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Sampling Recap
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Sampling < Nyquist = Aliasing
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Nyquist is not enough ...

1Hz Sin Wave: Sin@2rt) - 2 Hz Sampling

1 T T T T T T

0.6

0.4

0.2

-0.2

Normalized magnitude

04k

-0.6

-0.8F

1 U r Vo / ¢ r | 1 | ¢
0 1 2 3 4 5 6
Time(s)

A little more than Nyquist is not enough ...

1Hz Sin Wave: Sin@nt) > 4 Hz Sampling
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Ideal "sinc" Interpolation of sample values [0 0 0.75 1 0.5 0 0]
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Smooth output from reconstruction filter

=——y

[ — D/A output

Amplitude (V)

141

12+

=
o
T

o]
T

pNE

1 1 1

‘ —— Reconstruction filter output

SN

2 4 6
Time (sec)

10

12

Amplitude (V)

Example: error due to signal quantisation

16

12+

10+~

T T T T

T T T

—— original signal x(t)
~ Qquantised samples x(t)

1 2 3 4 5
Sample number

6

10




Aliasing: Another view of this
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Alliasing

« Aliasing - through sampling, two entirely different analog
sinusoids take on the same “discrete time” identity

For f[k]=cosQk, Q=wT:

The period has to be less than Fh (highest frequency):
Thus: 0<F< "})

o aliased frequency:  wT' = wyT + 2wm




Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds

. Produces ‘staircase’ waveform, X(nAt)

2. holds that value constant until next sample

sample instant
X(nAt)
f/é‘ —
| | X(t
-— t
hold for At
Input-output for 4-bit quantiser
(two’s compliment) Ninial
2A u./lguu.l
AX=— 7| 0111
2" -1 6| 0110
where A = max amplitude 5| 0101 .
m = no. quantisation bits 41 0100 .
3 %ﬂ_’i
216010 &
1| 0001 5 Analogue
0| 0000 quantisation
-1 1111 stepsize
-2/ 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1000




Quantisation

» Analogue to digital converter (A/D)
— Calculates nearest binary number to x(nAt)
* %4[n] = q(x(nAt)), where q() is non-linear rounding fctn
— output modeled as x,[n] = x(nAt) + e[n]
»  Approximation process
— therefore, loss of information (unrecoverable)
— known as ‘quantisation noise’ (e[n])
— error reduced as number of bits in A/D increased
* i.e., AX, quantisation step size reduces

AX
<
‘e[n]‘ - 2

Practical Anti-aliasing Filter

* Non-ideal filter
— WC=WS/2

* Filter usually 4th — 6th order (e.g., Butterworth)
— so frequencies > wc may still be present
— not higher order as phase response gets worse

* Luckily, most real signals
— are lowpass in nature
« signal power reduces with increasing frequency
— e.g., speech naturally bandlimited (say < 8KHz)
— Natural signals have a (approx) 1/f spectrum
— S0, in practice aliasing is not (usually) a problem




Practical Reconstruction
Two stage process:
1. Digital to analogue converter (D/A)
—  zero order hold filter
— produces ‘staircase’ analogue output
2. Reconstruction filter
— non-ideal filter: w, = w,/2
—  further reduces replica spectrums

— usually 4" — 6™ order e.g., Butterworth
for acceptable phase response

System Analysis

[Chapter 2, Lathi]
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Linear Differential Systems

"y "ty dy
2 Ton-igmT o targ +aolt) =
dmf dm—lf df
bmﬁ+bm—lw+.l-+bla + bof(t) (2.1a)

where all the coeflicients a; and b; are constants. Using operational notation D to
represent d/dt, we can express this equation as

(D" + an_1 D"  + -+ a1D +ag) y(t)

= (b D™ + b1 D™ ok b1 D+ bo) £(2)  (2.1D)
or

Q(D)y(t) = P(D)f(t) (2.1c)

where the polynomials Q(D) and P(D) are
Q(D)=D"+an D™ 1+ ..+ 21D +ag (2.2a)
P(D)=bpD™ + b1 D™ 4.+ 51D + by (2.2b)

Linear Differential System Order

Q(D)y(t) = P(D)f(t)

Q(D)=D"+a,1D* 1 4...+a;D +ap y(t)=P(D)/Q(D) f(t)
P(D) =bpD™ 4 bpm D™ Lo+ 5D + by P(D): M
Q(D): N

« Inpractice: m<n (yes, N is deNominator)

wifm>n:
then the system is an
(m - n)" -order differentiator of high-frequency signals!

* Derivatives magnify noise!
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Derivatives magnify noise!

e sin(10xt) , o 10 cos(10qt pewon
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007t) *10 cos(10xt) + 10 cos(100xt)

Zero-Input | Zero-State

Total response = zero-input response + zero-state response

Zero Input Zero-State

» = The system response when « = the system response to the
the input f(t) = 0 so that it is external input f (t) when the
the result of internal system system is in zero state,

conditions (such as energy meaning the absence of all

storages, initial conditions) internal energy storages;

alone. that is, all initial conditions
« ltis independent of the are zero.

external input.
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System Stability

Real =

stable

marginally stable —
Red=0

Fig. 2.15 Characteristic roots location and system stability.

Lathi, p. 149
System Stability [11]
Characterisic Root Characterisic Root
Location Zero-Input Response Location Zero-Input Response
(a) (b)
0 e . 0| T

{©) (d)

Lathi, p. 150
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System Stability [111]

(&) h

Fig. 2.16 Location of characteristic roots and the corresponding characteristic modes.

Second Order Systems

Second order systems

ay’ +by' +ey=0

assume a > () (otherwise multiply equation by —1)

solution by Laplace transform:

a(s?Y () — sy(0) — ' (0)) + b(sY (s) —y(0)) + Y (s) =0

L(y") L(y')

solve for Y (just algebral)

asy(0) + ay'(0) + by(0) as+ 3

Y(s) = =
(s) as? 4+ bs + ¢ as? +bs + ¢

where oo = ay(0) and 3 = ay'(0) + by(0)

13



Second Order Systems

so solution of ay” + by +cy =0 is

P as + 3
ylt) = £ ((LSQ +bs + (’)

o \(s) = as? +bs + cis called characteristic polynomial of the system
e form of y = £L7(Y) depends on roots of characteristic polynomial

e coefficients of numerator as + 3 come from initial conditions

Second Order Response

REs) <is) K
— O suiH - q Cls /
Ks) [ B I v K B (B) K
TR J | 2 N\u ]
K B B
Three Types: j B VIR
* |: Underdamped: : (0 << 1)
C(s) o
R(s) o, + p_,_ s + {w, .;;,- wy = w, V1=
$ )] ()
=1 — et cosayt + ¢ - sinagl |

V1 =¢

fn Vi \
=1 - —sin| wyt + tan™ =
1 - < [
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Second Order Response

R(s) X s) K
I s+ 8) = - C(s J
Ris) [ B ,lﬁi K[ . B (BY l
YA TS B | R VAR RS Y

Three Types: i h
« |I: Critically Damped: (£ =1

~[=|

For a unit-step input, R(s 1/s and C(s) can be written
. ?
C(s) = -
§+ w,)s
. sinagt sine, V1 t
lim —— = lim — - = w,l
=11 - ¢ Y

Second Order Response

R(s) X as) K
—_— Sis+ B) - ‘ Cls /
R(s) B ,|H7 K B (BY K
T TN\ ) T T Y\ j

Three Types: 7w fTB VIR
* IlI: Over Damped: -1

For a unit-step input, R(s) 1/s and C(s) can be written
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Second Order Response

B{s) X Qs)
_"( ?:i s+ B) — -

p
Cls B 7 B
R(s B [[BY KIJ K
s otz 7 27 ~V\27) Il
K _B B
7= "B VIK
Zfx,
] QL\ 2
1
ormaliz ;
2 laz \
N
Lo A
/M"'l
e 20 3.0 to &
e ——

| ot

Second Order Response
Envelope Curves
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Second Order Response
Unit Step Response Terms

(r)
‘ Allowable tolerance
] ‘\
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+ Delay time, tg: The time required for the response to reach half the final value
» Rise time, t.: The time required for the response to rise from 10% to 90%
* Peak time, t,:The time required for the response to reach the first peak of the overshoot
»  Maximum (percent) overshoot, Mp:
c(t,) = e(o0)

Maximum percent overshoot = —— ———= x 100%
€(c0)

+  Settling time, t;: The time to be within 2-5% of the final value

LGl

Second Order Response
Seeing this on the S-plane
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S

Fig. 6.40 Contours of second-order system pole location for constant PO, constant ¢.,
and constant ¢ in s plane.

o
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Second Order Response
The Case of Adding a Zero

r w2 z T y
—— > ——s+1 ==
5+ 2Lw,s + w? n

2 [(r=2 | [
Increasint it ; "\ [ ) )
;:R/ rz1 \ +Los |

5 ; = =Ty [ ]

08 / / :
0.6 | / // \ bt f —
04 / -
0.2 1 ‘ Adapted from Qui,
| | [ ‘ IFC 2010 — pp. 154-5
0

0 1 2 3 4 5 6 7 8 9 10

Normalized time, w,t

« The addition of a zero (a s term) gives a system with a shorter
rise time, a shorter peak time, and a larger overshoot

Second Order Response
The Case of Adding a Zero

r w3 z oAk 9ol

§%+ 2 w,s + w3 w, S+1

g i
12 X i t -
1 A =l
=1 T
2 o0s :
3 08
= T

Eoos / < 1]
04— A N, S
02 1

rcreasiing

| | il

0 1 2 3 4 5 6 - 4 8 9 10
Normalized time, w,¢

« The addition of a pole (a 1/s term) slows down the system

Adapted from Qui,

response and reduces the overshoot. IFC 2010 pp. 154-5
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Example: Quarter-Car Model

k(y = -\')I ]h(,\" - %)
x y

1 k,(x—r) k(y — .\‘)1 lh()" - X)

&

Example: Quarter-Car Model (2)

ky w
—x=—r,

s Boe ox s K
X+ —@E -+ —@Ex-=y)+—
my my my mi

_—k o ks
y+—0-0)+—0G-x)=0.
my my

, b k, ?
S2X(8) + 5—(X(5) = Y(5)) + —(X(5) = Y () + “2 X(5) = ““R(s),
my my my my

. b k,
S2Y(s) 45— (Y (5) = X(8)) + == (¥ (5) = X(5)) = 0,
my m;

kb i ks
S
mymy b

R@® - a0 b . BN (k. & %N . [ keb Kuks
sk =% = )"+ ——h— b= e | —— ) e
my my m my my mymy mymy

[T
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Convolution
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Convolution & Properties

oo

fl(f)*fz(ﬁ)_/ f1(r)fa(t — 7)dr

— 00

Properties:

Commutative: f, (¢)+ fo() = fa(t)* f1(t)
Distributive: £, (t) « [f2(t) + fa(t)] = f1(t) = fo(t) + f1(t) * f3(t)
ASSOCIAUIVE: £, (¢) = [f2(t) * f3(t)] = [f1(2) * f2(t)] * f3(2)
Shift:
if f,(t)*f,(t)=c(t), then f,(t-T)*f,(t)= f,()*f,(t-T)=c(t-T)
Identity (Convolution with an Impulse):

f(t) * 6(t) = f{t)
Total Width:

\1;(1)

N 1 /\
] |L T, —t =
i 3

b—, ‘ =

fi () * £

= 7,+7,
I s Based on Lathi, SPLS, Sec 2.4-1
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Convolution & Properties [I1]

« Convolution systems are linear:
hs (quy + Bus) = a(h s uy) + B(h = us)

« Convolution systems are causal: the output y(t) at time t
depends only on past inputs

 Convolution systems are time-invariant
(if we shift the signal, the output similarly shifts)

> -ﬁ(ﬂ—{“ | ij

Convolution & Properties [I11]

« Composition of convolution systems corresponds to:
— multiplication of transfer functions
— convolution of impulse responses

composition

u BA Y

e Thus:

— We can manipulate block diagrams with transfer functions as if

they were simple gains
— convolution systems commute with each other

21



Convolution & Systems

« Convolution system with input u (u(t) = 0, t <0) and output y:

y(t) = [L h(m)u(t —7) dr = [t h(t — 7)u(r) dr
Jo Jo

« abbreviated:

y=hxu

* in the frequency domain:

Convolution & Feedback

* |n the time domain:

* In the frequency domain:
— Y=G(U-Y)
=2 Y(s) = H(s)U(s) H(g) — G(s)

22



Graphical Understanding of Convolution

= For c(z)=U+aw =/ fmngt-rar :

1. Keep the function f (z) fixed

2. Flip (invert) the function g(r) about the vertical axis (7=0)
= thisis g(-7)

3. Shift this frame (g(-7)) along t (horizontal axis) by t,.
= this is g(t,-7)

=> For c(ty):
4. c(ty) = the area under the product of f (z) and g(t,-7)

5. Repeat this procedure, shifting the frame by different values
(positive and negative) to obtain c(t) for all values of t.

Graphical Understanding of Convolution (Ex)

23



Another View

e.g. convolution

x(nN)=12345
h(n)=321
x(ky 0012345 0012345 0012345
h(nk) 1230000 0123000 00123/00 h(n-k)
y(n,k) ﬂ 26\ 14@
3 8 14
y(n) N

N

Sum over all k

e

Notice the
gain

Matrix Formulation of Convolution

Hx

<
I

S

I
O O O O O O Bk
O O O O O Fr,r N
O O O O Fr,r NN W
O O O, N W O
O O P N W O O
O P N W O O O
P N w O O o o

Toeplitz Matrix

N W O O O O O

w O O O O o o

O O U M W N P OO

24



Convolution Definition

The convolution of two functions f,(t) and
f,(t) is defined as:

f(t) = j“; f,(x) f,(t—t)dt

= fl (H)* fz (t)

Properties of Convolution

f1 (t) * fz (t) — fz (t) * f1 (t)
LO* LM =] f@Lt-7d=[" f(x)f,-xd
=[ 7 -0 flt- -0l -)

—_ j :w f.(t—1)f,(1)de
[ -9 f,Ed = LO* 0

Source: URI ELE436
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Properties of Convolution

f1 (t) * fz (t) - fz (t) * f1 (t)

f(t)
>

mouerepore | f(Q*(D)
h(t)

h(t)
[

Impulse Response h (t) *f(t)
LTI System
f(t)

LGl

Source: URI ELE436

Properties of Convolution

[EO* LO1* f,0) = LO* L0 * 0]

= ) b o) b o)

= 1) b s b )

» The two systems are identical!

Source: URI ELE436
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Properties of Convolution

f(0)*3(t) = f@©)] () f()

f(t)*S(t) = j“; f (1)5(t —t)dt
= j“; f(t—1)8(t)dt
= f(t)

Properties of Convolution

F(0)*3() = f )] () ()

f)*o(t-T)=f(1t-T)

f)*S(t—T) = j“; f(0)8(t—T —)de
= j“; f(t—T —1)8(x)de
—f(t-T)

Source: URI ELE436
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Properties of Convolution

f)*o(t-T)=f(1t-T)

d(t-T)
f(t) mah | f(t -T)
0 T
~J0 o
0 — oT

Source! - URI ELE436

LGl

Properties of Convolution

f(0)* £, < >R (jo)F,(jo)|
FILO* LO1= [ [ 1O Le-go
I fl(r)[ [ .0 —r)e‘jw‘dt}dr

=" (R (jo)e

=F(jo)[ " f(e " dt =F(jo)F,(jo)

Time Domain Frequency Domain

convolution multiplication

o
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Properties of Convolution

() * f, (1) <> F(jo)F, (jo)|

Fi(jw)
ff“‘\’kq

"0

LGl

Q)

H(jo)

0(%

An ldeal Low-Pass Filter

Source! - URI ELE436

Properties of Convolution

f,(t)*f, t)«— F(jo) Fz(j@)l

Fi(jw)
AL-'

0

o

Q)

1

H(jo) Fo(jo)
™
0 o 0

P

An Ideal High-Pass Filter

Source: URI ELE436
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