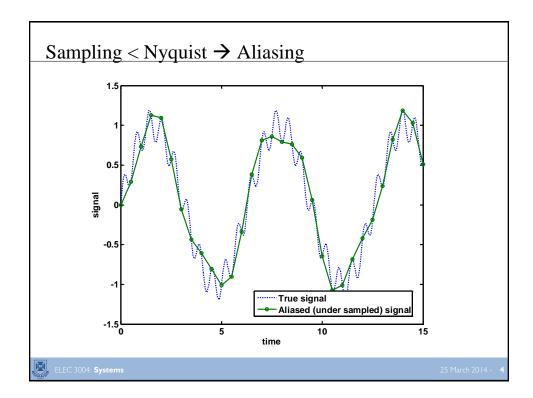
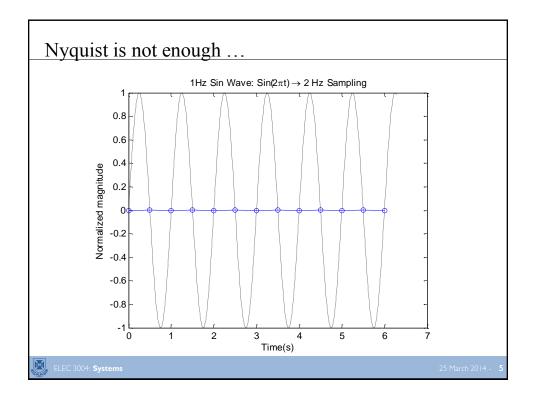
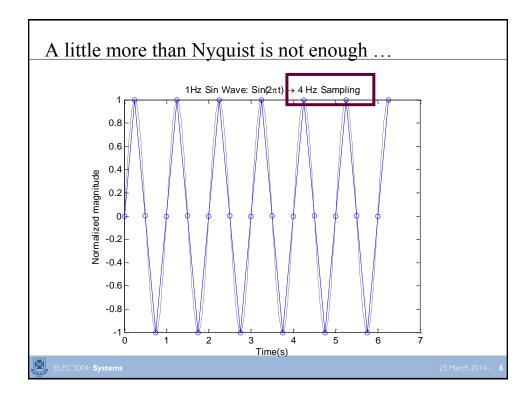
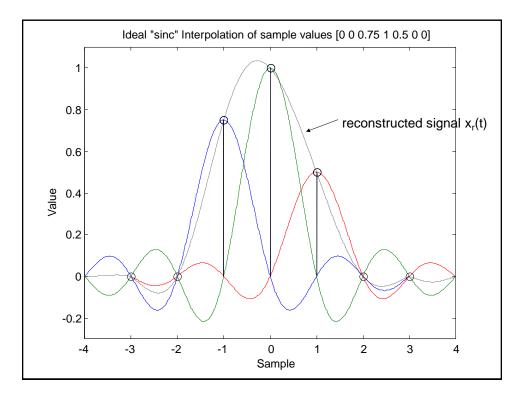


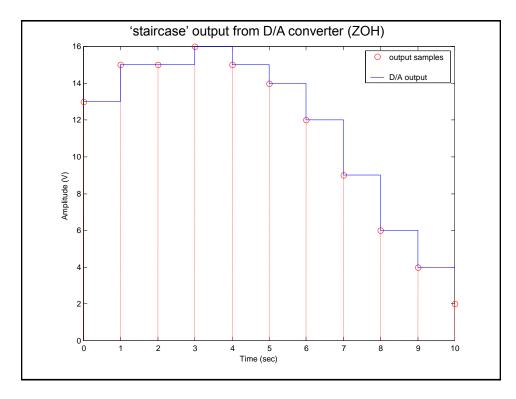
Week	edule:	Lecture Title
week		Introduction & Systems Overview
1		[Linear Dynamical Systems]
		Signals as Vectors & Systems as Maps
2		[Signals]
		Sampling & Data Acquisition & Antialiasing Filters
3		[Sampling]
4	25-Mar	System Analysis & Convolution
		[Convolution & FT]
5	1	Frequency Response & Filter Analysis
5		[Filters]
6		Discrete Systems & Z-Transforms
0		[Z-Transforms]
7	1	Introduction to Control
<i>'</i>		[Feedback]
8		Digital Filters
0		[Digital Filters]
9		Introduction to Digital Control
		[Digitial Control]
10	· · · · · · · · · · · · · · · · · · ·	Stability of Digital Systems
		[Stability]
11		State-Space
		Controllability & Observability
12	· · · · · · · · · · · · · · · · · · ·	PID Control & System Identification
		Digitial Control System Hardware
13		Applications in Industry & Information Theory & Communications
	5-Jun	Summary and Course Review

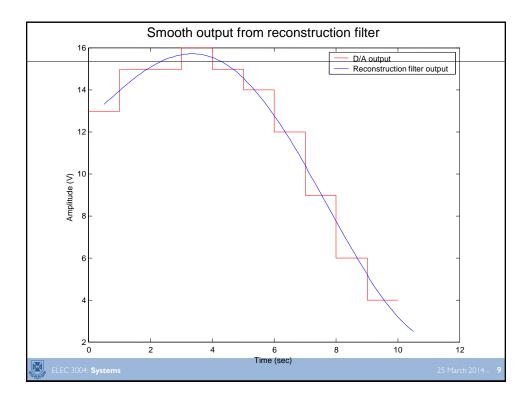


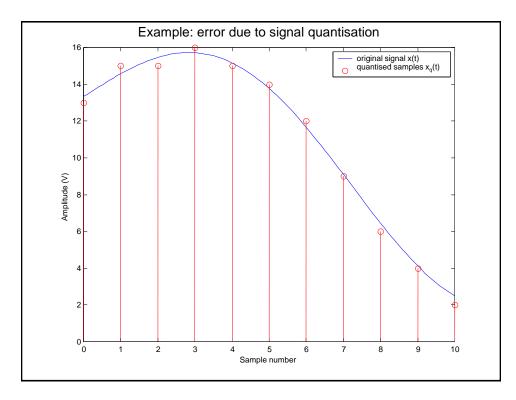


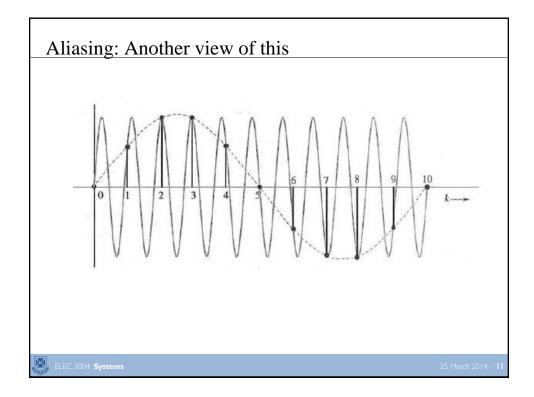




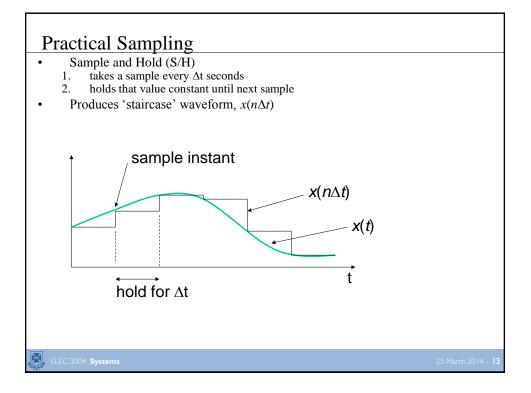






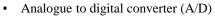


Alliasing • Aliasing - through sampling, two entirely different analog sinusoids take on the same "discrete time" identity For f[k]=cos Ω k, Ω = ω T: The period has to be less than Fh (highest frequency): $T \leq \frac{1}{2\mathcal{F}_h}$ Thus: $0 \leq \mathcal{F} \leq \frac{\mathcal{F}_s}{2}$ ω_f : aliased frequency: $\omega T = \omega_f T + 2\pi m$



Input-output for 4-bit quantiser							
(two's compliment)Digital							
	7	0111					
$\Delta x = \frac{2\pi}{2^m - 1}$	6	0110	Г				
where $A = \max$ amplitude	5	0101					
m = no. quantisation bits	4	0100					
	3	001	J				
	2	0010					
	_ 1	0001	$\overleftrightarrow{\mathbf{X}}$	Analogue			
	0	0000	quantisation				
	-1	1111	step size				
	-2	1110					
	-3						
	-4	1100					
	-5	1011					
	-6	1010					
ELEC 3004: Systems	-7	1000		25 March 2014 - 14			

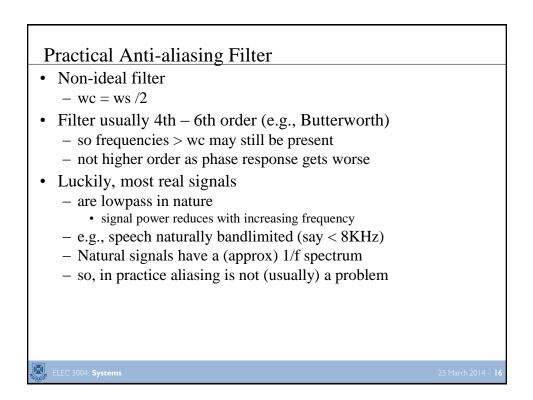
•



- Calculates nearest binary number to $x(n\Delta t)$
- $x_q[n] = q(x(n\Delta t))$, where q() is non-linear rounding fctn - output modeled as $x_q[n] = x(n\Delta t) + e[n]$
- Approximation process
- therefore, loss of information (unrecoverable)
- known as 'quantisation noise' (e[n])
- error reduced as number of bits in A/D increased
 - i.e., Δx , quantisation step size reduces

$$|e[n]| \leq \frac{\Delta x}{2}$$

ELEC 3004: Systems

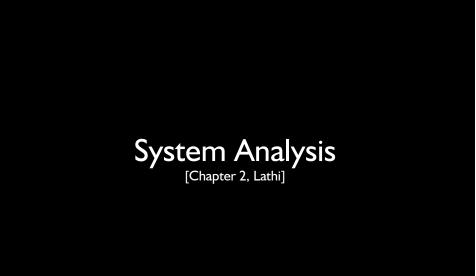


Practical Reconstruction

Two stage process:

- 1. Digital to analogue converter (D/A)
 - zero order hold filter
 - produces 'staircase' analogue output
- 2. Reconstruction filter
 - non-ideal filter: $w_c = w_s/2$
 - further reduces replica spectrums
 - usually $4^{th} 6^{th}$ order e.g., Butterworth
 - for acceptable phase response

ELEC 3004: Systems



ELEC 3004: Systems

25 March 2014 - 18

Linear Differential Systems

$$\frac{d^{n}y}{dt^{n}} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{1}\frac{dy}{dt} + a_{0}y(t) = b_{m}\frac{d^{m}f}{dt^{m}} + b_{m-1}\frac{d^{m-1}f}{dt^{m-1}} + \dots + b_{1}\frac{df}{dt} + b_{0}f(t) \qquad (2.1a)$$

where all the coefficients a_i and b_i are constants. Using operational notation D to represent d/dt, we can express this equation as

$$(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}) y(t)$$

= $(b_{m}D^{m} + b_{m-1}D^{m-1} + \dots + b_{1}D + b_{0}) f(t)$ (2.1b)

OF

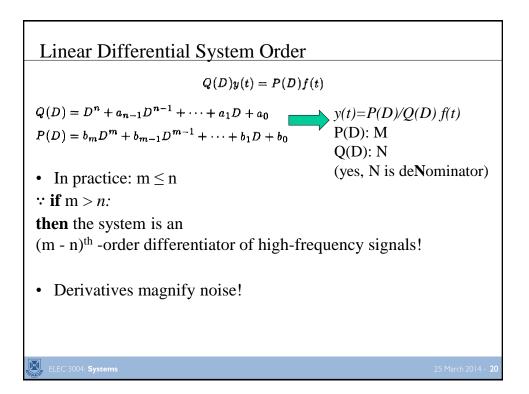
$$Q(D)y(t) = P(D)f(t)$$
(2.1c)

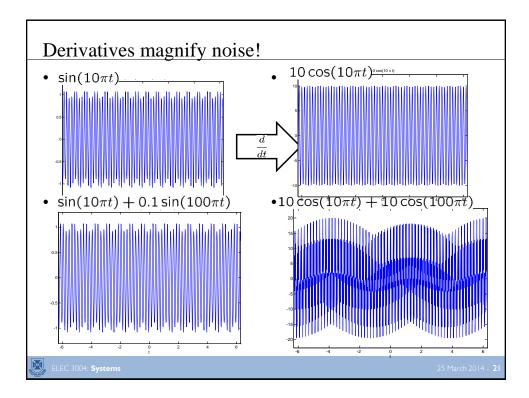
where the polynomials Q(D) and P(D) are

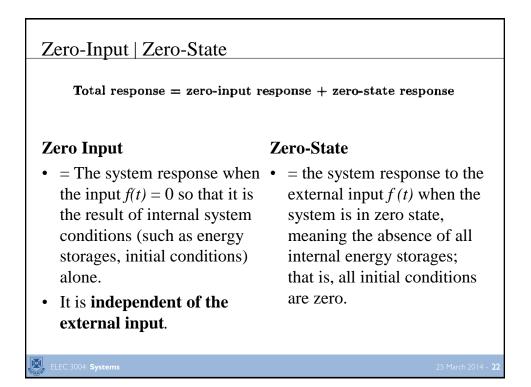
$$Q(D) = D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}$$
(2.2a)

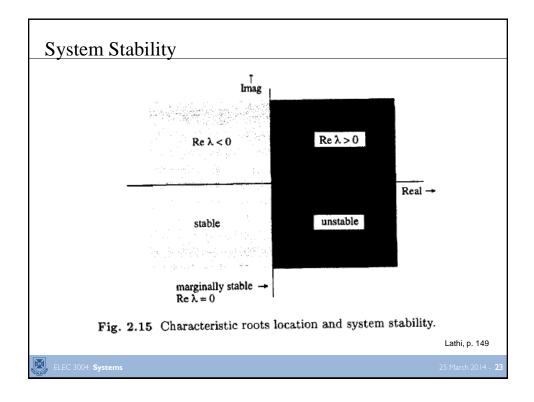
$$P(D) = b_m D^m + b_{m-1} D^{m-1} + \dots + b_1 D + b_0$$
(2.2b)

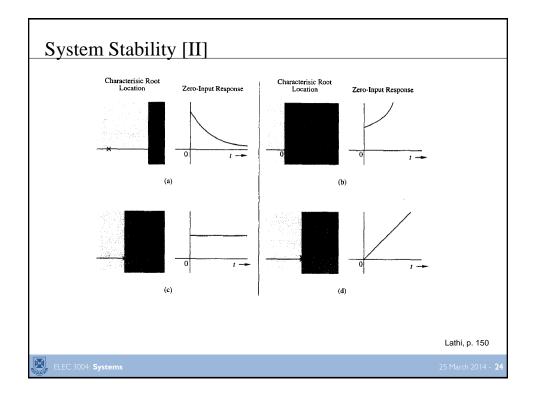
ELEC 3004: Systems

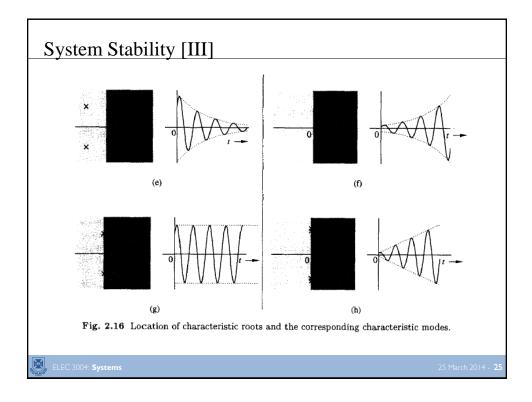


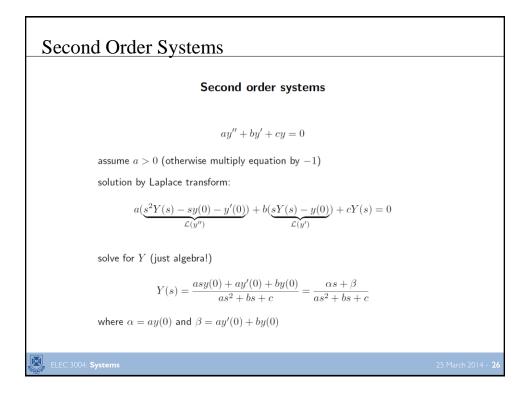










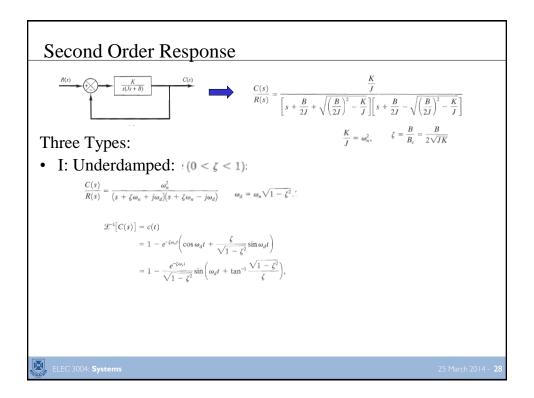


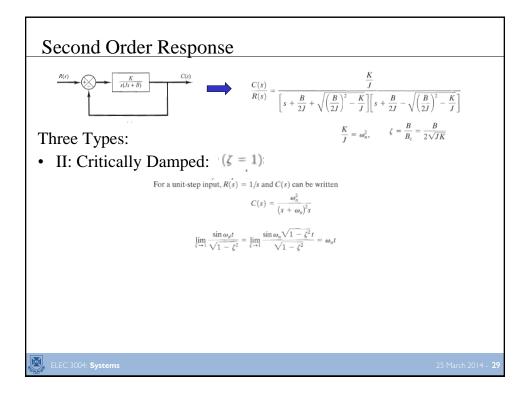
Second Order Systems

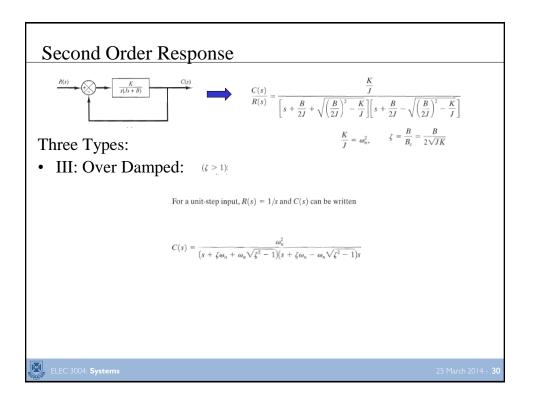
so solution of ay'' + by' + cy = 0 is

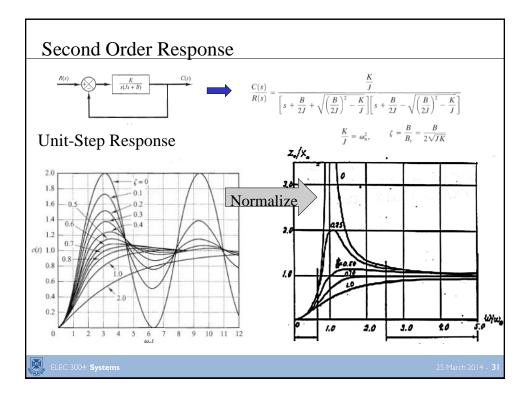
$$y(t) = \mathcal{L}^{-1}\left(\frac{\alpha s + \beta}{as^2 + bs + c}\right)$$

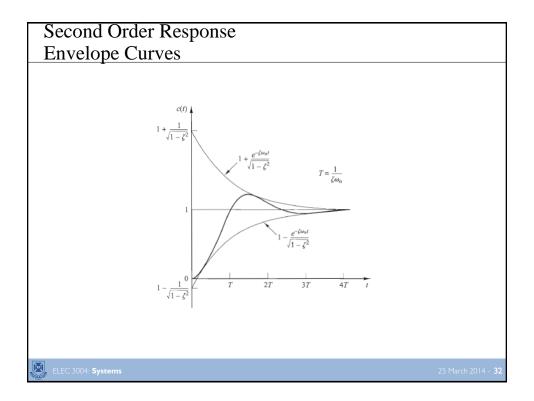
- $\chi(s) = as^2 + bs + c$ is called *characteristic polynomial* of the system
- form of $y = \mathcal{L}^{-1}(Y)$ depends on roots of characteristic polynomial χ
- coefficients of numerator $\alpha s + \beta$ come from initial conditions

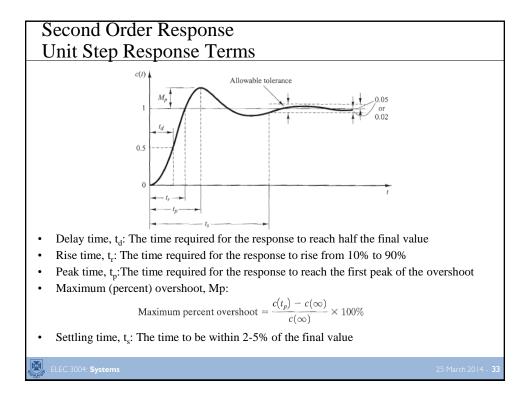


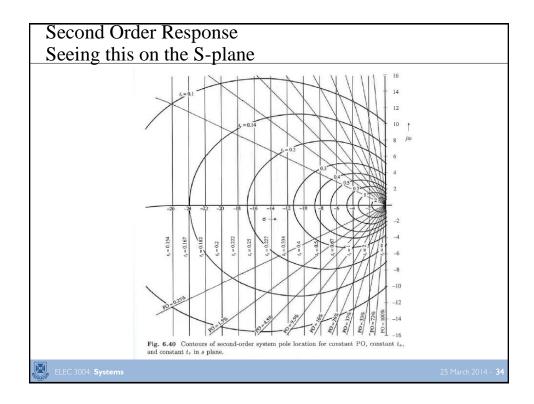


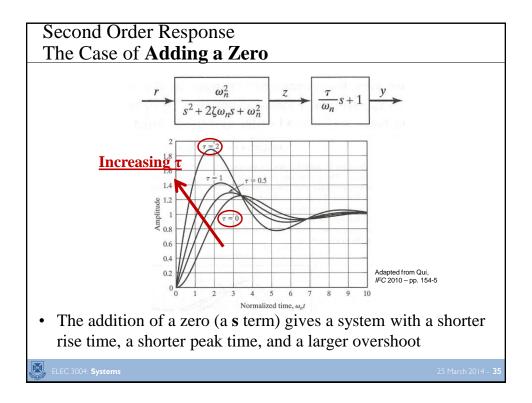


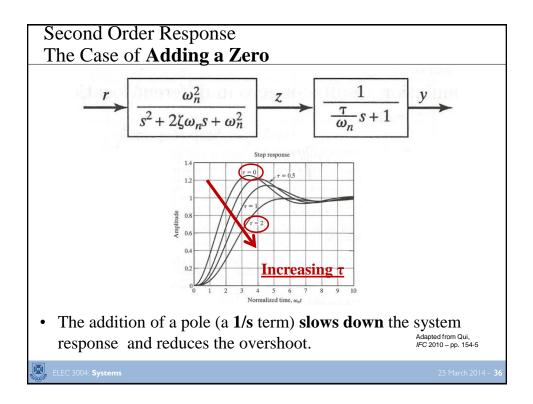


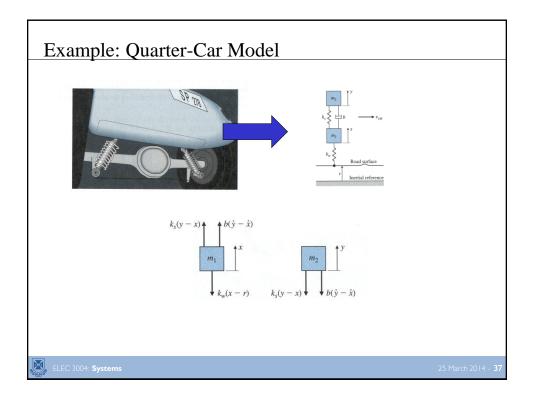


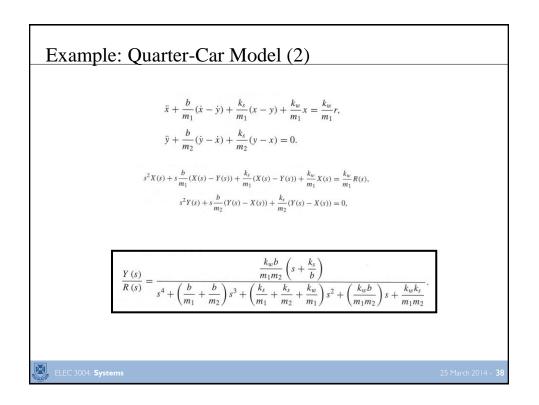


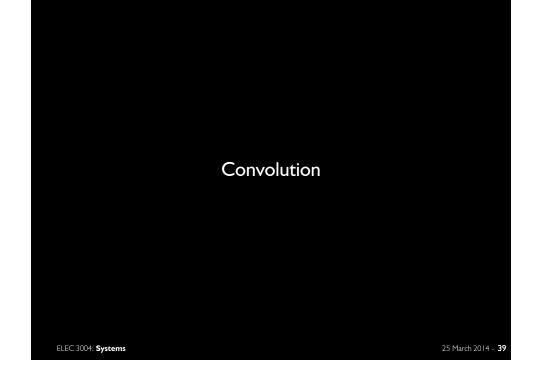


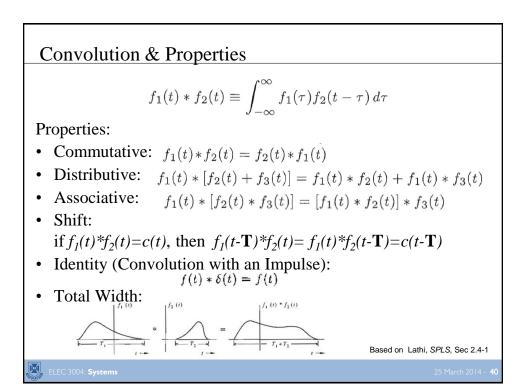


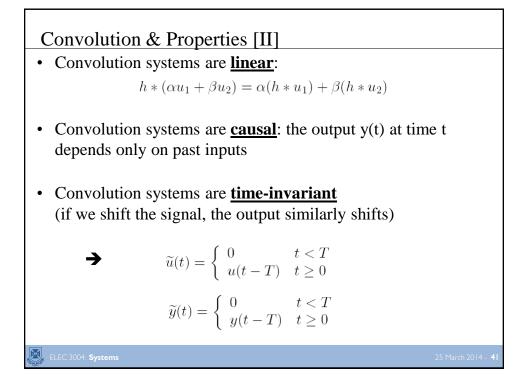


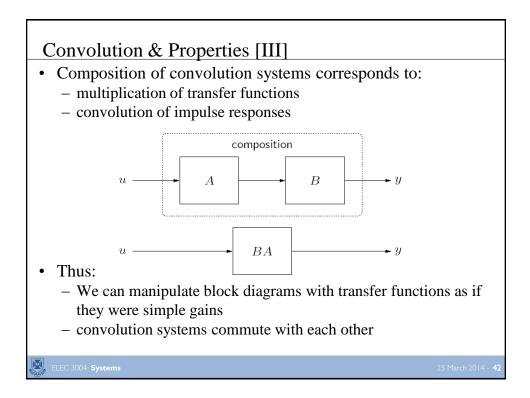












Convolution & Systems

- Convolution system with input u (u(t) = 0, t < $\overline{0}$) and output y: $y(t) = \int_0^t h(\tau)u(t-\tau) d\tau = \int_0^t h(t-\tau)u(\tau) d\tau$
- abbreviated:

ELEC 3004: Systems

$$y = h * u$$

• in the frequency domain:

$$Y(s) = H(s)U(s)$$

25 March 2014 - •

