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Systems as Maps 
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Then a System is a MATRIX 
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1. Linear and nonlinear systems 

2. Constant-parameter and time-varying-parameter systems 

3. Instantaneous (memoryless) and dynamic (with memory) 

systems 

4. Causal and noncausal systems 

5. Continuous-time and discrete-time systems 

6. Analog and digital systems 

7. Invertible and noninvertible systems 

8. Stable and unstable systems 

Recall From Last Time … 
Classifications of Systems 
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• Is one for which the output at any instant t0 depends only on 

the value of the input x(t) for t≤t0 .  Ex: 
 

 

• A “real-time” system must be causals 

– How can it respond to future inputs? 

• A prophetic system: knows future inputs and acts on it (now) 

– The output would begin before t0 

• In some cases Noncausal maybe modelled as causal with delay 

• Noncausal systems provide an upper bound on the performance  of 

causal systems  

Causality: 
Causal (physical or nonanticipative) systems 
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• Causal = The output before some time t does not depend on 

the input after time t. 

Given:  

For: 

 

Then for a T>0: 

 

 

Causality:  
Looking at this from the output’s perspective… 

 if: 

 then:  

Causal Noncausal 

else:  
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• A system with a memory 
– Where past history (or derivative states) are relevant in 

determining the response  

• Ex:  
– RC circuit:  Dynamical  

• Clearly a function of the “capacitor’s past” (initial state) and 

• Time! (charge / discharge)  

– R circuit: is memoryless ∵ the output of the system  

(recall V=IR) at some time t only depends on the input at time t 

 

• Lumped/Distributed  
– Lumped: Parameter is constant through the process  

& can be treated as a “point” in space 

• Distributed: System dimensions ≠ small over signal 
– Ex: waveguides, antennas, microwave tubes, etc. 

Dynamical Systems… 
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• Linear & Time-invariant (of course - tautology!) 

• Impulse response: h(t)=F(δ(t)) 

• Why? 
– Since it is linear the output response (y) to any input (x) is: 

 

 

 

 

• The output of any continuous-time LTI system is the convolution of 

input u(t) with the impulse response F(δ(t)) of the system. 

 

Linear Time Invariant  

LTI 

h(t)=F(δ(t)) u(t) y(t)=u(t)*h(t) 
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≡ LTI systems for which the input & output are linear ODEs 

 

 

 

 

 

 

 

• Total response = Zero-input response + Zero-state response 

Linear Dynamic [Differential] System 

Initial conditions External Input 
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• Linear system described by differential equation 

Linear Systems and ODE’s 

• Which using Laplace Transforms can be written as 
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where A(s) and B(s) are polynomials in s 
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• δ(t): Impulsive excitation 

• h(t): characteristic mode terms 

Unit Impulse Response 

LTI 

F(δ(t)) δ(t) h(t)=F(δ(t)) 

Ex: 
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• Various things – all the same! 

System Models 
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Circuits 

R2 C1 +

 –
C2

Vin
Vout
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Motors 
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Mechanical Systems 
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Thermal Systems 
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First Order Systems 
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First Order Systems 
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First Order Systems 
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First Order Systems 
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Second Order Systems 
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Second Order Systems 
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Ex: RC Circuit 
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Sampling! 
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Not this type of sampling … 
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This type of sampling… 

Source: Wikipedia: http://en.wikipedia.org/wiki/File:Signal_Sampling.png 
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• Analog Signal: An analog or analogue signal is any variable 

signal continuous in both time and amplitude  

 

 

 

• Digital Signal: A digital signal is a signal that is both discrete 

and quantized  

Analog vs Digital 

E.g. Music stored in a 

CD: 44,100 Samples 

per second and 16 bits 

to represent amplitude  
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• Representation of a signal against a discrete set 

 

• The set is fixed in by computing hardware 

 

• Can be scaled or normalized … but is limited 

 

 

• Time is also discretized 

 

Digital Signal 
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Representation of Signal 

• Time Discretization • Digitization 
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Signal: A carrier of (desired) information [1] 

• Need NOT be electrical: 
• Thermometer 

• Clock hands  

• Automobile speedometer 

 

 

• Need NOT always being given 

– “Abnormal” sounds/operations 

– Ex: “pitch” or “engine hum” during machining as an  

indicator for feeds and speeds 
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Signal: A carrier of (desired) information [2] 

• Electrical signals 

– Voltage 

– Current 

 

 

•  Digital signals 

– Convert analog electrical signals to an appropriate 

digital electrical message 

– Processing by a microcontroller or microprocessor 
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Ex: Current-to-voltage conversion 

• simple:  

Precision Resistor  

 

 

 

• better:  

Use an “op amp” 
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Mathematics of Sampling and Reconstruction 

DSP 
Ideal 

LPF 

x(t)          xc(t) y(t) 

Impulse train  

T(t)= (t - nt) 

… … 
t 

Sampling frequency fs = 1/t  

Gain 

fc           Freq 

1 

 

 

0 

Cut-off frequency = fc 

reconstruction sampling 
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• x(t) multiplied by impulse train T(t) 

Mathematical Model of Sampling 

• xc(t) is a train of impulses of height x(t)|t=nt 
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• Image a signal… 

Discrete Time Signal 
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• Digitization helps beat the Noise! 

Discrete Time Signals 
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• But only so much… 

Discrete Time Signals 
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• Can make control tricky! 

Discrete Time Signals 
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• Shifting 

 

 

• Reversal 

 

 

• Time Scaling 
(Down Sampling) 

 

 

(Up Sampling) 

Signal Manipulations 
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• Consider the case where the DSP performs no filtering 

operations 
– i.e., only passes xc(t) to the reconstruction filter 

• To understand we need to look at the frequency domain 

• Sampling: we know  
– multiplication in time  convolution in frequency 

– F{x(t)} = X(w) 

– F{T(t)} = (w - 2n/t),  

– i.e., an impulse train in the frequency domain 

Frequency Domain Analysis of Sampling 
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• In the frequency domain we have 

Frequency Domain Analysis of Sampling 
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 Let’s look at an example 
 where X(w) is triangular function 

 with maximum frequency wm rad/s 

 being sampled by an impulse train, of 
frequency ws rad/s 

Remember 

convolution with 

an impulse? 

Same idea for an 

impulse train 
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Fourier transform of original signal X(ω)  
(signal spectrum) 

w 

… … 

Fourier transform of impulse train T(/2) (sampling signal) 

0                ws = 2/t              4/t  

Original spectrum 

convolved with 

spectrum of 

impulse train … 

Fourier transform of sampled signal 

w 

… 

 Original         Replica 1        Replica 2 

1/t  
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Spectrum of sampled signal 

Spectrum of reconstructed signal 

w -wm          wm 

Reconstruction filter 

removes the replica  

spectrums & leaves 

only the original 

Reconstruction filter (ideal lowpass filter) 

w   -wc          wc = wm 

t 

… 

w 

… 

 Original         Replica 1        Replica 2 

1/t 

18 March 2014 - ELEC 3004: Systems 45 

• In this example it was possible to recover the original signal 

from the discrete-time samples 

• But is this always the case? 

• Consider an example where the sampling frequency ws is 

reduced  
– i.e., t  is increased 

Sampling Frequency 
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Original Spectrum 

w -wm          wm 

Replica spectrums 

overlap with original 

(and each other) 

This is Aliasing 

w 

… … 

Fourier transform of impulse train (sampling signal) 

0      2/t     4/t   6/t  

… 

Amplitude spectrum of sampled signal 

w 

… 

 Original Replica 1 Replica 2 … 18 March 2014 - ELEC 3004: Systems 47 

Amplitude spectrum of sampled signal 

Due to overlapping 

replicas (aliasing)  

the reconstruction  

filter cannot recover 

the original spectrum 

Reconstruction filter (ideal lowpass filter) 

w   -wc          wc = wm 

Spectrum of reconstructed signal 

w -wm          wm 

… 

w 

… 

 Original Replica 1 Replica 2 … 

sampled signal 

spectrum 

The effect of aliasing is 

that higher frequencies 

of “alias to” (appear as)  

lower  frequencies  
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• The Nyquist criterion states: 

To prevent aliasing, a bandlimited signal of bandwidth wB 

rad/s must be sampled at a rate greater than 2wB rad/s 

–ws > 2wB 

Sampling Theorem 

Note: this is a > sign not a  

Also note: Most real world signals require band-limiting 

with a lowpass (anti-aliasing) filter 
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• Frequency domain analysis of sampling is very useful to understand  
– sampling (X(w)* (w - 2n/t) )  

– reconstruction (lowpass filter removes replicas) 

– aliasing (if ws  2wB) 

• Time domain analysis can also illustrate the concepts 
– sampling a sinewave of increasing frequency 

– sampling images of a rotating wheel 

Time Domain Analysis of Sampling 
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Original signal 

Discrete-time samples 

Reconstructed signal 

A signal of the original frequency is reconstructed 
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Original signal 

Discrete-time samples 

Reconstructed signal 

A signal with a reduced frequency is recovered, i.e., the signal is  

aliased to a lower frequency (we recover a replica) 
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Sampling < Nyquist  Aliasing 
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Nyquist is not enough … 
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A little more than Nyquist is not enough … 

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
1Hz Sin Wave: Sin(2t)  4 Hz Sampling

Time(s)

N
o
rm

a
li
z

e
d

 m
a
g

n
it
u

d
e

18 March 2014 - ELEC 3004: Systems 55 

Sampled Spectrum ws > 2wm 

w -wm          wm            ws 

orignal               replica 1        … 

… 

LPF 

original freq recovered 

Sampled Spectrum ws < 2wm 

w -wm          wmws 

… 

orignal                                  …  

replica 1 

LPF 

Original and replica  
spectrums overlap 

Lower frequency  

recovered (ws – wm) 
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Temporal Aliasing 

90o clockwise rotation/frame 

clockwise rotation perceived 

270o clockwise rotation/frame 

(90o) anticlockwise rotation  

perceived i.e., aliasing 

Require LPF to ‘blur’ motion 
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• Frequency domain: multiply by ideal LPF 
– ideal LPF: ‘rect’ function (gain t, cut off wc) 
– removes replica spectrums, leaves original 

• Time domain: this is equivalent to 
– convolution with ‘sinc’ function 
– as F 

-1
{t  rect(w/wc)} = t wc sinc(wct/) 

– i.e., weighted sinc on every sample 

• Normally, wc = ws/2 

Time Domain Analysis of Reconstruction 
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Reconstruction 
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• Zero-Order Hold [ZOH] 

Reconstruction 
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• Whittaker–Shannon interpolation formula 

Reconstruction 
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• Whittaker–Shannon interpolation formula 

 

Reconstruction 
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• Signal is bandlimited to bandwidth WB 
– Problem: real signals are not bandlimited 

• Therefore, require (non-ideal) anti-aliasing filter 

• Signal multiplied by ideal impulse train 
– problems: sample pulses have finite width 

– and not  in practice, but sample & hold circuit 

• Samples discrete-time, continuous valued 
– Problem: require discrete values for DSP 

• Therefore, require A/D converter (quantisation) 

• Ideal lowpass reconstruction (‘sinc’ interpolation) 
– problems: ideal lowpass filter not available 

• Therefore, use D/A converter and practical lowpass filter 

 
Sampling and Reconstruction  
Theory and Practice 
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Smooth output from reconstruction filter 
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Original Signal After Anti-aliasing LPF After Sample & Hold

After Reconstruction LPF After A/DAfter D/A

Complete practical DSP system signals DSP 
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Zero Order Hold (ZOH) 

ZOH impulse response 

ZOH amplitude response 

ZOH phase response 
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• Impulse train sampling not realisable 
– sample pulses have finite width (say nanosecs) 

• This produces two effects, 

• Impulse train has sinc envelope in frequency domain 
– impulse train is square wave with small duty cycle 

– Reduces amplitude of replica spectrums 
• smaller replicas to remove with reconstruction filter  

• Averaging of signal during sample time 
– effective low pass filter of original signal 

• can reduce aliasing, but can reduce fidelity  

• negligible with most S/H  

Finite Width Sampling 
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Aliasing: Another view of this 
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• Aliasing - through sampling, two entirely different analog 

sinusoids take on the same “discrete time” identity 

 

For f[k]=cosΩk,   Ω=ωT: 

 

The period has to be less than Fh (highest frequency): 

 

Thus: 

ωf: aliased frequency: 

 

 

 

 

Alliasing 
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• Non-ideal filter 
– wc = ws /2 

• Filter usually 4th – 6th order (e.g., Butterworth) 
– so frequencies > wc may still be present 

– not higher order as phase response gets worse 

• Luckily, most real signals 
– are lowpass in nature 

• signal power reduces with increasing frequency 

– e.g., speech naturally bandlimited (say < 8KHz) 

– Natural signals have a (approx) 1/f spectrum 

– so, in practice aliasing is not (usually) a problem 

Practical Anti-aliasing Filter 
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Amplitude spectrum of original signal 

w -wm          wm 

… 

Fourier transform of sampled signal 

w 

… 

 Original         Replica 1        Replica 2 

1/t  

w 

… … 

Fourier transform of sampling signal (pulses have finite width) 

0                ws = 2/t              4/t  

sinc envelope 

Zero at harmonic 

1/duty cycle 
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• Sample and Hold (S/H) 
1. takes a sample every t seconds 
2. holds that value constant until next sample 

• Produces ‘staircase’ waveform, x(nt) 

Practical Sampling 

t 

x(t) 

hold for t 

sample instant 

x(nt) 
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• Analogue to digital converter (A/D) 
– Calculates nearest binary number to x(nt) 

• xq[n] = q(x(nt)), where q() is non-linear rounding fctn 

– output modeled as xq[n] = x(nt) + e[n]  

•  Approximation process 
– therefore, loss of information (unrecoverable) 
– known as ‘quantisation noise’ (e[n])  
– error reduced as number of bits in A/D increased 

• i.e., x, quantisation step size reduces 

 

Quantisation 

2
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

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Input-output for 4-bit quantiser  
(two’s compliment) 

Analogue 

Digital 
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A
x

where A = max amplitude 

m = no. quantisation bits 
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• To estimate SQNR we assume 
– e[n] is uncorrelated to signal and is a  

– uniform random process  

• assumptions not always correct! 
– not the only assumptions we could make… 

• Also known a ‘Dynamic range’ (RD) 
– expressed in decibels (dB) 

– ratio of power of largest signal to smallest (noise) 

Signal to Quantisation Noise 
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Need to estimate: 

1. Noise power 
– uniform random process: Pnoise = x2/12 

2. Signal power 
– (at least) two possible assumptions 
1. sinusoidal: Psignal = A2/2 
2. zero mean Gaussian process: Psignal = 2 

• Note: as   A/3: Psignal  A2/9 

• where 2 = variance, A = signal amplitude 

Dynamic Range 

Regardless of assumptions: RD increases by 6dB 

for every bit that is added to the quantiser 

1 extra bit halves x 

i.e., 20log10(1/2) = 6dB 
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Two stage process: 

1. Digital to analogue converter (D/A) 
– zero order hold filter 
– produces ‘staircase’ analogue output 

2. Reconstruction filter 
– non-ideal filter: wc = ws /2 
– further reduces replica spectrums 
– usually 4th – 6th order e.g., Butterworth  

• for acceptable phase response 

Practical Reconstruction 
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• Analogue output y(t) is  
– convolution of output samples y(nt) with hZOH(t)  

D/A Converter 
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D/A is lowpass filter with sinc type frequency response 

It does not completely remove the replica spectrums 

Therefore, additional reconstruction filter required 
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• Theoretical model of Sampling 
– bandlimited signal (wB) 

– multiplication by ideal impulse train (ws > 2wB) 
• convolution of frequency spectrums (creates replicas) 

– Ideal lowpass filter to remove replica spectrums 
• wc = ws /2 

• Sinc interpolation 

• Practical systems 
– Anti-aliasing filter (wc < ws /2) 

– A/D (S/H and quantisation) 

– D/A (ZOH) 

– Reconstruction filter (wc = ws /2) 

Summary 

Don’t confuse  

theory and  

practice! 
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