

Sampling & Data Acquisition & Antialiasing Filters

ELEC 3004: **Digital Linear Systems**: Signals & Controls Dr. Surya Singh

Lecture 3

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

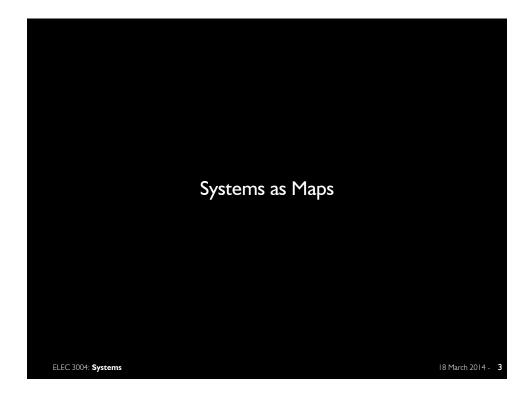
March 18, 2014

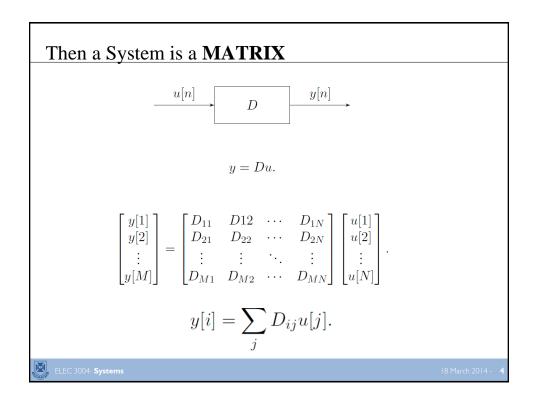
2014 School of Information Technology and Electrical Engineering at The University of Queensland

(CC)) BY-NC-SA

Week	chedi	Lecture Title
	4-Mar	Introduction & Systems Overview
1	6-Mar	[Linear Dynamical Systems]
2	11-Mar	Signals as Vectors & Systems as Maps
2	13-Mar	[Signals]
3	18-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	20-Mar	[Discrete Signals]
4		Filter Analysis & Filter Design
7	27-Mar	
5		Digital Filters
		[Digital Filters]
6		Discrete Systems & Z-Transforms
		[Z-Transforms]
7	- · ·	Convolution & FT & DFT
		Frequency Response
8		Introduction to Control
		[Feedback]
9		Introduction to Digital Control
		[Digitial Control]
10		Stability of Digital Systems [Stability]
11		State-Space Controllability & Observability
		PID Control & System Identification
12		Digitial Control System Hardware
		Applications in Industry & Information Theory & Communications
13		Summary and Course Review

1





Recall From Last Time ...

Classifications of Systems

- 1. Linear and nonlinear systems
- 2. Constant-parameter and time-varying-parameter systems
- 3. Instantaneous (memoryless) and dynamic (with memory) systems
- 4. Causal and noncausal systems
- 5. Continuous-time and discrete-time systems
- 6. Analog and digital systems
- 7. Invertible and noninvertible systems
- 8. Stable and unstable systems

ELEC 3004: Systems

10 Manah 2014

Causality:

Causal (physical or nonanticipative) systems

• Is one for which the output at any instant t_0 depends only on the value of the input x(t) for $t \le t_0$. Ex:

 $u\left(t\right)=x\left(t-2\right)\Rightarrow\mathsf{causal}$

 $u(t) = x(t-2) + x(t+2) \Rightarrow \text{noncausal}$

- A "real-time" system must be causals
 - How can it respond to future inputs?
- A prophetic system: knows future inputs and acts on it (now)
 - The output would begin before t_0
- In some cases Noncausal maybe modelled as causal with delay
- Noncausal systems provide an upper bound on the performance of causal systems

ELEC 3004: Systems

Causality:

Looking at this from the output's perspective...

• **Causal** = The output *before* some time *t* does not depend on the input *after* time t.

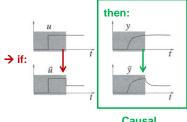
Given: y(t) = F(u(t))

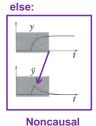
For:

$$\widehat{u}(t) = u(t), \forall 0 \le t < T \text{ or } [0, T)$$

Then for a T>0:

$$\rightarrow \hat{y}(t) = y(t), \ \forall 0 \le t < T$$





Causal

ELEC 3004: Systems

Dynamical Systems...

- A system with a memory
 - Where past history (or derivative states) are **relevant** in determining the response
- Ex:
 - RC circuit: Dynamical
 - Clearly a function of the "capacitor's past" (initial state) and
 - Time! (charge / discharge)
 - R circuit: is memoryless : the output of the system (recall V=IR) at some time t only depends on the input at time t
- Lumped/Distributed
 - Lumped: Parameter is constant through the process & can be treated as a "point" in space
- Distributed: System dimensions ≠ small over signal
 - Ex: waveguides, antennas, microwave tubes, etc.

Linear Time Invariant

$$\begin{array}{c|c}
 & LTI \\
 & h(t) = F(\delta(t)) \\
\hline
 & y(t) = u(t) * h(t)
\end{array}$$

- Linear & Time-invariant (of course tautology!)
- Impulse response: $\mathbf{h}(t) = \mathbf{F}(\boldsymbol{\delta}(t))$
- · Why?
 - Since it is linear the output response (y) to any input (x) is:

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau$$

$$y(t) = F \left[\int_{-\infty}^{\infty} x(\tau) \, \delta(t - \tau) \, d\tau \right] \stackrel{linear}{\to} \int_{-\infty}^{\infty} x(\tau) \, F \left[\delta(t - \tau) \right] \, d\tau$$

$$h(t - \tau) \stackrel{TI}{=} F \left[\delta(t - \tau) \right]$$

$$\Rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau) \, h(t - \tau) \, d\tau = x(t) * h(t)$$

• The output of any continuous-time LTI system is the <u>convolution</u> of input $\mathbf{u}(t)$ with the impulse response $\mathbf{F}(\boldsymbol{\delta}(t))$ of the system.

ELEC 3004: Systems

8 March 2014 - 9

Linear Dynamic [Differential] System

≡ LTI systems for which the input & output are linear ODEs

$$a_0y + a_1\frac{dy}{dt} + \dots + a_n\frac{d^ny}{dt^n} = b_0x + b_1\frac{dx}{dt} + \dots + b_m\frac{d^mx}{dt^m}$$

Laplace:

$$a_0Y(s) + a_1sY(s) + \dots + a_ns^nY(s) = b_0X(s) + b_1sX(s) + \dots + b_ms^mX(s)$$

 $A(s)Y(s) = B(s)X(s)$

• Total response = Zero-input response + Zero-state response

Initial conditions

External Input

Linear Systems and ODE's

• Linear system described by differential equation

$$a_0 y + a_1 \frac{dy}{dt} + \dots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \dots + b_m \frac{d^m x}{dt^m}$$

· Which using Laplace Transforms can be written as

$$a_0Y(s) + a_1sY(s) + \dots + a_ns^nY(s) = b_0X(s) + b_1sX(s) + \dots + b_ms^mX(s)$$

 $A(s)Y(s) = B(s)X(s)$

where A(s) and B(s) are polynomials in s



Unit Impulse Response

- δ (t): Impulsive excitation
- h(t): characteristic mode terms

 $\left(D^2 + 3D + 2\right)y(t) = Dx(t)$

This is a second-order system (N = 2) having the characteristic polynomial $\left(\lambda^2+3\lambda+2\right)=(\lambda+1)(\lambda+2)$

(2.26a)Differentiation of this equation yields

 $\dot{y}_n(t) = -c_1 e^{-t} - 2c_2 e^{-2t}$ The initial conditions are [see Eq. (2.24b) for N = 2] $\dot{y}_{a}(0) = 1$ and $y_{a}(0) = 0$

Solution of these two simultaneous equations yields $c_1=1$ and $c_2=-1$

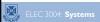
Moreover, according to Eq. (2.25), P(D) = D, so that $P(D)y_{\rm R}(t) = Dy_{\rm R}(t) = \dot{y}_{\rm R}(t) = -e^{-t} + 2e^{-2t}$

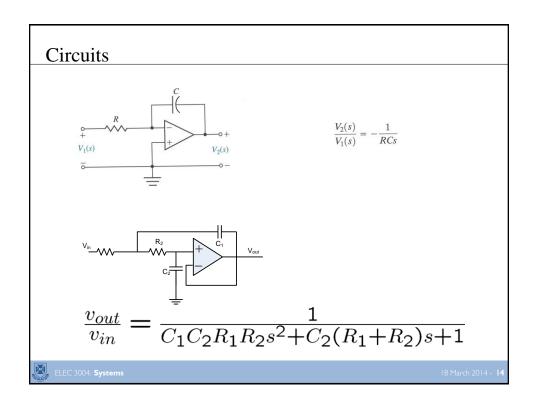
Also in this case, b_0 = 0 [the second-order term is absorbed] $h(t) = [P(D)y_s(t)]u(t) = (-e^{-t} + 2e^{-2t})u(t)$

System Models

• Various things – all the same!

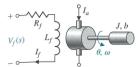
Table 2.1	Summary of Thro	ough- and Acro	ss-Variables for F	Physical Systems
System	Variable Through Element	Integrated Through- Variable	Variable Across Element	Integrated Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, O	Volume, V	Pressure difference, P ₂₁	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathcal{T}_{21}	





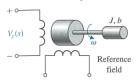
Motors

5. DC motor, field-controlled, rotational actuator



$$\frac{\theta(s)}{V_f(s)} = \frac{K_m}{s(Js+b)(L_fs+R_f)}$$

7. AC motor, two-phase control field, rotational actuator



$$\frac{\theta(s)}{V_c(s)} = \frac{K_m}{s(\tau s + 1)}$$
$$\tau = J/(b - m)$$

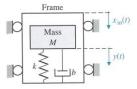
m =slope of linearized torque-speed curve (normally negative)



18 March 2014 - 15

Mechanical Systems

15. Accelerometer, acceleration sensor



$$\begin{aligned} x_{\rm o}(t) &= y(t) - x_{\rm in}(t), \\ \frac{X_{\rm o}(s)}{X_{\rm in}(s)} &= \frac{-s^2}{s^2 + (b/M)s + k/M} \end{aligned}$$

$$X_{in}(s)$$
 $s^2 + (b/M)s + k/M$
For low-frequency oscillations, where

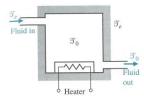
$$\omega < \omega_n$$
,

$$\frac{X_{\rm o}(j\omega)}{X_{\rm in}(j\omega)} \simeq \frac{\omega^2}{k/M}$$

ELEC 3004: Systems

Thermal Systems

16. Thermal heating system



$$\frac{\mathcal{I}(s)}{q(s)} = \frac{1}{C_t s + (QS + 1/R_t)}$$
, where

$$\mathcal{T} = \mathcal{T}_{\rm o} - \mathcal{T}_{\rm e} = {\rm temperature\ difference} \ {\rm due\ to\ thermal\ process}$$

 C_t = thermal capacitance

Q =fluid flow rate = constant

S = specific heat of water

 R_t = thermal resistance of insulation

q(s) = transform of rate of heat flow of heating element

10 Manah 2014 | 17

First Order Systems

First order systems

$$ay' + by = 0$$
 (with $a \neq 0$)

righthand side is zero:

- called autonomous system
- solution is called natural or unforced response

can be expressed as

$$Ty' + y = 0 \quad \text{or} \quad y' + ry = 0$$

where

- T = a/b is a *time* (units: seconds)
- r = b/a = 1/T is a rate (units: 1/sec)

First Order Systems

Solution by Laplace transform

take Laplace transform of $Ty^{\prime}+y=0$ to get

$$T(\underbrace{sY(s) - y(0)}_{\mathcal{L}(y')}) + Y(s) = 0$$

solve for Y(s) (algebra!)

$$Y(s) = \frac{Ty(0)}{sT+1} = \frac{y(0)}{s+1/T}$$

and so $y(t)=y(0)e^{-t/T}$

18 March 2014 - 19

First Order Systems

solution of Ty' + y = 0: $y(t) = y(0)e^{-t/T}$

if T > 0, y decays exponentially

- \bullet T gives time to decay by $e^{-1} \approx 0.37$
- 0.693T gives time to decay by half $(0.693 = \log 2)$
- 4.6T gives time to decay by 0.01 ($4.6 = \log 100$)

if T < 0, y grows exponentially

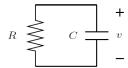
- |T| gives time to grow by $e \approx 2.72$;
- 0.693|T| gives time to double
- \bullet 4.6|T| gives time to grow by 100

ELEC 3004: Systems

First Order Systems

Examples

simple RC circuit:



circuit equation: RCv'+v=0

solution: $v(t) = v(0)e^{-t/(RC)}$

population dynamics:

- ullet y(t) is population of some bacteria at time t
- \bullet growth (or decay if negative) rate is y'=by-dy where b is birth rate, d is death rate
- $y(t) = y(0)e^{(b-d)t}$ (grows if b > d; decays if b < d)

18 March 2014 - **21**

Second Order Systems

Second order systems

$$ay'' + by' + cy = 0$$

assume a>0 (otherwise multiply equation by -1)

solution by Laplace transform:

$$a(\underbrace{s^2Y(s)-sy(0)-y'(0)}_{\mathcal{L}(y'')})+b(\underbrace{sY(s)-y(0)}_{\mathcal{L}(y')})+cY(s)=0$$

solve for Y (just algebra!)

$$Y(s) = \frac{asy(0) + ay'(0) + by(0)}{as^2 + bs + c} = \frac{\alpha s + \beta}{as^2 + bs + c}$$

where $\alpha = ay(0)$ and $\beta = ay'(0) + by(0)$

Second Order Systems

so solution of ay'' + by' + cy = 0 is

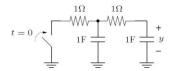
$$y(t) = \mathcal{L}^{-1} \left(\frac{\alpha s + \beta}{as^2 + bs + c} \right)$$

- $\chi(s) = as^2 + bs + c$ is called *characteristic polynomial* of the system
- ullet form of $y=\mathcal{L}^{-1}(Y)$ depends on roots of characteristic polynomial χ
- ullet coefficients of numerator lpha s + eta come from initial conditions

18 March 2014 - **23**

Ex: RC Circuit

Example: second-order RC circuit



at t=0, the voltage across each capacitor is $1\mathrm{V}$

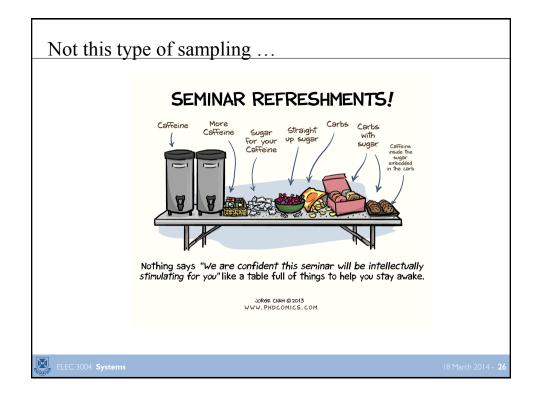
ullet for $t\geq 0$, y satisfies LCCODE (from page 2-18)

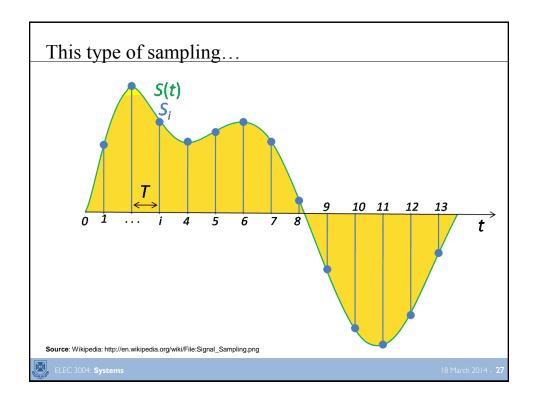
$$y'' + 3y' + y = 0$$

initial conditions:

$$y(0) = 1, \quad y'(0) = 0$$

(at t=0, voltage across righthand capacitor is one; current through righthand resistor is zero)





Analog vs Digital

• Analog Signal: An analog or analogue signal is any variable signal continuous in both time and amplitude

• Digital Signal: A digital signal is a signal that is both discrete and quantized

E.g. Music stored in a CD: 44,100 Samples per second and 16 bits to represent amplitude

ELEC 3004: Systems

10 Manala 2014 - 20

Digital Signal

- Representation of a signal against a discrete set
- The set is fixed in by computing hardware

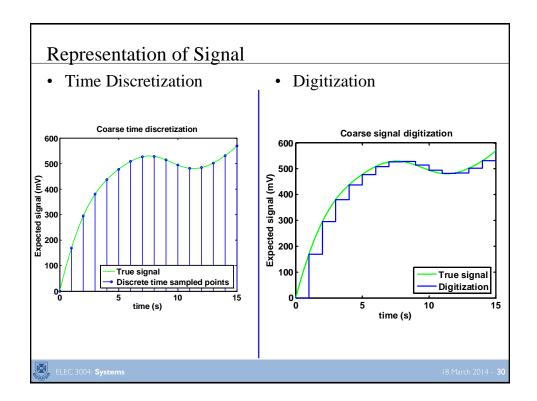
$$s \in \mathbb{Z}$$

 $s \in \mathbb{Z}$ Can be scaled or normalized ... but is limited

$$s \in \mathbb{Z}(0,\ldots,2^{16})$$

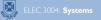
Time is also discretized

$$s' \in \frac{\mathbb{Z}(0,\dots,2^{16})}{2^{16}}$$



Signal: A carrier of (desired) information [1]

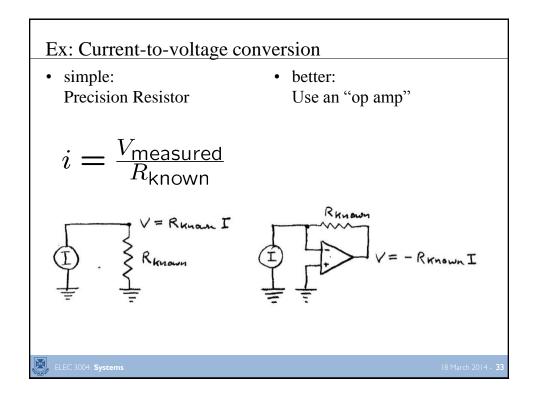
- Need **NOT** be electrical:
 - Thermometer
 - · Clock hands
 - Automobile speedometer
- Need **NOT** always being given
 - "Abnormal" sounds/operations
 - Ex: "pitch" or "engine hum" during machining as an indicator for feeds and speeds

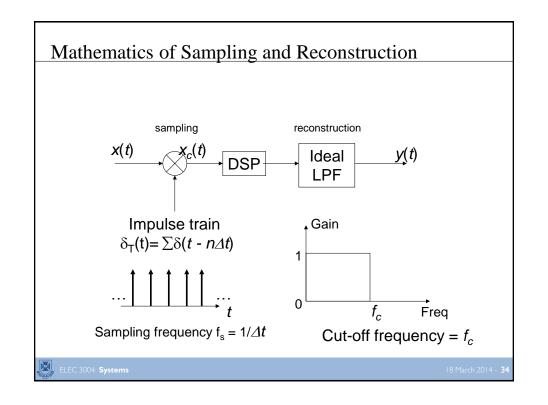


18 March 2014 - 3

Signal: A carrier of (desired) information [2]

- Electrical signals
 - Voltage
 - Current
- Digital signals
 - Convert analog electrical signals to an appropriate digital electrical message
 - Processing by a microcontroller or microprocessor



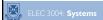


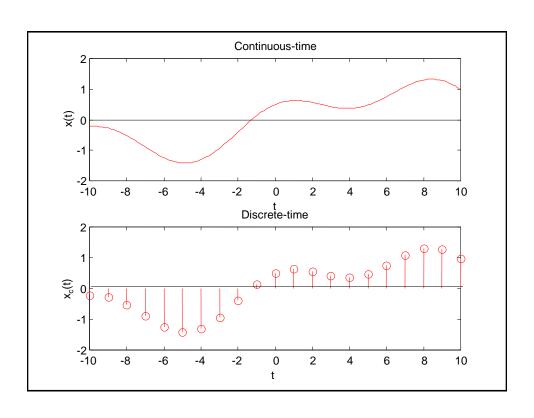
Mathematical Model of Sampling

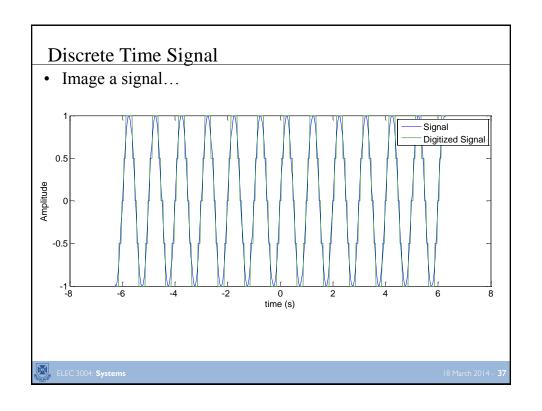
• x(t) multiplied by impulse train $\delta T(t)$

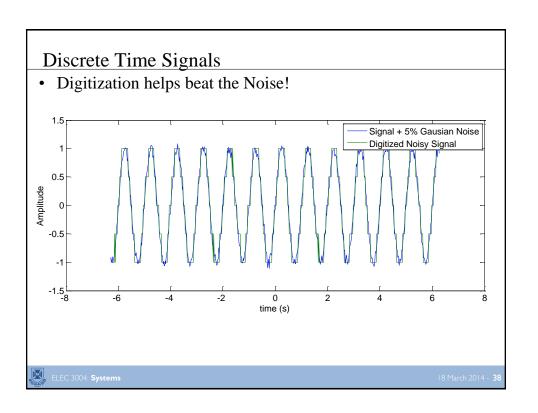
$$\begin{aligned} x_c(t) &= & x(t)\delta_T(t) \\ &= & x(t)\big[\delta(t) + \delta(t - \Delta t) + \delta(t - 2\Delta t) + \cdots\big] \\ &= & \sum_n x(n\Delta t)\delta(t - n\Delta t) \end{aligned}$$

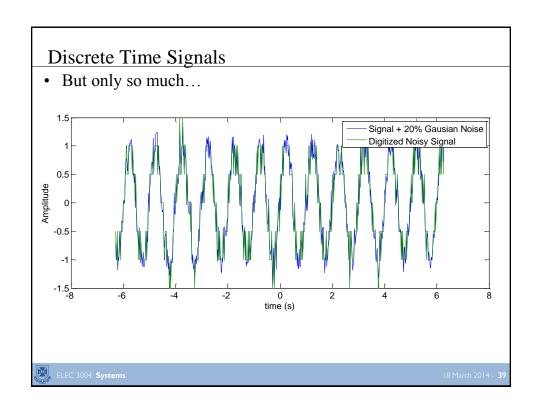
• $x_c(t)$ is a train of impulses of height $x(t)|_{t=n\Delta t}$

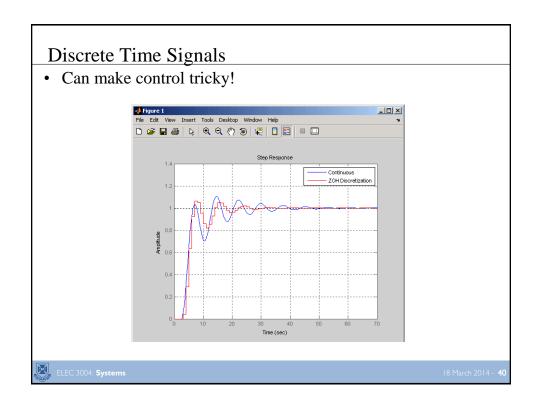












Signal Manipulations

• Shifting

$$y\left(n\right) = x\left(n - n_0\right)$$

Reversal

$$y(n) = x(-n)$$

• Time Scaling (Down Sampling)

$$y(M) = x(Mn)$$

(Up Sampling)

$$y(n) = x\left(\frac{n}{N}\right)$$

ELEC 3004: Systems

18 March 2014 - **4**

Frequency Domain Analysis of Sampling

- Consider the case where the DSP performs no filtering operations
 - i.e., only passes xc(t) to the reconstruction filter
- To understand we need to look at the frequency domain
- Sampling: we know
 - multiplication in time \equiv convolution in frequency
 - $F\{x(t)\} = X(w)$
 - $\ F\{\delta T(t)\} = \sum \! \delta(w 2\pi n/\Delta t),$
 - i.e., an impulse train in the frequency domain

ELEC 3004: Systems

10 Manuala 2014 - 42

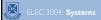
Frequency Domain Analysis of Sampling

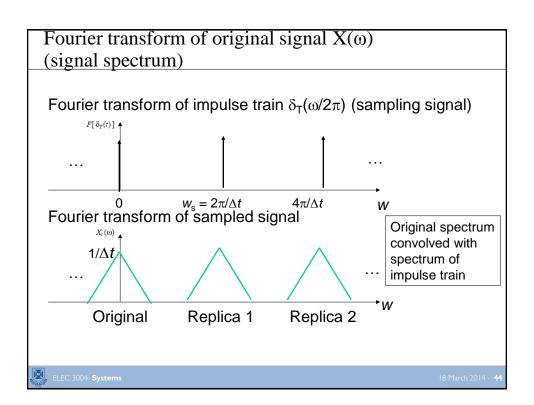
• In the frequency domain we have

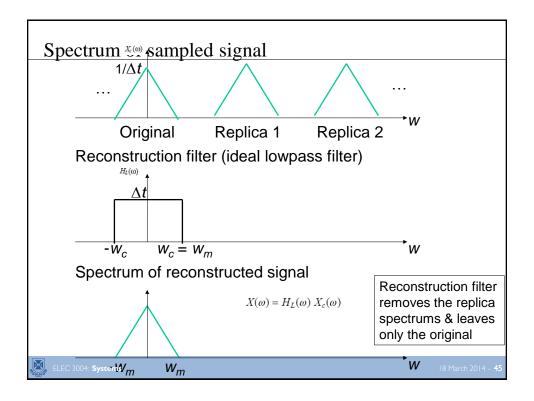
$$X_{c}(w) = \frac{1}{2\pi} \left(X(w) * \frac{2\pi}{\Delta t} \sum_{n} \delta \left(w - \frac{2\pi n}{\Delta t} \right) \right)$$
$$= \frac{1}{\Delta t} \sum_{n} X \left(w - \frac{2\pi n}{\Delta t} \right)$$

Remember convolution with an impulse?
Same idea for an impulse train

- Let's look at an example
 - where X(w) is triangular function
 - with maximum frequency w_m rad/s
 - being sampled by an impulse train, of frequency w_s rad/s

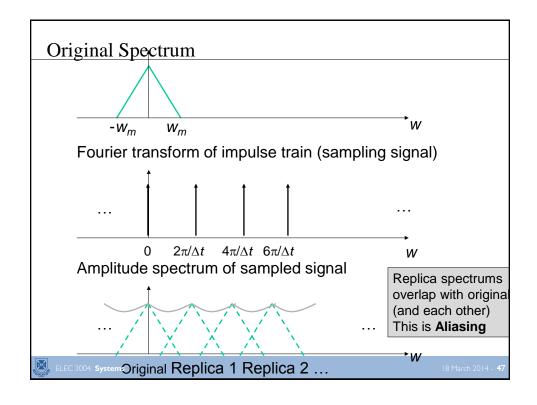


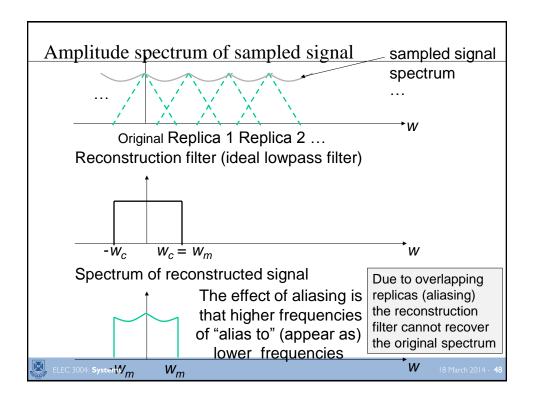




Sampling Frequency

- In this example it was possible to recover the original signal from the discrete-time samples
- But is this always the case?
- Consider an example where the sampling frequency w_s is reduced
 - i.e., Δt is increased





Sampling Theorem

• The Nyquist criterion states:

To prevent aliasing, a **bandlimited** signal of bandwidth w_B rad/s must be sampled at a rate greater than $2w_B$ rad/s

$$-w_s > 2w_B$$

Note: this is a > sign not a ≥

Also note: Most real world signals require band-limiting with a lowpass (anti-aliasing) filter

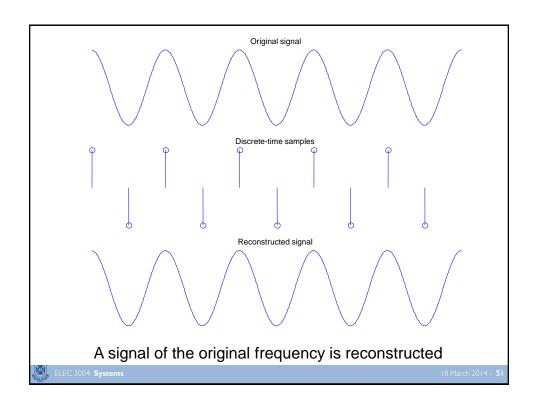
18 March 2014 - 4

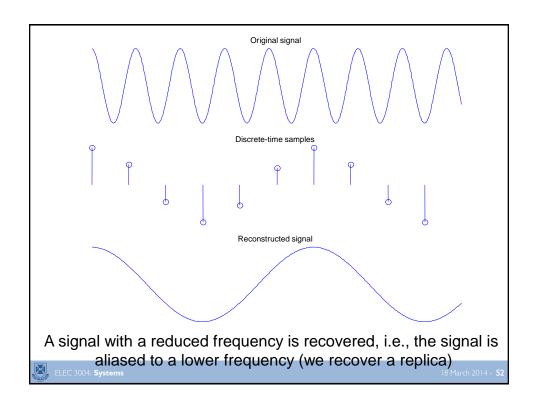
Time Domain Analysis of Sampling

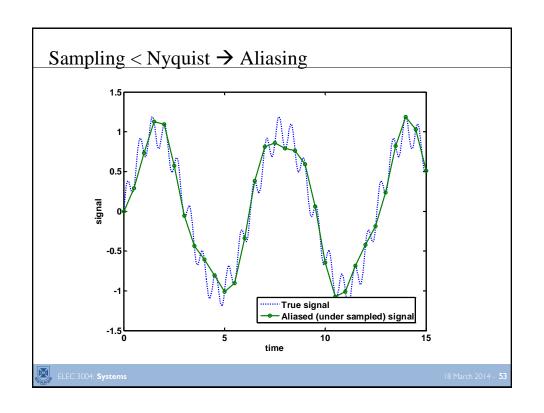
- · Frequency domain analysis of sampling is very useful to understand
 - sampling $(X(w)*\sum \delta(w 2\pi n/\Delta t))$
 - reconstruction (lowpass filter removes replicas)
 - aliasing (if $w_s \le 2w_B$)
- Time domain analysis can also illustrate the concepts
 - sampling a sinewave of increasing frequency
 - sampling images of a rotating wheel

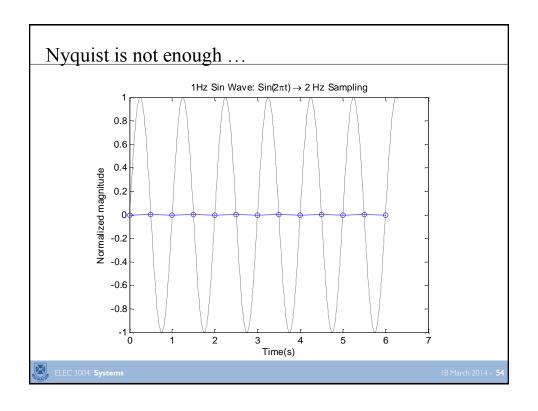
ELEC 3004: Systems

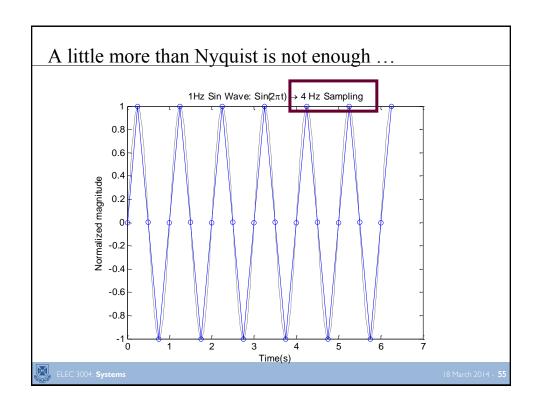
10 Marrie 2014 - **FO**

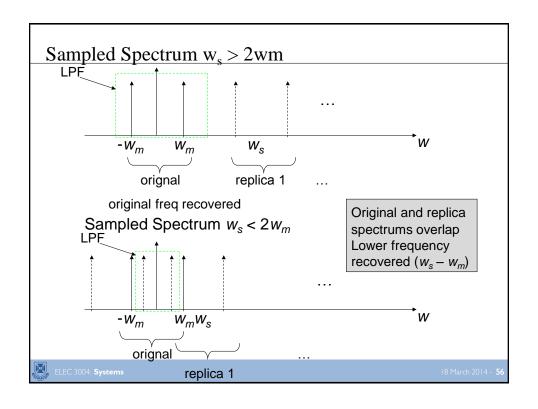






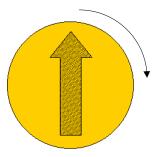




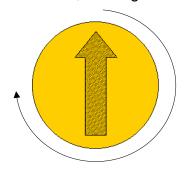


Temporal Aliasing

90° clockwise rotation/frame clockwise rotation perceived



270° clockwise rotation/frame (90°) anticlockwise rotation perceived i.e., aliasing



Require LPF to 'blur' motion

ELEC 3004: Systems

18 March 2014 - **57**

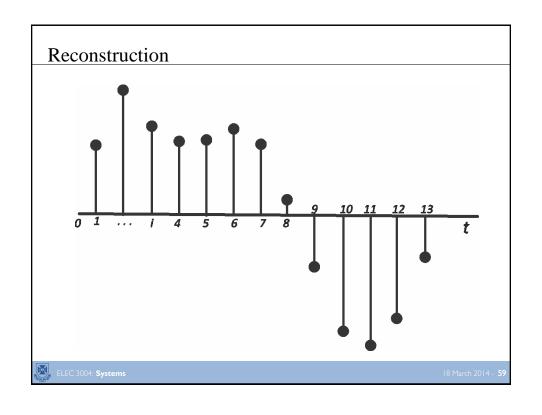
Time Domain Analysis of Reconstruction

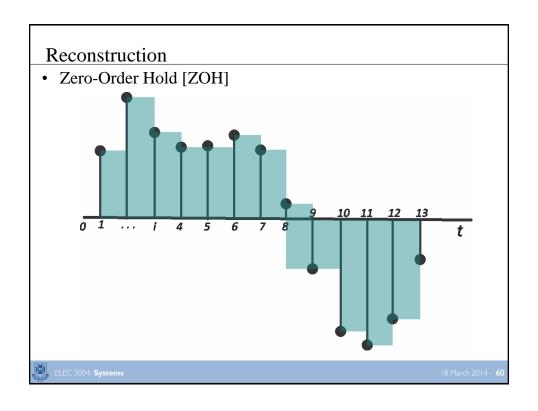
- · Frequency domain: multiply by ideal LPF
 - ideal LPF: 'rect' function (gain Δt , cut off w_c)
 - removes replica spectrums, leaves original
- Time domain: this is equivalent to
 - convolution with 'sinc' function
 - as $F^{-1}\{\Delta t \operatorname{rect}(w/w_c)\} = \Delta t w_c \operatorname{sinc}(w_c t/\pi)$
 - i.e., weighted sinc on every sample
- Normally, $w_c = w_s/2$

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(n\Delta t) \Delta t w_c \operatorname{sinc}\left(\frac{w_c(t - n\Delta t)}{\pi}\right)$$

ELEC 3004: Systems

0 Manuala 2014 F0

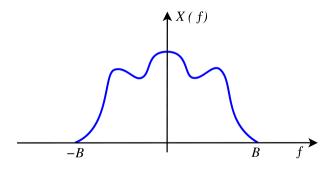




Reconstruction

• Whittaker–Shannon interpolation formula

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \mathrm{sinc}\left(\frac{t-nT}{T}\right)$$

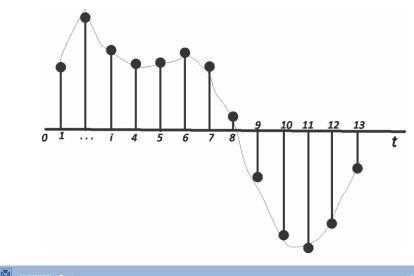


ELEC 3004: Systems

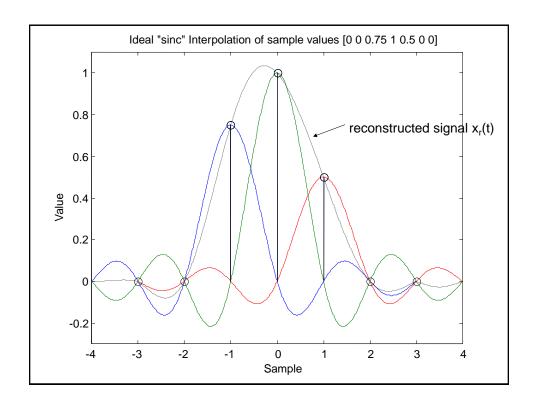
18 March 2014 - 6

Reconstruction

• Whittaker-Shannon interpolation formula

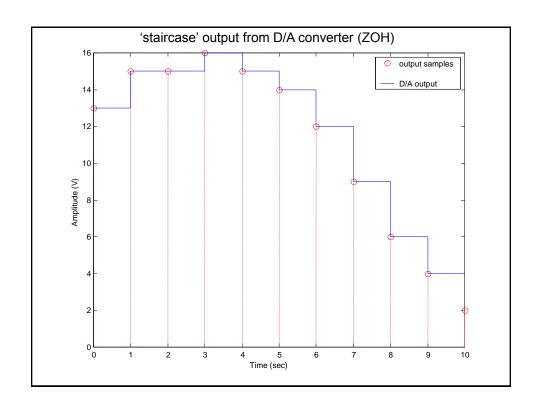


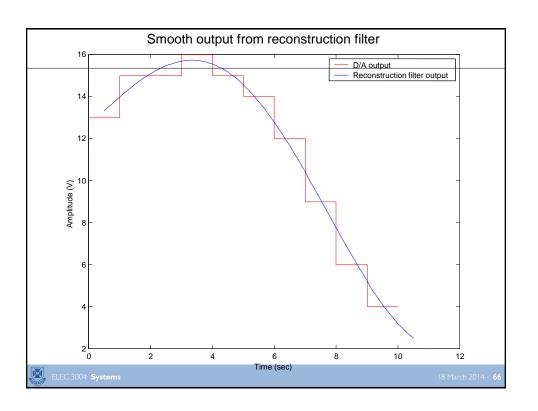
ELEC 3004: Systems

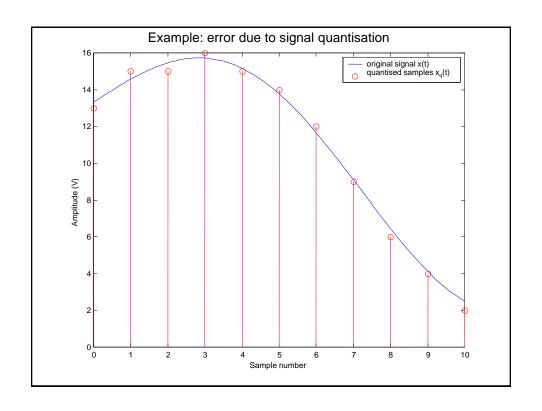


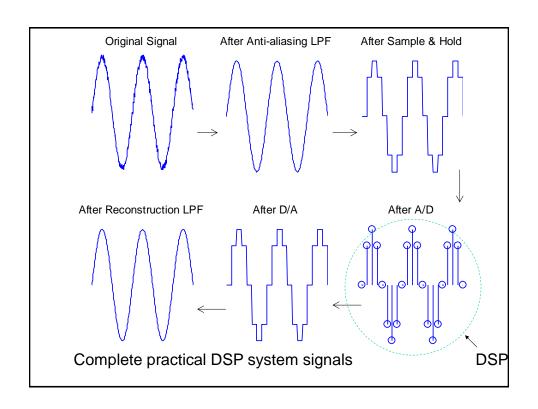
Sampling and Reconstruction Theory and Practice

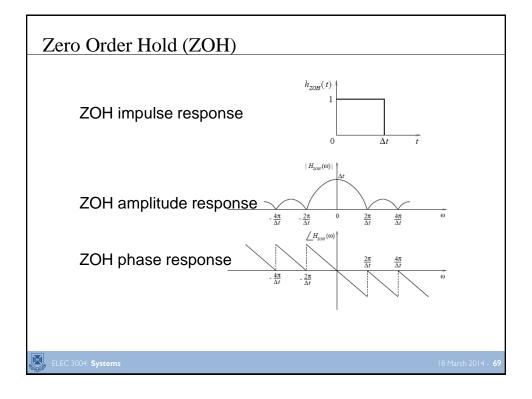
- Signal is bandlimited to bandwidth WB
 - Problem: real signals are not bandlimited
 - Therefore, require (non-ideal) anti-aliasing filter
- Signal multiplied by ideal impulse train
 - problems: sample pulses have finite width
 - and not ⊗ in practice, but sample & hold circuit
- · Samples discrete-time, continuous valued
 - Problem: require discrete values for DSP
 - Therefore, require A/D converter (quantisation)
- Ideal lowpass reconstruction ('sinc' interpolation)
 - problems: ideal lowpass filter not available
 - Therefore, use D/A converter and practical lowpass filter







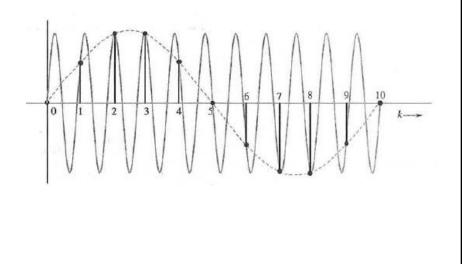




Finite Width Sampling

- Impulse train sampling not realisable
 - sample pulses have finite width (say nanosecs)
- This produces two effects,
- Impulse train has sinc envelope in frequency domain
 - impulse train is square wave with small duty cycle
 - Reduces amplitude of replica spectrums
 - smaller replicas to remove with reconstruction filter ©
- Averaging of signal during sample time
 - effective low pass filter of original signal
 - can reduce aliasing, but can reduce fidelity 🕾
 - negligible with most S/H ©

Aliasing: Another view of this



ELEC 3004: Systems

Alliasing

• Aliasing - through sampling, two entirely different analog sinusoids take on the same "discrete time" identity

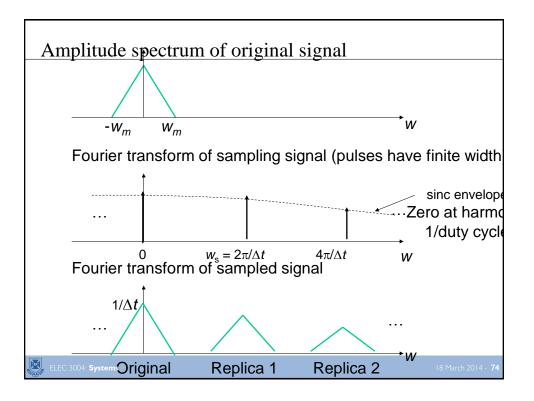
For $f[k] = \cos \Omega k$, $\Omega = \omega T$:

The period has to be less than Fh (highest frequency):

Thus: $0 \le \mathcal{F} \le \frac{\mathcal{F}_s}{2}$ ω_f : aliased frequency: $\omega T = \omega_f T + 2\pi m$

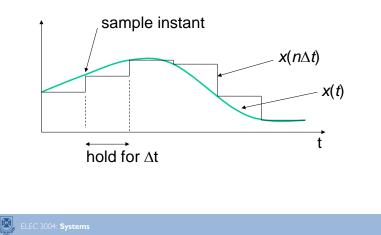
Practical Anti-aliasing Filter

- Non-ideal filter
 - wc = ws/2
- Filter usually 4th 6th order (e.g., Butterworth)
 - so frequencies > wc may still be present
 - not higher order as phase response gets worse
- Luckily, most real signals
 - are lowpass in nature
 - signal power reduces with increasing frequency
 - e.g., speech naturally bandlimited (say < 8KHz)
 - Natural signals have a (approx) 1/f spectrum
 - so, in practice aliasing is not (usually) a problem



Practical Sampling

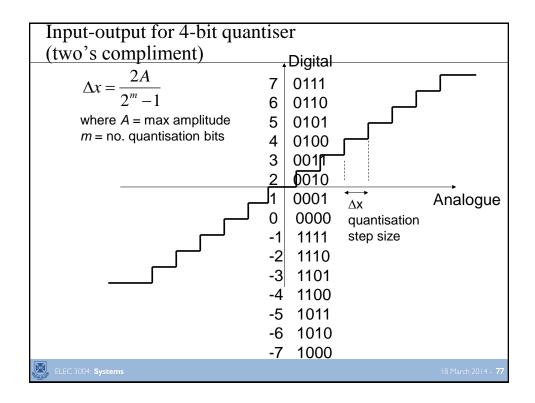
- Sample and Hold (S/H)
 - 1. takes a sample every Δt seconds
 - 2. holds that value constant until next sample
- Produces 'staircase' waveform, $x(n\Delta t)$



Quantisation

- Analogue to digital converter (A/D)
 - Calculates nearest binary number to $x(n\Delta t)$
 - $x_q[n] = q(x(n\Delta t))$, where q() is non-linear rounding fctn
 - output modeled as $x_q[n] = x(n\Delta t) + e[n]$
- Approximation process
 - therefore, loss of information (unrecoverable)
 - known as 'quantisation noise' (e[n])
 - error reduced as number of bits in A/D increased
 - i.e., Δx , quantisation step size reduces

$$|e[n]| \le \frac{\Delta x}{2}$$



Signal to Quantisation Noise

- To estimate SQNR we assume
 - -e[n] is uncorrelated to signal and is a
 - uniform random process
- assumptions not always correct!
 - not the only assumptions we could make...
- Also known a 'Dynamic range' (R_D)
 - expressed in decibels (dB)
 - ratio of power of largest signal to smallest (noise)

$$R_D = 10\log_{10}\left(\frac{P_{signal}}{P_{noise}}\right)$$

ELEC 3004: Systems

Dynamic Range

Need to estimate:

- Noise power
 - uniform random process: $P_{\text{noise}} = \Delta x^2/12$
- Signal power
 - (at least) two possible assumptions
 - 1. sinusoidal: $P_{\text{signal}} = A^2/2$
 - 2. zero mean Gaussian process: $P_{\text{signal}} = \sigma^2$ Note: as $\sigma \approx A/3$: $P_{\text{signal}} \approx A^2/9$

 - where σ^2 = variance, A = signal amplitude

Regardless of assumptions: R_D increases by 6dB for every bit that is added to the quantiser

1 extra bit halves ∆x

i.e., $20\log 10(1/2) = 6dB$

Practical Reconstruction

Two stage process:

- Digital to analogue converter (D/A)
 - zero order hold filter
 - produces 'staircase' analogue output
- 2. Reconstruction filter
 - non-ideal filter: $w_c = w_s/2$
 - further reduces replica spectrums
 - usually 4th 6th order e.g., Butterworth
 - for acceptable phase response

D/A Converter

- Analogue output y(t) is
 - convolution of output samples $y(n\Delta t)$ with $h_{ZOH}(t)$

$$y(t) = \sum_{n} y(n\Delta t)h_{ZOH}(t - n\Delta t)$$
$$h_{ZOH}(t) = \begin{cases} 1, & 0 \le t < \Delta t \\ 0, & \text{otherwise} \end{cases}$$

$$H_{ZOH}(w) = \Delta t \exp\left(\frac{-jw\Delta t}{2}\right) \frac{\sin(w\Delta t/2)}{w\Delta t/2}$$

D/A is lowpass filter with sinc type frequency response It does not completely remove the replica spectrums Therefore, additional reconstruction filter required

18 March 2014 - 8

Summary

- Theoretical model of Sampling
 - bandlimited signal (wB)
 - multiplication by ideal impulse train (ws > 2wB)
 - convolution of frequency spectrums (creates replicas)
 - Ideal lowpass filter to remove replica spectrums
 - wc = ws /2
 - · Sinc interpolation
- Practical systems
 - Anti-aliasing filter (wc < ws /2)
 - A/D (S/H and quantisation)
 - D/A (ZOH)
 - Reconstruction filter (wc = ws /2)

Don't confuse theory and practice!

