http://elec3004.com

Sampling & Data Acquisition
& Antialiasing Filters

ELEC 3004: Digital Linear Systems: Signals & Controls
Dr. Surya Singh

Lecture 3

elec3004@itee.uq.edu.au

http://robotics.itee.ug.edu.au/~elec3004/ March 18, 2014

© 2014 School of Information Technology and Electrical Engineering at The University of Queensland

Lecture Schedule:

Week Date Lecture Title
) 4-MarIntroduction & Systems Overview
6-Mar|[Linear Dynamical Systems]
2 11-MarSignals as Vectors & Systems as Maps
13-Mar][Signals]
3 | 18-MarSampling & Data Acquisition & Antialiasing Filters
20-Mar|[Discrete Signals]
4 25-MarfFilter Analysis & Filter Design
27-Marj[Filters]
5 1-AprDigital Filters
3-Apr|[Digital Filters]
6 8-AprDiscrete Systems & Z-Transforms
10-Apr|[Z-Transforms]
7 15-Apr/Convolution & FT & DFT
17-AprFrequency Response
P 29-Apr|Introduction to Control
1-May|[Feedback]
9 6-May|Introduction to Digital Control
8-May|[Digitial Control]
10 13-May/Stability of Digital Systems
15-May|[ Stability]
1 20-May|State-Space
22-May|Controllability & Observability
12 27-May|PID Control & System Identification
29-May|Digitial Control System Hardware
3-Jun|/Applications in Industry & Information Theory & Communications
13 -
5-JunSummary and Course Review



http://itee.uq.edu.au/~metr4202/
http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/

Systems as Maps
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Then a System is a MATRIX
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Recall From Last Time ...
Classifications of Systems

Linear and nonlinear systems

Constant-parameter and time-varying-parameter systems

Instantaneous (memoryless) and dynamic (with memory)
systems

Causal and noncausal systems
Continuous-time and discrete-time systems
Analog and digital systems

Invertible and noninvertible systems
Stable and unstable systems
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Causality:

Causal (physical or
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nonanticipative) systems
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« Is one for which the output at any instant t, depends only on
the value of the input x(t) for t<t, . Ex:

(@) =a(t—2)=causal [u(t)==x(—2)+ 2+ 2) = noncausal

* A “real-time” system must be causals
— How can it respond to future inputs?

+ A prophetic system: knows future inputs and acts on it (now)
— The output would begin before t,

 In some cases Noncausal maybe modelled as causal with delay

« Noncausal systems provide an upper bound on the performance of
causal systems




Causality:
Looking at this from the output’s perspective...

» Causal = The output before some time t does not depend on
the input after time t.

Given: y(t) = F (u(t))
For:
a(t)=u(t),v0<t<Torl[0,T)
Then for a T>0:
—gt) =y (), vVO<t<T

then:
I u by |y

else:

Causal Noncausal

Dynamical Systems...

+ A system with a memory
— Where past history (or derivative states) are relevant in
determining the response
 Ex
— RC circuit: Dynamical

* Clearly a function of the “capacitor’s past” (initial state) and
» Time! (charge / discharge)

— R circuit: is memoryless “- the output of the system
(recall V=IR) at some time t only depends on the input at time t

Lumped/Distributed

— Lumped: Parameter is constant through the process
& can be treated as a “point” in space

Distributed: System dimensions # small over signal

— Ex: waveguides, antennas, microwave tubes, etc.




Linear Time Invariant

LTI
u(t) | h(t)=F(3(t)) y(tE:u(t)*h(t)

 Linear & Time-invariant (of course - tautology!)
» Impulse response: h(t)=F(8(t))
* Why?
— Since it is linear the output response (y) to any input (X) is:
x(t) = [ x(7)é(t —T)dT
y(t)=F Uffx z(r)8(t—7) df} Hngar 100 4 (7Y F 6 (t — 1)) dr

h(t-)ZF[(t—7)
=y(t)= [ x(T)h(t—71)dr =2 (t) * h ()

« The output of any continuous-time LTI system is the convolution of
input u(t) with the impulse response F(a(t)) of the system.

Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

d™z
dtm

d'y

dy
GO'H"I‘“I%"F' ~tap din

dx
= boatbim g - by,
o0+ 1{if+ +bm

Laplace:

agY (s) +a1sY(s) + -+ ans"Y (s) = bgX (s} + b1sX(s) + - + bns™ X (s)
A(8)Y (s) = B(s)X(s)

« Total response = Zero-input response + Zero-state response

Initial conditions External Input




Linear Systems and ODE’s

Linear system described by differential equation

n

d'y dx
7o =b0x+bla+---+b

a y+a1ﬂ+---+a
0 dt n

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s)+b,sX(s)+---+b,s"X(S)
A(S)Y (s) =B(s)X(s)

where A(s) and B(s) are polynomials in s

Unit Impulse Response

LTI
a(t F(5(1)) th):F(a(t))
Ex:

EXAMPLE 2.4

« 8(t): Impulsive excitation
* h(t): characteristic mode terms




System Models
+ Various things — all the same!
Table 2.1 Summary of Through- and Across-Variables for Physical Systems
Variable Integrated Variable Integrated
Through Through- Across Across-
System Element Variable Element Variable
Electrical Current, i Charge, q Voltage Flux linkage, Ay,
difference, vy
Mechanical ~ Force, F Translational Velocity Displacement
translational momentum, P difference, v, difference, y;
Mechanical ~ Torque, T Angular Angular velocity Angular
rotational momentum, /i difference, wy; displacement
difference, 0,
Fluid Fluid Volume, V/ Pressure Pressure
volumetric rate difference, Py, momentum, ys;
of flow, Q
Thermal Heat flow Heat energy, Temperature
rate, g H difference, 75,
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Circuits

Va(s) 1

Vi(s)  RCs

Vout

Vout —

1
Vin — C1C2R1Rps?°+Cor(R1+Rp)s+1
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Motors

E DC motor, field-controlled, rotational actuator

7. AC motor, two-phase control field, rotational actuator
+

I b
V.(s) ‘% )
w
- Reference
field

ELEC 3004: Systems

a(s) K,

Vi(s)  s(Js + b)(Lys + Ry)

o) K,
Vi(s)  s(rs + 1)
T=J/(b—m)

m = slope of linearized torque-speed
curve (normally negative)

18 March 2014 - 15

Mechanical Systems

15. Accelerometer, acceleration sensor

Frame

D Mass Cﬁ I e

M

"L

ELEC 3004: Systems

xo(t) = y(t) — xin(t),
XO(S) - _52
Xin(s) 52+ (b/M)s + k/M

For low-frequency oscillations, where

0 < w,,
Xo(jw) - w2
Xin(jw)  k/M

18 March 2014 - 16




Thermal Systems

a(s) 1
16. Thermal heating system q(s)  Cus + (QS + 1/R)

S

, where

J =9, — J. = temperature difference
due to thermal process

I

G
Q

S = specific heat of water

thermal capacitance

fluid flow rate = constant

Fluid
out R, = thermal resistance of insulation
Heater

q(s) = transform of rate of heat flow of
heating element

ELEC 3004: Systems 18 March 2014 - 17

First Order Systems

First order systems

ay' + by =0 (with a #0)

righthand side is zero:
e called autonomous system

e solution is called natural or unforced response
can be expressed as
Ty +y=0 or y+ry=0

where
e T'=a/bis a time (units: seconds)

e r="0b/a=1/Tis a rate (units: 1/sec)

ELEC 3004: Systems 18 March 2014 - 18



First Order Systems

Solution by Laplace transform

take Laplace transform of Ty’ + y = 0 to get

T(sY(s)—y(0)+Y(s)=0
D

L(y")

solve for Y'(s) (algebral)

'y(0) y(0)

YO =T +1= s+ 1/T

and so y(t) = y(0)e /7

First Order Systems

solution of Ty' 41y = 0: y(t) = y(0)e= /T

if ' > 0, y decays exponentially

e T gives time to decay by e~! ~ 0.37
e 0.6937 gives time to decay by half (0.693 = log 2)
e 4.6T gives time to decay by 0.01 (4.6 = log 100)

if T'< 0, y grows exponentially

e |T'| gives time to grow by e ~ 2.72;
e 0.693|T| gives time to double

e 4.6|T| gives time to grow by 100

10



First Order Systems

Examples

simple RC circuit:

+
circuit equation: RCv'+v =0

solution: v(t) = z,w(o)e*t/(RC)

population dynamics:

e y(t) is population of some bacteria at time t

e growth (or decay if negative) rate is y' = by — dy where b is birth rate,
d is death rate

o y(t) = y(0)e=Dt (grows if b > d; decays if b < d)

Second Order Systems

Second order systems

ay’ +by' +ey=0

assume a > () (otherwise multiply equation by —1)

solution by Laplace transform:

a(s2Y (s) — sy(0) — y'(0)) + b(sY (s) — y(0)) + Y (s) =0

Liy") L(y)

solve for Y (just algebral)

asy(0) + ay'(0) + by(0) as+ 3

Y(s) = =
(%) as? + bs + ¢ as2 +bs+ ¢

where oo = ay(0) and 3 = ay'(0) + by(0)

11



Second Order Systems

so solution of ay” + by +cy =0 is

o \(s) = as? +bs + cis called characteristic polynomial of the system
e form of y = £71(Y) depends on roots of characteristic polynomial

e coefficients of numerator as + 3 come from initial conditions

Ex: RC Circuit

Example: second-order RC circuit

1Q 1€2

MM~
t=0,~ F/“‘.Twwllj—t/
1 1T

at t = 0, the voltage across each capacitor is 1V

e for t > 0, y satisfies LCCODE (from page 2-18)
y' +3y +y=0
e initial conditions:
y(0)=1, y'(0)=0

(at t = 0, voltage across righthand capacitor is one; current through
righthand resistor is zero)

12



Sampling!

ELEC 3004: Systems
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Not this type of sampling ...

SEMINAR REFRESHMENTS!

Caffeine More Carbe
' Caffeine  Gugar  Sfraight C;::s
L Yor your YP sugar SUGBE  camene

Cafteine / rside: the
/ sugar

embedded

in the carb

Nothing says “We are confident this seminar will be intellectually
stimulating for you” like a table full of things fo help you stay awake.

JORGE CHAM D 2013
WWW.PHDCOMICS. COM
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This type of sampling...

5(t)
S.

i

9 10 11 12 13

Source: Wikipedia: http://en.wikipedia.org/wiki/File:Signal_Sampling.png

Analog vs Digital

« Analog Signal: An analog or analogue signal is any variable
signal continuous in both time and amplitude

+ Digital Signal: A digital signal is a signal that is both discrete
and quantized

E.g. Music stored in a
CD: 44,100 Samples

per second and 16 bits
to represent amplitude

14



Digital Signal

» Representation of a signal against a discrete set

The set is fixed in by computing hardware

S

Can be scaled or normalized ... but 1s limited

s € 7(0,...,210)

Time is also discretized

7.(0,...,219)
216

s e

Representation of Signal

« Time Discretization « Digitization

Coarse time discretization

D
(=}
(=}

Coarse signal digitization

ol
o
(=]

'S
[=}
(=]

Expected signal (mV)
N w
o o
o (=}

Expected signal (mV)
w
o
(=]

200}
100 -
True signal 100} True signal
— Discrete time sampled points L
ol — Digitization
0 10 15 0 - L
time (s) 0 5 10 15

time (s)
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Signal: A carrier of (desired) information [1]

* Need NOT be electrical:

» Thermometer
* Clock hands
» Automobile speedometer

* Need NOT always being given
— “Abnormal” sounds/operations
— Ex: “pitch” or “engine hum” during machining as an
indicator for feeds and speeds

Signal: A carrier of (desired) information [2]

« Electrical signals
— Voltage
— Current

 Digital signals
— Convert analog electrical signals to an appropriate
digital electrical message

— Processing by a microcontroller or microprocessor

16



Ex: Current-to-voltage conversion

 simple: * better:
Precision Resistor Use an “op amp”
r— Vmeasured
- R
known

Rknm

V = Rkuone T
Kk\dwn § V== RKnowr\I

Mathematics of Sampling and Reconstruction

sampling reconstruction
X(t t
(t) () DSP Ideal y(®)
LPF
Impulse train Gain
5:()=28(t - nAt) .
t 0 fe I;req
Sampling frequency f, = 1/A4t Cut-off frequency = f,

17



Mathematical Model of Sampling

X:(t)

 X(t) multiplied by impulse train 5T (t)

x(t)o; (t)
X(B)[S(t) + 5 (t— At) + 5(t —2At) +---]
> X(nAt)S(t - nAt)

n

* X (t) is a train of impulses of height X(t)}.=n

Continuous-time
2
1t Y
P e
—~~ / o -
< 00—
~—~_

1 \ ///

-2 L L

-10 8 4 2 0 2 4 6 8 10

t
Discrete-time
2 T . .
17 ‘/7\‘ <‘> \‘/ \‘/
/ o T

= I T [ ¥4 t [ | [

[%) 0 ¥ |
X IS \ | { r

1 RN S

_2 L L L

-10 8 4 2 0 2 4 6 8 10
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Discrete Time Signal

* Image a signal...

! gl [ [N I [ ! m e
Signal
— Digitized Signal
0.5~ B
[}
=}
2
3 or 7
£
<
-0.5~ B
|
1 Lr ¢ i M i e I I e
-8 -6 -4 -2 0 2 4 6

time (s)

Discrete Time Signals

« Digitization helps beat the Noise!

T T
Signal + 5% Gausian Noise
— Digitized Noisy Signal
\ 7 T l

15 T T T T
1 nm m mm N M
0.5+ / ! ,‘ \‘ 1 I | \‘ “ I ‘1 \‘
4
2 \ I L]
= | | J
E‘ o R I f I I
< |
-0.5 | ! I . ! - [‘
. ) 1Y) I,‘ l' lv \J I ‘
15 [ [ [ [
’8 6 -4 2 0
time (s)

N -
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Discrete Time Signals

* But only so much...

15 T T T T T

T
Signal + 20% Gausian Noise

1 ‘A ‘l‘ ‘ i I ) — Digitized Noisy Signal

i T T 1|

05 (" l l ’\ I \‘ { / I

Amplitude

15 L It
8 N -

time (s)

LGl

Discrete Time Signals

« Can make control tricky!

ioi
;

Fle Edt View Insert Tools Desktop Window Help

DeHSE aams (0B 8O0

Step Response

Continuous
TOH Discretization

30 40 50 &0 70
Time (sec)




Signal Manipulations

« Shifting

y (n) =z (n — ng)
» Reversal

y(n) = z(—n)

« Time Scaling
(Down Sampling)

y(M) = z(Mn)

Up Samplin
(Up Sampling) n

y(n) == N

Frequency Domain Analysis of Sampling

 Consider the case where the DSP performs no filtering
operations
— i.e., only passes xc(t) to the reconstruction filter
» To understand we need to look at the frequency domain
» Sampling: we know
— multiplication in time = convolution in frequency
- F{x()} = X(w)
— F{8T(1)} = 28(w - 27n/At),
— i.e., an impulse train in the frequency domain

21



Frequency Domain Analysis of Sampling

* In the frequency domain we have

Xc(w)zi(X(w)*z—”25(W_2_””D Remember
2r At 5 At JJ| convolution with
1 27mn an impulse?
TAt4 X W-— Same idea for an
impulse train

Let’s look at an example
= Where X(w) is triangular function
= with maximum frequency w,, rad/s

= being sampled by an impulse train, of
frequency w, rad/s

Fourier transform of original signal X(w)
(signal spectrum)

Fourier transform of impulse train 6(w/2n) (sampling signal)

FL87(0]

wg = 2m/At 41/At W

0
Fourier transform of sampled signal
X, (o)

convolved with

Original spectrum

VAt spectrum of
**+ | impulse train
W

Original Replica 1 Replica 2

22



Spectrum =« sampled signal

5NN

Original Replica 1 Replica 2
Reconstruction filter (ideal lowpass filter)

H(w)

At

W, W, =W, w

Spectrum of reconstructed signal
Reconstruction filter

X(w) = Hi(@) X (@) removes the replica
spectrums & leaves
only the original

W Wi w

Sampling Frequency

« In this example it was possible to recover the original signal
from the discrete-time samples

 But is this always the case?

 Consider an example where the sampling frequency w; is

reduced
— i.e., At is increased

23



Original Spectrum

-W w

m m

Fourier transform of impulse train (sampling signal)

w

0 2n/At  A4An/At 6r/At
Amplitude spectrum of sampled signal

w

Replica spectrums

T overlap with origina
7| 7N 7N 7\ (and each other)
// \\ // \\ // \\ // \\ This is Aliasing
/ v A A \
/ /7 \ /7 N\ /7 N\ \
original Replica 1 Replica 2 ...

sampled signal

Amplitude sPectrum of sampled signal

7% A I
/7 |\ /7 N\ /7 N\ /7 N\
/ \ / \ / \ / \

/ N7 N/ N/ \
/ v A A \
/ /\ /7 \ /7 \ \
~ 5\ ~ 5\ ~ 5\

spectrum

Original Replica 1 Replica 2 ...
Reconstruction filter (ideal lowpass filter)

A

W, W, =W,
Spectrum of reconstructed signal
The effect of aliasing is
that higher frequencies
of “alias to” (appear as)

lower frequencies

w

Due to overlapping
replicas (aliasing)
the reconstruction
filter cannot recover
the original spectrum

Sy Wi

w
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Sampling Theorem

» The Nyquist criterion states:

To prevent aliasing, a bandlimited signal of bandwidth wg
rad/s must be sampled at a rate greater than 2wg rad/s

—\W, > 2Wg

Note: this is a > sign not a >

Also note: Most real world signals require band-limiting
with a lowpass (anti-aliasing) filter

Time Domain Analysis of Sampling

+ Frequency domain analysis of sampling is very useful to understand
— sampling (X(w)*Y. &w - 27n/4t) )
— reconstruction (lowpass filter removes replicas)
— aliasing (if w, < 2wg)
» Time domain analysis can also illustrate the concepts
— sampling a sinewave of increasing frequency
— sampling images of a rotating wheel

25



Original signal

Discrete-time samples

[ .
|

Reconstructed signal

A signal of the original frequency is reconstructed
U§
il

Original signal

Discrete-time samples

J;LL <Ll

Reconstructed signal

A signal with a reduced frequency is recovered, i.e., the signal is
aliased to a lower frequency (we recover a replica)

26



Sampling < Nyquist = Aliasing

15

signal

¥ [ True signal
—e— Aliased (under sampled) signal
-1.5 L L
0 5 10 15
time

Nvyquist 1s not enough ...

1Hz Sin Wave: Sin@2rt) - 2 Hz Sampling
l T T T 7 T 7 T T T

0.8+ | . ‘ ‘ | .
0.6H | [ | ‘ | N
0.4- .

0.2f- | | ‘ | .

Normalized magnitude
Q —
1

-021 ‘ | .
-0.41 | .
06 | | | “‘ | ‘: ] | | || .
08 ‘ ;‘ .

-1 L L L L L L
0 1 2 3 4 5 6 7

Time(s)
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A little more than Nyquist is not enough ...

1Hz Sin Wave: Sin@2rt) p> 4 Hz Sampling

T T -2 -

Normalized magnitude

Time(s)

Sampled Spectrum w, > 2wm

LPE 4
'Wm W‘m Wy b
orignal replica 1

original freq recovered Original and replica

LSPIégmpled Spectrum wg < 2w, spectrums overlap
i Lower frequency

recovered (Wg — W)

orignal %f—)

replica 1

28



Temporal Aliasing

90° clockwise rotation/frame  270° clockwise rotation/frame
clockwise rotation perceived  (90°) anticlockwise rotation
perceived i.e., aliasing

Require LPF to ‘blur’ motion

Time Domain Analysis of Reconstruction

» Frequency domain: multiply by ideal LPF
— ideal LPF: ‘rect’ function (gain At, cut off w)
— removes replica spectrums, leaves original
» Time domain: this is equivalent to
— convolution with ‘sinc’ function
— as F {At rect(w/w,)} = Atw, sinc(w,t/x)
— i.e., weighted sinc on every sample
« Normally, w, = w2

X, (t) = i X(NAt) Atw, sinc(M)

T

N=—o0




Reconstruction

I*szauzzzs
781

o
[ )
Reconstruction
» Zero-Order Hold [ZOH]
¢
@
® ® o I
’ 9 10 11 12 13
01...1'456781
@
®




Reconstruction

» Whittaker—Shannon interpolation formula

z(t) =300 x[n] -sinc (%)
AX(f)
-B B
Reconstruction

» Whittaker—Shannon interpolation formula

o1 ... i 4

| I’SIOHIZI&'
5 6 73‘.‘1
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Ideal "sinc" Interpolation of sample values [0 0 0.75 1 0.5 0 0]

T T T T T T T

|
\

|\ _—reconstructed signal x(t)

Sampling and Reconstruction
Theory and Practice

+ Signal is bandlimited to bandwidth WB
— Problem: real signals are not bandlimited
« Therefore, require (non-ideal) anti-aliasing filter
+ Signal multiplied by ideal impulse train
— problems: sample pulses have finite width
— and not ® in practice, but sample & hold circuit

« Samples discrete-time, continuous valued

— Problem: require discrete values for DSP
 Therefore, require A/D converter (quantisation)

* Ideal lowpass reconstruction (‘sinc’ interpolation)

— problems: ideal lowpass filter not available
 Therefore, use D/A converter and practical lowpass filter

32



Amplitude (V)

16

‘staircase’ output from D/A converter (ZOH)

o o

14 -

12+

10+

T T T

O  output samples

—— DJA output

Time (sec)

10

Smooth output from reconstruction filter

[— DA output

Amplitude (V)

=
o
T

fee]
T

2 1 1 1

—— Reconstruction filter output

0 2 4 6
Time (sec)

12




Example: error due to signal quantisation

16 T T T T T T T T
—— original signal x(t)
/ \ o quantised samples x(t)
14+ 4
12+ -
10+ -
s
(3]
ER 1
2
£
<
6 | - -
4 i
2+ 4
0
0 1 2 3 4 5 6 7 8 9 10
Sample number
Original Signal After Anti-aliasing LPF After Sample & Hold
/\/\/\ - W W
After Reconstruction LPF After D/IA After A/D
- ollle, ellle o
Complete practical DSP system signals o DSP
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Zero Order Hold (ZOH)

-y

ZOH impulse response

It
0w (©)

ZOH amplitude response

Bis
Bl
=3

Af
S H,, (@)

ZOH phase response

et Bl
=

SN
1=

Finite Width Sampling

« Impulse train sampling not realisable
— sample pulses have finite width (say nanosecs)

This produces two effects,

Impulse train has sinc envelope in frequency domain
— impulse train is square wave with small duty cycle
— Reduces amplitude of replica spectrums

+ smaller replicas to remove with reconstruction filter ©
Averaging of signal during sample time

— effective low pass filter of original signal
« can reduce aliasing, but can reduce fidelity ®
* negligible with most S/H ©
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Aliasing: Another view of this

| ,/\,.,,\ ) /\ (‘\\ I
40\r 1'1\ {‘QJ\ {13\1 !/4 fi }/ ‘\6 / \\lf H \ iv’ 1 1’“
IRTATe \r\‘u[/.w; A
|\}, l\j’ 5\/ .\}/ i\/ V \! \f‘ | /; I
Alliasing

« Aliasing - through sampling, two entirely different analog
sinusoids take on the same “discrete time” identity

For f[k]=cosQk, Q=wT:

The period has to be less than Fh (highest frequency):
Thus: 0<F< "})

o aliased frequency:  wT' = wyT + 2wm




Practical Anti-aliasing Filter

* Non-ideal filter
— WC=Ws /2

* Filter usually 4th — 6th order (e.g., Butterworth)
— so frequencies > wc may still be present
— not higher order as phase response gets worse

* Luckily, most real signals

— are lowpass in nature
« signal power reduces with increasing frequency

— e.0., speech naturally bandlimited (say < 8KHz)
— Natural signals have a (approx) 1/f spectrum
— S0, in practice aliasing is not (usually) a problem

Amplitude spectrum of original signal

W w

-W m

m

Fourier transform of sampling signal (pulses have finite width

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [ / sinc envelop

| ,,,,,,,,,,,,,,, .Zero at harmd
1/duty cycl

] 0 W = 2n/At  Am/At w
Fourier transform of sampled signal

1/At

Original Replical  Replica 2
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Practical Sampling

. Sample and Hold (S/H)
1.  takes a sample every At seconds
2. holds that value constant until next sample

. Produces ‘staircase’ waveform, X(nAt)

sample instant

f/.@ﬁ — X(nAt)

x(t
— ()
- . t
hold for At
Quantisation

» Analogue to digital converter (A/D)
— Calculates nearest binary number to x(nAt)
* Xq[n] = q(x(nAt)), where q() is non-linear rounding fctn
— output modeled as x,[n] = Xx(nAt) + e[n]
*  Approximation process
— therefore, loss of information (unrecoverable)
— known as ‘quantisation noise’ (e[n])
— error reduced as number of bits in A/D increased
* i.e., AX, quantisation step size reduces

AX
< —
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Input-output for 4-bit quantiser
(two’s compliment)

Diaital

where A = max amplitude
m = no. quantisation bits

I.IIHIL(AI

0111

0110

0101 -

0100 !
010

0001 "\ Analogue
0000 quantisation
1111 stepsize

-2/ 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1000

|'_\OHI\)OOJ>O"ICD\J

Signal to Quantisation Noise

* To estimate SQNR we assume
— e[n] is uncorrelated to signal and is a
— uniform random process
« assumptions not always correct!
— not the only assumptions we could make...
* Also known a ‘Dynamic range’ (Rp)
— expressed in decibels (dB)
— ratio of power of largest signal to smallest (noise)

R, =10log,, Bigna
P

noise
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Dynamic Range

Need to estimate:
1. Noise power
— uniform random process: P, ;. = AX?/12 ]
2. Signal power 1 extra bit halves Ax
- (at least) two possible assumptions i 20l0010(1/2) = B
1. sinusoidal: Py, = A%2 -., 20l0g10(1/2) = 6d
2. zero mean Gaussian process: P, = 62
Note: as o = A/3: Pggny = A9
»  where o? = variance, A = signal amplitude

Regardless of assumptions: Ry increases by 6dB
for every bit that is added to the quantiser

Practical Reconstruction

Two stage process:

1. Digital to analogue converter (D/A)
—  zero order hold filter
— produces ‘staircase’ analogue output
2. Reconstruction filter
— non-ideal filter: w, = w,/2
—  further reduces replica spectrums

— usually 4" — 6t order e.g., Butterworth
»  for acceptable phase response
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D/A Converter

» Analogue output y(t) is
— convolution of output samples y(nAt) with hq(t)

y(t) = y(nAt)h,q, (t—nAt)

1, 0<t<At
h,o (t) =
on (1) {0, otherwise
— JwAt \sin(wAt/2)
H,on (W) = Ate
zon (W) Xp( > j WAL/ 2

D/A is lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required

Summary

» Theoretical model of Sampling
— bandlimited signal (wB)
— multiplication by ideal impulse train (ws > 2wB)
« convolution of frequency spectrums (creates replicas)
— ldeal lowpass filter to remove replica spectrums
s WC=Ws/2
+ Sinc interpolation
* Practical systems
— Anti-aliasing filter (wc <ws /2)
— A/D (S/H and quantisation)

— DI/A (ZOH) Don’t confuse
— Reconstruction filter (wc = ws /2) theory and
practice!
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