

ure Sch	edule:	
Wee	k Date	Lecture Title
1	4-Mar	Introduction & Systems Overview
1	6-Mar	[Linear Dynamical Systems]
2	11-Mar	Signals as Vectors & Systems as Maps
	13-Mar	[Signals]
3	18-Mar	Sampling & Data Acquisition & Antialiasing Filters
5	20-Mar	[Discrete Signals]
4	25-Mar	Filter Analysis & Filter Design
7	27-Mar	[Filters]
5	1-Apr	Digital Filters
	3-Api	[Digital Filters]
6	8-Apr	Discrete Systems & Z-Transforms
0	10-Apr	[Z-Transforms]
7	15-Apr	Convolution & FT & DFT
	17-Apr	Frequency Response
8	29-Apr	Introduction to Control
0	1-May	[Feedback]
0	6-May	Introduction to Digital Control
	8-May	[Digitial Control]
10	13-May	Stability of Digital Systems
10	15-May	[Stability]
11	20-May	State-Space
11	22-May	Controllability & Observability
12	27-May	PID Control & System Identification
12	29-May	Digitial Control System Hardware
13	3-Jun	Applications in Industry & Information Theory & Communications
15	5-Jun	Summary and Course Review
Systems		

Basis Spaces of a Signal	
$\int_{t_1}^{t_2} x_m(t) x_n(t) dt = \begin{cases} 0 & m \neq n \\ E_n & m = n \end{cases}$	
$f(t) \simeq c_1 x_1(t) + c_2 x_2(t) + \dots + c_N x_N(t)$ $= \sum_{i=1}^{N} c_i x_i(t)$	
$e(t) = f(t) - \sum_{n=1}^{N} c_n x_n(t)$	
$c_n = \frac{\int_{t_1}^{t_2} f(t) x_n(t) dt}{\int_{t_1}^{t_2} x_n^2(t) dt}$	
$= \frac{1}{E_n} \int_{t_1}^{t_2} f(t) x_n(t) dt \qquad n = 1, 2, \dots, N$	
$f(t) = c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) + \dots$ $= \sum_{n=1}^{\infty} c_n x_n(t) \qquad t_1 \le t \le t_2$	
ELEC 3004: Systems	13 March 2014 - 23

Basis Spaces of a Signal

ELEC 3004: Systems

$$f(t) = c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) + \dots$$
$$= \sum_{n=1}^{\infty} c_n x_n(t) \qquad t_1 \le t \le t_2$$

- Observe that the error energy *Ee* generally decreases as *N*, the number of terms, is increased because the term *Ck 2 Ek* is nonnegative. Hence, it is possible that the error energy -> 0 as *N* -> 00. When this happens, the orthogonal signal set is said to be complete.
- In this case, it's no more an approximation but an equality

Recall From Last Time ...

Classifications of Systems

- 1. Linear and nonlinear systems
- 2. Constant-parameter and time-varying-parameter systems
- 3. Instantaneous (memoryless) and dynamic (with memory) systems
- 4. Causal and noncausal systems
- 5. Continuous-time and discrete-time systems
- 6. Analog and digital systems
- 7. Invertible and noninvertible systems
- 8. Stable and unstable systems

ELEC 3004: Systems

Dynamical Systems	
 A system with a memory Where past history (or derivative states) are <u>relevant</u> in determining the response 	
 Ex: RC circuit: Dynamical Clearly a function of the "capacitor's past" (initial state) and Time! (charge / discharge) R circuit: is memoryless : the output of the system (recall V=IR) at some time t only depends on the input at 	at time t
 Lumped/Distributed Lumped: Parameter is constant through the process & can be treated as a "point" in space Distributed: System dimensions ≠ small over signal Ex: waveguides, antennas, microwave tubes, etc. 	
ELEC 3004: Systems	13 March 2014 - 31

ELEC 3004: Systems

8 March 2014 - **41**

Second Order Systems

so solution of ay'' + by' + cy = 0 is

$$y(t) = \mathcal{L}^{-1}\left(\frac{\alpha s + \beta}{as^2 + bs + c}\right)$$

- $\chi(s) = as^2 + bs + c$ is called *characteristic polynomial* of the system
- form of $y = \mathcal{L}^{-1}(Y)$ depends on roots of characteristic polynomial χ
- coefficients of numerator $\alpha s + \beta$ come from initial conditions

ELEC 3004: Systems

Next Time...

• Sampling - Measurements at regular intervals of a continuous signal – Not to be confused with "How to try regional dishes without indigestion" • Review: - Chapter 8 of Lathi • Send (and you shall receive) a positive signal \odot ELEC 3004: Systems