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Lecture Schedule: 

ELEC 3004: Systems 2 

Week Date Lecture Title 

1 
4-Mar Introduction & Systems Overview 

6-Mar [Linear Dynamical Systems] 

2 
11-Mar Signals as Vectors & Systems as Maps 

13-Mar [Signals] 

3 
18-Mar Sampling & Data Acquisition & Antialiasing Filters 

20-Mar [Sampling] 

4 25-Mar System Analysis & Convolution 
27-Mar [Convolution & FT]  

5 
1-Apr Frequency Response & Filter Analysis 

3-Apr [Filters] 

6 
8-Apr Discrete Systems & Z-Transforms 

10-Apr [Z-Transforms] 

7 
15-Apr Introduction to Control 

17-Apr [Feedback] 

8 
29-Apr Digital Filters 

1-May [Digital Filters] 

9 
6-May Introduction to Digital Control 

8-May [Digitial Control] 

10 
13-May Stability of Digital Systems 

15-May [Stability] 

11 
20-May State-Space 

22-May Controllability & Observability 

12 
27-May PID Control & System Identification 

29-May Digitial Control System Hardware 

13 
3-Jun Applications in Industry & Information Theory & Communications 

5-Jun Summary and Course Review 
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Sampling Recap 
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Sampling < Nyquist  Aliasing 
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Nyquist is not enough … 
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A little more than Nyquist is not enough … 
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reconstructed signal xr(t) 
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Smooth output from reconstruction filter 
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Example: error due to signal quantisation 
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Aliasing: Another view of this 
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• Aliasing - through sampling, two entirely different analog 

sinusoids take on the same “discrete time” identity 

 

For f[k]=cosΩk,   Ω=ωT: 

 

The period has to be less than Fh (highest frequency): 

 

Thus: 

ωf: aliased frequency: 

 

 

 

 

Alliasing 

ELEC 3004: Systems 12 25 March 2014 - 



7 

• Sample and Hold (S/H) 
1. takes a sample every t seconds 
2. holds that value constant until next sample 

• Produces ‘staircase’ waveform, x(nt) 

Practical Sampling 

t 

x(t) 

hold for t 

sample instant 

x(nt) 
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Input-output for 4-bit quantiser  
(two’s compliment) 
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• Analogue to digital converter (A/D) 
– Calculates nearest binary number to x(nt) 

• xq[n] = q(x(nt)), where q() is non-linear rounding fctn 

– output modeled as xq[n] = x(nt) + e[n]  

•  Approximation process 
– therefore, loss of information (unrecoverable) 
– known as ‘quantisation noise’ (e[n])  
– error reduced as number of bits in A/D increased 

• i.e., x, quantisation step size reduces 

 

Quantisation 
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• Non-ideal filter 
– wc = ws /2 

• Filter usually 4th – 6th order (e.g., Butterworth) 
– so frequencies > wc may still be present 

– not higher order as phase response gets worse 

• Luckily, most real signals 
– are lowpass in nature 

• signal power reduces with increasing frequency 

– e.g., speech naturally bandlimited (say < 8KHz) 

– Natural signals have a (approx) 1/f spectrum 

– so, in practice aliasing is not (usually) a problem 

Practical Anti-aliasing Filter 
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Two stage process: 

1. Digital to analogue converter (D/A) 
– zero order hold filter 
– produces ‘staircase’ analogue output 

2. Reconstruction filter 
– non-ideal filter: wc = ws /2 
– further reduces replica spectrums 
– usually 4th – 6th order e.g., Butterworth  

• for acceptable phase response 

Practical Reconstruction 
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System Analysis 
[Chapter 2, Lathi] 
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Linear Differential Systems 
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• In practice: m ≤ n 

∵ if m > n: 

then the system is an  

(m - n)th -order differentiator of high-frequency signals! 

 

• Derivatives magnify noise! 
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Linear Differential System Order 

y(t)=P(D)/Q(D) f(t) 

P(D): M  

Q(D): N   

(yes, N is deNominator) 
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Zero-Input | Zero-State 

Zero Input  

• = The system response when 

the input f(t) = 0 so that it is 

the result of internal system 

conditions (such as energy 

storages, initial conditions) 

alone.  

• It is independent of the 

external input. 

Zero-State  

• = the system response to the 

external input f (t) when the 

system is in zero state, 

meaning the absence of all 

internal energy storages; 

that is, all initial conditions 

are zero.  
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System Stability 

Lathi, p. 149 
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System Stability [II] 

ELEC 3004: Systems 24 

Lathi, p. 150 
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System Stability [III] 
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Second Order Systems 
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Second Order Systems 
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Three Types: 

• I: Underdamped:  

ELEC 3004: Systems 28 

Second Order Response 
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Three Types: 

• II: Critically Damped:  
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Second Order Response 
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Three Types: 

• III: Over Damped:  
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Second Order Response 
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Unit-Step Response 
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Second Order Response 

Normalize 
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Second Order Response 
Envelope Curves 
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• Delay time, td: The time required for the response to reach half the final value  

• Rise time, tr: The time required for the response to rise from 10% to 90% 

• Peak time, tp:The time required for the response to reach the first peak of the overshoot 

• Maximum (percent) overshoot, Mp:  

 

 

• Settling time, ts: The time to be within 2-5% of the final value 
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Second Order Response 
Unit Step Response Terms 
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Second Order Response 
Seeing this on the S-plane 
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• The addition of a zero (a s term) gives a system with a shorter 

rise time, a shorter peak time, and a larger overshoot 
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Second Order Response 
The Case of Adding a Zero 

Increasing τ 

 

Adapted from Qui,  

IFC 2010 – pp. 154-5 
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• The addition of a pole (a 1/s term) slows down the system 

response  and reduces the overshoot. 
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Second Order Response 
The Case of Adding a Zero 

Increasing τ 

 

Adapted from Qui,  

IFC 2010 – pp. 154-5 
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Example: Quarter-Car Model 

ELEC 3004: Systems 37 25 March 2014 - 

Example: Quarter-Car Model (2) 
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Convolution 
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Properties: 

• Commutative:  

• Distributive: 

• Associative: 

• Shift: 

if f1(t)*f2(t)=c(t), then  f1(t-T)*f2(t)= f1(t)*f2(t-T)=c(t-T) 

• Identity (Convolution with an Impulse): 
 

• Total Width: 
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Convolution & Properties  

Based on  Lathi, SPLS, Sec 2.4-1 

25 March 2014 - 



21 

• Convolution systems are linear: 

 

 

• Convolution systems are causal: the output y(t) at time t 

depends only on past inputs 

 

• Convolution systems are time-invariant 

(if we shift the signal, the output similarly shifts) 

 

  

 

 

 

 

 

 

 

Convolution & Properties [II] 
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• Composition of convolution systems corresponds to: 
– multiplication of transfer functions 

– convolution of impulse responses 

 

 

 

 

 

 

• Thus: 
– We can manipulate block diagrams with transfer functions as if 

they were simple gains 

– convolution systems commute with each other 

 

 

Convolution & Properties [III] 
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• Convolution system with input u (u(t) = 0, t < 0) and output y: 

 

 

• abbreviated: 

 

 

• in the frequency domain: 

 

Convolution & Systems 
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• In the time domain: 

 

 

 

• In the frequency domain: 
– Y=G(U-Y) 

Y(s) = H(s)U(s) 

 

 

Convolution & Feedback 
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 For c(τ)=              : 

1. Keep the function f (τ) fixed  

2. Flip (invert) the function g(τ) about the vertical axis (τ=0) 

 =  this is g(-τ) 

3. Shift this frame (g(-τ)) along τ (horizontal axis) by t0.  

  = this is g(t0 -τ)  

 

 For c(t0): 

4.  c(t0) = the area under the product of f (τ) and g(t0 -τ)  

 

5. Repeat this procedure, shifting the frame by different values 

(positive and negative) to obtain c(t) for all values of t. 
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Graphical Understanding of Convolution 
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Graphical Understanding of Convolution (Ex) 
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Another View 

x(n) = 1 2 3 4 5  

h(n) = 3 2 1 
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Matrix Formulation of Convolution 
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Convolution Definition 

 



dtfftf )()()( 21

The convolution of two functions f1(t) and 

f2(t) is defined as: 

)(*)( 21 tftf

Source: URI ELE436 
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Properties of Convolution 
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Impulse Response 

LTI System 

h(t) 

f(t) f(t)*h(t) 

 

Properties of Convolution 

)(*)()(*)( 1221 tftftftf 

Impulse Response 

LTI System 

f(t) 

h(t) h(t)*f(t) 

Source: URI ELE436 
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• The two systems are identical! 

 

Properties of Convolution 

)](*)([*)()(*)](*)([ 321321 tftftftftftf 

h1(t) h2(t) h3(t) 

h2(t) h3(t) h1(t) 

Source: URI ELE436 
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Properties of Convolution 
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Properties of Convolution 

)()(*)( tfttf  (t) f(t) f(t) 
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Source: URI ELE436 
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Properties of Convolution 

f(t) f(t T) 
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Source: URI ELE436 

 

Properties of Convolution 

)()()(*)( 2121  jFjFtftf F
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal Low-Pass Filter 
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Source: URI ELE436 
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Properties of Convolution 

)()()(*)( 2121  jFjFtftf F

An Ideal High-Pass Filter 
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