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Signals as Vectors

 Back to the beginning!

F(.. .)=Tystem

signal i
m— F(x)  ——mh

Signals as Vectors

F(.. .)=Tystem

signal i |
imm—> F(X) i

» There is a perfect analogy between signals and vectors ...
Signals are vectors!

« A vector can be represented as a sum of its components in a
variety of ways, depending upon the choice of coordinate
system. A signal can also be represented as a sum of its
components in a variety of ways.




Signals as Vectors

* Represent them as Column Vectors

Signals as Vectors

 Can represent phenomena of interest in terms of signals

 Natural vector space structure (addition/substraction/norms)

 Can use norms to describe and quantify properties of signals




Signals as vectors

Signals can take real or complex values.
In both cases, a natural vector space structure:

e Can add two signals: = [n] + xa[n]
e Can multiply a signal by a scalar number: C' - x:[n]
e Form linear combinations: Cy - x1[n] + Cy - xa[n]

Various Types

 Audio signal (sound pressure on microphone)
« B/W video signal (light intensity on
 photosensor)

» Voltage/current in a circuit (measure with

« multimeter)

 Car speed (from tachometer)

» Robot arm position (from rotary encoder)

» Daily prices of books / air tickets / stocks

* Hourly glucose level in blood (from glucose monito\{ ']

 Heart rate (from heart rate sensor)




Vector Refresher

X-y=|x||y|cos # (6.46)

e

 Length: P =x-x
» Decomposition: x=ayte=ayte
* Dot Product of Lis0: xy=0

Vectors [2]

« Magnitude and Direction

f-a = |fllzl cos(6)

« Component (projection) of a vector along another vector

< Error Vector




Vectors [3]

* oo bases given X
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« Which is the best one?

fr~ex
clx| = |f cos 8
elx|? = |fl[x] cos 8 = f- x

c= fx “—}—f
Txx EEE
f-x=0

« Can | allow more basis vectors than | have dimensions?

Vectors / Signals Can Be Multidimensional

« Assignal is a quantity that varies as a function of an index set

» They can be multidimensional:
— 1-dim, discrete index (time): x[n]
— 1-dim, continuous index (time): x(t)
— 2-dim, discrete (e.g., a B/W or RGB image): x[j; k]
— 3-dim, video signal (e.g, video): x[j; k; n]

Discrete 1D Continuous 1D Discrete 2D
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It’s Just a Linear Map

w[n) ‘ D y[n] X
S EEEanE .rl]llll[
uy =1[1,2,3.4,..,10]7 y =[0,2.4,6,....18]"

y[n]=2u[n-1] is a linear map
BUT y[n]=2(u[n]-1) is NOT Why?

Because of homogeneity!
T(au)=aT(u)

Linear combinations of signals

%[n]

yin]

Hnl+y[n]




Application example: active noise cancellation

A “noise” signal, that we want to get rid of.

@ At subject location, signal is

B

x[n]

@ Microphone picks up signal

il

x.[n]

i

@ Subtract the two signals:

y(t) = z(t) — zc(t) S T

Notice careful synchronization is needed!

Norms of signals

Can introduce a notion of signals being "nearby.”

This is characterized by a metric (or distance function).

d(x,y)

7w

If compatible with the vector space structure, we have a norm.

X—Y




Examples of Norms

Can use many different norms, depending on what we want to do.

The following are particularly important:
@ {5 (Euclidean) norm:

||;(f||g = (Z ;(:[:’;Hg) norm(x,2)
k=1

[N

@ /i norm:
n
B :Z|~LH| norm(x,1)
k=1
e /.. norm:
.ifH:x_, = mf}x|;z:[k]| norm(x,inf)

What are the differences?

Properties of nhorms

For any norm | - ||, and any signal x, we have:
@ Linearity: if C' is a scalar,
C-x|=|C]|x
@ Subadditivity (triangle inequality):

ll + ¥l < ll<[l + [yl

Can use norms:
@ To detect whether a signal is (approximately) zero.
@ To compare two signals, and determine if they are “close.”

Xx—yll=0




Where are we going with this?
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Signal representation by Orthogonal Signal Set
« Orthogonal Vector Space

=>» A signal may be thought of as having components.

ELEC 3004: Systems 13 March 2014 - 21
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Component of a Signal

fltyczlt) t<t<ty

t2
f(t)a(t)dt )
t1

cm M= — [ f(0)2(t)dt
j 22 (t) dt Bz Ju
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* Let’s take an example:

f(t)~ecsint O0<t<2n

¥id
z{t)=sint and E.,:f sin’(t)dt =7
o

JLpe) e,
& [

4 =T EE

R

Fig. 8.3 Approximation of square signal in terms of a single sinusoid.

Thus .
Pty —sint (3.14)

Basis Spaces of a Signal

ta 0 m#n
]; zm(t)za(t) dt = {En m=n

F(t) = erxy(t) + egzaft) + -+ + enzn(t)

N
= Z enZnl(t)

n=1

N
e(t) = f(t) - Zc:nzn(t)
n=1

[ " Fe)ealt) at

cﬂ T —————
j x,%(t) dt
t1

1 =
=— F(t)znlt)dt n=12..., N
En ty

f#) = exza(t) +eaza(t) + - +cpzn(t) +---

o
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n=1
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Basis Spaces of a Signal

F(t) = crzy(t) +cozalt) + - +cpznl(t) + -
= icnrn(t) t1 <t <ty

» Observe that the error energy Ee generally decreases as N, the
number of terms, is increased because the term Ck 2 Ek is
nonnegative. Hence, it is possible that the error energy -> 0 as
N -> 00. When this happens, the orthogonal signal set is said to
be complete.

* Inthis case, it’s no more an approximation but an equality

LGl

Ex: Deblurring

Moving
Camera
Optics

perfect image blurry image

algl
AT IR D L-Q[0EH *
s

« Matlab: deconvwnr
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Systems as Maps

ELEC 3004: Systems

13 March 2014 - 26

Then a System is a MATRIX

uln y[n
[n] D [n]
y = Du.

l,'[u DM D12 .- DL\" U[H
y[2] Doy Do --- Don | | uf2]
y[M] Dyy Dy -+ Dyn u[N]

1= 3 Dijulj]

J
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Recall From Last Time ...
Classifications of Systems

Linear and nonlinear systems

Constant-parameter and time-varying-parameter systems

Instantaneous (memoryless) and dynamic (with memory)
systems

Causal and noncausal systems
Continuous-time and discrete-time systems
Analog and digital systems

Invertible and noninvertible systems
Stable and unstable systems

w N

© N Ok

Causality:

Causal (physical or

I HOw MUCH

TIME DO YOV
N

T Wiz

nonanticipative) systems

A X | 1 o Ak

« Is one for which the output at any instant t, depends only on
the value of the input x(t) for t<t, . Ex:

(@) =a(t—2)=causal [u(t)==x(—2)+ 2+ 2) = noncausal

» A “real-time” system must be causals
— How can it respond to future inputs?

+ A prophetic system: knows future inputs and acts on it (now)
— The output would begin before t,

 In some cases Noncausal maybe modelled as causal with delay

« Noncausal systems provide an upper bound on the performance of
causal systems

14



Causality:
Looking at this from the output’s perspective...

» Causal = The output before some time t does not depend on
the input after time t.

Given: y(t) = F (u(t))
For:
a(t)=u(t),v0<t<Torl[0,T)
Then for a T>0:
—gt) =y (), vVO<t<T

then:
I u by |y

else:

Causal Noncausal

Dynamical Systems...

+ A system with a memory
— Where past history (or derivative states) are relevant in
determining the response
 Ex
— RC circuit: Dynamical

* Clearly a function of the “capacitor’s past” (initial state) and
» Time! (charge / discharge)

— R circuit: is memoryless “ the output of the system
(recall V=IR) at some time t only depends on the input at time t

Lumped/Distributed

— Lumped: Parameter is constant through the process
& can be treated as a “point” in space

Distributed: System dimensions # small over signal

— Ex: waveguides, antennas, microwave tubes, etc.

15



Linear Time Invariant

LTI
u(t) | h()=F() y(t§:u(t)*h(t)

 Linear & Time-invariant (of course - tautology!)
» Impulse response: h(t)=F(8(t))
+ Why?
— Since it is linear the output response (y) to any input (x) is:
z(t) = [, x(r)d(t—T)dr
y(t)=F Uffx z(r)8(t—7) df} Hngar 100 4 (7Y F 6 (t — 1)) dr

h(t-)ZF[(t—7)
=y(t)= [ x(T)h(t—71)dr =2 (t) * h ()

« The output of any continuous-time LTI system is the convolution of
input u(t) with the impulse response F(a(t)) of the system.

Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

d™z
dtm

d'y

dy
GO'H"I‘“I%"F' ~tap din

dx
= boatbim g - by,
o0+ 1{if+ +bm

Laplace:

agY (s) +a1sY(s) + -+ ans"Y (s) = bgX (s} + b1sX(s) + - + bns™ X (s)
A(8)Y (s) = B(s)X(s)

« Total response = Zero-input response + Zero-state response

Initial conditions External Input

16



Linear Systems and ODE’s

Linear system described by differential equation

dy =b0x+b1%+---+bm d°x
dt" dt dt™

a y+a1ﬂ+---+a
0 dt n

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s)+b,sX(s)+---+b,s"X(S)
A(S)Y (s) =B(s)X(s)

where A(s) and B(s) are polynomials in s

Unit Impulse Response

LTI
30| FG®) [ h@=F@w)

« d(t): Impulsive excitation
* h(t): characteristic mode terms

17



System Models
+ Various things — all the same!

Table 2.1 Summary of Through- and Across-Variables for Physical Systems

Variable Integrated Variable Integrated
Through Through- Across Across-
System Element Variable Element Variable
Electrical Current, i Charge, q Voltage Flux linkage, Ay,
difference, vy
Mechanical ~ Force, F Translational Velocity Displacement
translational momentum, P difference, v, difference, y;
Mechanical ~ Torque, T Angular Angular velocity Angular
rotational momentum, /i difference, wy; displacement
difference, 0,
Fluid Fluid Volume, V/ Pressure Pressure
volumetric rate difference, Py, momentum, ys;
of flow, Q
Thermal Heat flow Heat energy, Temperature
rate, g H difference, 75,

ELEC 3004: Systems 13 March 2014 - 36

Circuits

Va(s) 1

Vi(s)  RCs

Vout

Vout —

1
Vin — C1C2R1Rps?°+Cor(R1+Rp)s+1
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Motors

E DC motor, field-controlled, rotational actuator

a(s) K,

Vi(s) ~ s(Js + b)(Lys + Ry)

7. AC motor, two-phase control field, rotational actuator

N o) _ K
Ib Vis) s(rs +1)
Colh  ——
V(s) == [) - _
.'%- 3 r=J/(b=m)
- Reference m = slope of linearized torque-speed
field curve (normally negative)

ELEC 3004: Systems 13 March 2014 - 38

Mechanical Systems

15. Accelerometer, acceleration sensor Xo(1) = y(t) — xin(2),
Frame Xo(s) _ —5?
o Ci_gi_l“"““’ Xin(s) >+ (b/M)s + k/M
Mass ‘ For low-frequency oscillations, where
g T [T o<on
p k b w Xo(]w) W

Xi(jo)  k/M
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Thermal Systems

a(s) 1
16. Thermal heating system q(s)  Cus + (QS + 1/R)

S

, where

J =9, — J. = temperature difference
due to thermal process

I

G
Q

S = specific heat of water

thermal capacitance

fluid flow rate = constant

Fluid
out R, = thermal resistance of insulation
Heater

q(s) = transform of rate of heat flow of
heating element

ELEC 3004: Systems 13 March 2014 - 40

First Order Systems

First order systems

ay' + by =0 (with a #0)

righthand side is zero:
e called autonomous system

e solution is called natural or unforced response
can be expressed as
Ty +y=0 or y+ry=0

where
e T'=a/bis a time (units: seconds)

e r="0b/a=1/Tis a rate (units: 1/sec)

ELEC 3004: Systems 13 March 2014 - 41



First Order Systems

Solution by Laplace transform

take Laplace transform of Ty’ + y = 0 to get

T(sY(s)—y(0)+Y(s)=0
D

L(y")

solve for Y'(s) (algebral)

'y(0) y(0)

} (\) - s[-}— 1 il 5 4 l/’/:[‘

and so y(t) = y(0)e /7

First Order Systems

solution of Ty' 41y = 0: y(t) = y(0)e= /T

if ' > 0, y decays exponentially

e T gives time to decay by e~! ~ 0.37
e 0.6937 gives time to decay by half (0.693 = log 2)
e 4.6T gives time to decay by 0.01 (4.6 = log 100)

if T'< 0, y grows exponentially

e |T'| gives time to grow by e ~ 2.72;
e 0.693|T| gives time to double

e 4.6|T| gives time to grow by 100

21



First Order Systems

Examples

simple RC circuit:

+
circuit equation: RCv'+v =0

solution: v(t) = z,w(o)e*t/(RC)

population dynamics:

e y(t) is population of some bacteria at time t

e growth (or decay if negative) rate is y' = by — dy where b is birth rate,
d is death rate

o y(t) = y(0)e=Dt (grows if b > d; decays if b < d)

Second Order Systems

Second order systems

ay’ +by' +ey=0

assume a > () (otherwise multiply equation by —1)

solution by Laplace transform:

a(s2Y (s) — sy(0) — y'(0)) + b(sY (s) — y(0)) + Y (s) =0

Liy") L(y)

solve for Y (just algebral)

asy(0) + ay'(0) + by(0) as+ 3

Y(s) = =
(%) as? + bs + ¢ as2 +bs+ ¢

where oo = ay(0) and 3 = ay'(0) + by(0)

22



Second Order Systems

so solution of ay” + by +cy =0 is

o \(s) = as? +bs + cis called characteristic polynomial of the system
e form of y = £71(Y) depends on roots of characteristic polynomial

e coefficients of numerator as + 3 come from initial conditions

Ex: RC Circuit

Example: second-order RC circuit

1Q 1€2

MM~
t=0,~ F/“‘.Twwllj—t/
1 1T

at t = 0, the voltage across each capacitor is 1V

e for t > 0, y satisfies LCCODE (from page 2-18)
y' +3y +y=0
e initial conditions:
y(0)=1, y'(0)=0

(at t = 0, voltage across righthand capacitor is one; current through
righthand resistor is zero)

23



Next Time...

» Sampling
— Measurements at regular intervals of a continuous signal
— Not to be confused with
“ How to try regional dishes without indigestion”

* Review:
— Chapter 8 of Lathi

 Send (and you shall receive) a positive signal ©
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