogonal sets) 

Why Use Sinusoids? 

ELEC 3004: Systems 8 1 April 2014 - 
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Frequency  Response 
 
 

Fourier Series   Fourier Transforms 
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Fourier Series 

• Deal with continuous-time periodic signals. 

• Discrete frequency spectra. 

A Periodic Signal 
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Source: URI ELE436 
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Two Forms for Fourier Series 
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• Any finite power, periodic, signal x(t) 
– period T 

• can be represented as () summation of 
– sine and cosine waves 

• Called: Trigonometrical Fourier Series 

 

Fourier Series 

)sin()cos(
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)( 00

1

0 tnwBtnwA
A

tx n

n
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• Fundamental frequency w0=2/T rad/s or 1/T Hz 

• DC (average) value A0 /2 
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Frequency representation (spectrum) shows signal contains: 

• 2Hz and 5Hz components (sinewaves) of equal amplitude 
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• An & Bn calculated from the signal, x(t) 
– called: Fourier coefficients 

Fourier Series Coefficients 
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Fourier Series Coefficients 

• Approximation with 1st, 3rd, 5th, & 7th Harmonics added, 

note: 
– ‘Ringing’ on edges due to series truncation  

– Often referred to as Gibb’s phenomenon  

• Fourier series converges to original signal if 
– Dirichlet conditions satisfied 

– Closer approximation with more harmonics  

Example: Square wave 
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 periodic! i.e., x(t + 2) = x(t) 

No cos terms as sin(n) = 0  n  

x(t) has odd symmetry 

Sin terms only 

cos(2n) = 1  n 
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Example: Square wave 
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• Only odd harmonics; 

• In proportion  

1,1/3,1/5,1/7,… 

• Higher harmonics 

   contribute less; 

• Therefore, converges 
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How to Deal with Aperiodic Signal? 

A Periodic Signal 

 

 

 

 

 
T 

t 

f(t) 

If T, what happens? 
Source: URI ELE436 

1 April 2014 - ELEC 3004: Systems 22 



12 

tjn

n

nT ectf 0)(








 

Fourier Integral 

 




















n

tjn
T

T

jn

T edef
T

00
2/

2/
)(

1
 

dtetf
T

c
T

T

tjn

Tn 



2/

2/

0)(
1

T




2
0






2

1 0

T

 














 




n

tjn
T

T

jn

T edef 00

0

2/

2/
)(

2

1
 

Let 
T




2
0

0 dT






 


  











n

tjn
T

T

jn

T edef 00
2/

2/
)(

2

1
 






 


  










 dedef tjj

T )(
2

1
 

Source: URI ELE436 
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Fourier Series vs. Fourier Integral 
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Complex Fourier Series (CFS) 

• Also called Exponential 

Fourier series 

– As it uses Euler’s relation 

• FS as a Complex phasor 

summation 
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Complex Fourier Coefficients 

• Again, Xn calculated from 

x(t)  

• Only one set of coefficients, 

Xn 

– but, generally they are 

complex 
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Remember: fundamental w0 = 2/T ! 
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Relationships  

• There is a simple 

relationship between  

– trigonometrical and  

– complex Fourier 

coefficients,  
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Example: Complex FS 

• Consider the pulse train 

signal 

• Has complex Fourier series: 
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Example: Complex FS 

 • Which using Euler’s identity 

reduces to: 
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For Fourier series to converge, 

f(t) must be: 

• defined & single valued 

• continuous and have a finite number of finite discontinuities 

within a periodic interval, and 

• piecewise continuous in periodic interval, as must f’(t) 

be absolutely integrable; i.e.,  
– i.e., have finite energy 

• have a finite number of finite discontinuities within a finite 

interval, and 

• have a finite number of maxima and minima within a finite 

interval 

 

 

 

 

Dirichlet Conditions 
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Note: Periodic signals have FT, if we use impulse functions, (w) 

 

Frequency  Response 
 
 

Fourier Series   Fourier Transforms 
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• A Fourier Transform is an integral transform that re-expresses 

a function in terms of different sine waves of varying 

amplitudes, wavelengths, and phases. 

 

 

 

 

 

 

• When you let these three waves interfere with each other you 

get your original wave function! 
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Fourier Transform 

1-D Example: 

Source: Tufts Uni Sykes Group 

Fourier Series 
• What we have produced is a processor to calculate one 

coefficient of the complex Fourier Series 

• Fourier Series Coefficients = Heterodyne and average over 

observation interval T 
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Fourier Transform 

• If we change the limits of integration to the entire real 

line, remove the division by T, and make the frequency 

variable continuous,  we get the Fourier Transform  

C h t e dtj t( ) ( )  
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Fourier Transform (is not the Fourier Series per se) 
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• Fourier series 
– Only applicable to periodic signals 

 

 

• Real world signals are rarely periodic 

 

• Develop Fourier transform by 
– Examining a periodic signal 

– Extending the period to infinity 

Fourier Transform 
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• Problem: as T  , Xn  0 
– i.e., Fourier coefficients vanish! 

• Solution: re-define coefficients 
– Xn’ = T  x Xn 

• As T   
– (harmonic frequency) nw0   w (continuous freq.) 

– (discrete spectrum) Xn’  X(w) (continuous spect.) 

– w0 (fundamental freq.) reduces  dw (differential) 
• Summation becomes integration 

Fourier Transform 
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Fourier Transform Pair 
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• Linearity 
– F {a x(t) + b y(t)} = a X(w) + b Y(w) 

• Time and frequency scaling 
– F {x(at)} = 1/a X(w/a) 

– broader in time  narrower in frequency 
• and vice versa 

• Symmetry (duality) 
– 2x(-w) = X(t) exp(-jwt)dt 

• i.e., Fourier transform ‘pairs’ 

Properties of Fourier Transform 

Time limited signal limited has infinite bandwidth; 

Signal of finite bandwidth has infinite time support 
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Properties of Fourier Transform 

• if… 

• x(t) is real 

 

 

 

 

• x(t) is real and even 

• x(t) is real and odd 

• Then… 

• X(-w) = X(w)* 

– {X(w)} is even 

–  {X(w)} is odd 

– |X(w)| is even  

– X(w) is odd  

• X(w) is real and even 

• X(w) is imaginary and odd 
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Fourier Transforms 
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Fourier Transforms 

x(t) = sin(w0t) 

(real and odd)  

X(w) = j[(w+w0)  

 - (w-w0)] 

 (imaginary & odd) 
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Note: sin & cos have same Mag spectrum 

Phase is only difference 
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• Time Shift 
– F {x(t - )} = exp(-j w)X(w) 

• time shift  phase shift 

 

 

• Convolution and multiplication 
– F {x(t)  y(t)} = X(w)  Y(w) 

• i.e., implement convolution in Fourier domain 

– F {x(t)  y(t)} = 1/2 (X(w)  Y(w)) 
• i.e., Fourier interpretation of multiplication (e.g., frequency modulation) 

Properties of Fourier Transform 
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• Differentiation in time 

• Integration in time 

More properties of the FT 
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(Note: HPF & DC x zero) 
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Integration  /ω + DC offset (LPF 
& opposite of differentiation) 
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More Fourier Transforms 

w 

F(w) = (2/t)(w - 2n/t) 

t 

f(t) =(t - nt) = (t) 

… … … … 

 F  

 

w 

F(w) = (2/t) (w - n/t) 

t 

f(t) = (t - 2nt) 

 

… … … … 

 F  

 

Impulse train, ‘comb’ or ‘Shah’ function  

See Tutorial 2 for proof… 
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More Fourier Transforms 

t 

f(t) = (t) 

w 

F(w) = 1 

 F  
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F(w) = 2(w) 

t 

f(t) = 1 

 F  

 

Limit of previous as t   and t  0 respectively 

Note: f(t) = 1 has  energy! But is dual of (t)  

Note: u(t) also has  energy! But F{u(t)} = F{(t)} i.e., apply integration property 
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• Represents (usually finite energy) signals 
– as sum of cosine waves 

• at all possible frequencies  

• |X(w)|dw/2 is amplitude of cosine wave  
– i.e., in frequency band w to w + dw 

• X(w) is phase shift of cosine wave 

• Also represents finite power, periodic signals 
– Using (w) 

• Distribution with frequency of  
– both magnitude & phase 

– called a Frequency spectrum (continuous) 

Interpretation of Fourier Transform 
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• Q: What is negative frequency? 

• A: A mathematical convenience 

• Trigonometrical FS 
– periodic signal is made up from 

– sum 0 to  of sine and cosines ‘harmonics’ 

• Complex FS and the FT 
– use exp(jwt) instead of cos(wt)  and sin(wt)  

– signal is sum from 0 to  of exp(jwt) 

– same as sum - to  of exp(-jwt)  

– which is more compact (i.e., less chalk!) 

Negative Frequency 
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 )sin()cos(

)sin()cos(

wtjwtA

wtjAwtAAe jwt





Negative Frequency 

 )sin()cos( wtjwtAAe jwt 

|A|  

wt  

real  

imag  

+ve frequency 

-ve frequency 
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Fourier Image Examples 

Lena Bridge
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Fourier Magnitude and Phase 

20*log10(abs(fft(Lena))) angle(fft(Lena))

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Frequency

M
a
g
n
it
u
d
e

 

 

1/f

‘random’ 

range() 

Bridge spectra look similar 
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Magnitude and Phase Only 

ifft(abs(fft(Lena)) + angle(0)) ifft(abs(fft(Bridge)) + angle(fft(Lena)))

Lena magnitude only Lena phase + bridge magnitude 

Note: titles are illustrative only and are not the actual Matlab commands used!  1 April 2014 - ELEC 3004: Systems 78 

• If F{x(t)} = X(w) 
– F{x(2t)} =? 

– F{x(t/4)} =? 

• F{(t)} = ? 

• F{1} = ? 

Questions 
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• If F{x(t)} = X(w) 
– F{x(2t)} = 1/2X(w/2)  

• narrower in t  broader in freq 

– F{x(t/4)} = 4X(4w)  
• broader in t  narrower in freq (but increased amplitude) 

• F{(t)} = 1     
– i.e. flat spectrum (all frequencies equally) 

• F{1} = (w)    
– i.e. impulse at DC only 

Questions 
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• How often the signal repeats  

• Can be analyzed through Fourier Transform 

 

 

 

 

• Examples: 

Frequency 

signal(f) 

frequency 

signal (t) 

time 
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Noise 

Note: this picture illustrates the concepts but it is not quantitatively precise 

Source: Prof. M. Siegel, CMU 
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Various Types: 
• Thermal (white):  

– Johnson noise, from thermal energy inherent in mass. 

 
• Flicker or 1/f noise:  

– Pink noise  
– More noise at lower frequency  

 
• Shot noise: 

– Noise from quantum effects as current flows across a semiconductor barrier 

 
• Avalanche noise: 

– Noise from junction at breakdown (circuit at discharge) 

Noise [2] 
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• Filtering (Narrow-banding): Only look at particular portion of 
frequency space 

• Multiple measurements … 

• Other (modulation, etc.) … 

How to beat the noise 

phase 

frequency 

signal 

noise 
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• Uncertainty:  

All measurement has some approximation  
A. Statistical uncertainty: quantified by mean & variance 

B. Systematic uncertainty: non-random error sources 

 

• Law of Propagation of Uncertainty 

– Combined uncertainty is root squared 

Noise ⊆ Uncertainty 
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1. Over time:  multiple readings of a quantity 
over time 

• “stationary” or “ergodic” system 
• Sometimes called “integrating” 

 

2. Over space: single measurement (summed) 
from multiple sensors each distributed in 
space 

 
3. Same Measurand: multiple measurements 

take of the same observable quantity by 
multiple, related instruments  
 
e.g., measure position & velocity 
simultaneously 
 

 Basic “sensor fusion” 
 

 
. 

 

Treating Uncertainty with Multiple Measurements 
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• What time was it when this picture was taken? 

• What was the temperature in the room? 

 

Multiple Measurements Example 
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• Frequency-shaping filters: LTI systems that change the shape 

of the spectrum 

• Frequency-selective filters: Systems that pass some 

frequencies undistorted and attenuate others 

ELEC 3004: Systems 17 April 2013 - 114 

Filters 
Lowpass Bandpass 

Highpass Bandstop (Notch) 

Filters 

Specified Values: 

• Gp = minimum passband gain 

Typically: 

 

 

• Gs = maximum stopband gain 

– Low, not zero (sorry!) 

– For realizable filters, the gain cannot 

be zero over a finite band (Paley-

Wiener condition) 

• Transition Band: 

transition from the passband to the 

stopband  ωp≠ ωs 
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Lowpass 

Highpass 
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Filter Design & z-Transform 

• Butterworth: Smooth in the pass-band 

• The amplitude response |H(jω)| of an nth order Butterworth 

low pass filter is given by: 

 

 

 

• The normalized case (ωc=1) 

 

 

 

 

Recall that:   
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Butterworth Filters 
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Butterworth Filters 

• Increasing the order, increases the number of poles: 

 

 

 

 

 

 

Odd orders (n=1,3,5…): 

• Have a pole on the Real Axis 

 

Even orders (n=2,4,6…): 

• Have a pole on the off axis 
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Butterworth Filters of Increasing Order: 
Seeing this Using a Pole-Zero Diagram 

Angle between 

poles: 
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• Since H(s) is stable and causal, its poles must lie in the LHP 

• Poles of -H(s) are those in the RHP 

• Poles lie on the unit circle (for a normalized filter) 

 

       

Where: 
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Butterworth Filters: Pole-Zero Diagram 

n is the order of 

the filter 
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Butterworth Filters: 4th Order Filter Example 

• Plugging in for n=4, k=1,…4: 

 

 

 

 

• We can generalize  Butterworth Table 

 

 

 

This is for 3dB 

bandwidth at 

ωc=1 
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• Start with Normalized equation & Table 

• Replace ω with       in the filter equation 

 

• For example:   

for fc=100Hz  ωc=200π rad/sec 

 
From the Butterworth table: for n=2, a1=√2 

Thus: 
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Butterworth Filters: Scaling Back (from Normalized) 

• Define Gx as the gain of a lowpass Butterworth filter at ω= ωx 

• Then: 

 

 

 
And thus: 

 

 

 

Or alternatively:           &   

 

Solving for n gives: 

 

 

 

PS.  See Lathi 4.10 (p. 453) for an example in MATLAB 
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Butterworth: Determination of Filter Order 
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• equal-ripple:  

Because all the ripples in the passband are of equal height 

• If we reduce the ripple, the passband behaviour improves, but 

it does so at the cost of stopband behaviour 
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Chebyshev Filters 

• Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-

order Butterworth filter, but this is achieved at the expense of inferior passband 

behavior (rippling)  

 For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev 

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB 

 

• The amplitude response of a normalized Chebyshev lowpass filter is: 

 

 
Where Cn(ω), the nth-order Chebyshev polynomial, is given by: 

 

 

 

      and where Cn is given by: 
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Chebyshev Filters 
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• It’s normalized: The passband is 0<ω<1 

• Amplitude response: has ripples in the passband and is 

smooth (monotonic) in the stopband 

• Number of ripples: there is a total of n maxima and minima 

over the passband  0<ω<1 

 

•   

 

• ϵ: ripple height   

 

• The Amplitude at ω=1:  

 

• For Chebyshev filters, the ripple r dB takes the place of Gp 
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Normalized Chebyshev Properties 

• The gain is given by: 

Thus, the gain at ωs is: 

 

• Solving:   

 

 

 

• General Case: 

  

 

ELEC 3004: Systems 1 April 2014 - 127 

Determination of Filter Order 
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• Whereas Butterworth poles lie on a semi-circle, 

The poles of an nth-order normalized Chebyshev filter lie on a 

semiellipse of the major and minor semiaxes: 

 

 

 

  And the poles are at the locations: 

  

ELEC 3004: Systems 1 April 2014 - 128 

Chebyshev Pole Zero Diagram 

Ex: Chebyshev Pole Zero Diagram for n=3 

 Procedure: 

1. Draw two semicircles of radii a and b 

(from the previous slide). 

2. Draw radial lines along the corresponding 

Butterworth angles (π/n) and locate the 

nth-order Butterworth poles (shown by 

crosses) on the two circles.  

3. The location of the kth Chebyshev pole is 

the intersection of the horizontal 

projection and the vertical projection from 

the corresponding kth Butterworth poles 

on the outer and the inner circle, 

respectively.  
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Chebyshev Values / Table 

• Chebyshev filters passband has ripples and the stopband is smooth. 

• Instead: this has passband have smooth response and ripples in 

the stopband.  

Exhibits maximally flat passband response and equi-ripple stopband 

 Cheby2 in MATLAB 

 

 
Where: Hc is the Chebyshev filter system from before 

• Passband behavior, especially for small ω, is better than Chebyshev  

• Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)  

• Less time-delay (or phase loss) than that of the Chebyshev 

• Both needs the same order n to meet a set of specifications.  

• $$$ (or number of elements):  

Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order]) 
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Other Filter Types:  
Chebyshev Type II = Inverse Chebyshev Filters 
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• Allow ripple in both the passband and the stopband,  

 we can achieve tighter transition band 

 

 
Where:  Rn is the nth-order Chebyshev rational function determined from a given ripple spec. 

  ϵ controls the ripple 

 Gp =  

• Most efficient (η)  
– the largest ratio of the passband gain to stopband gain 

– or for a given ratio of passband to stopband gain, it requires the 

smallest transition band  

 

 in MATLAB: ellipord followed by ellip  
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Other Filter Types:  
Elliptic Filters (or Cauer) Filters 

Filter Type 
Passband 

Ripple 

Stopband 

Ripple 

Transition 

Band 

MATLAB Design 

Command 

Butterworth No No Loose butter 

Chebyshev Yes No Tight cheby 

Chebyshev Type II 

(Inverse Chebyshev) 
No Yes Tight cheby2 

Eliptic Yes Yes Tightest ellip 
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In Summary 


