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10 13-May|Stability of Digital Systems
15-May|[Stability]
1 20-May|State-Space
22-May|Controllability & Observability
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3-Jun|/Applications in Industry & Information Theory & Communications
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5-JunSummary and Course Review
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Announcements: /\

+ PS 3 Grading: f I E
— Due Wednesday at 11:59pm -
— We’re working on it

« PS4
— Working on it too!

* Lab4:
— Working on it too too!!

« Final Exam Logistics:
— Saturday 21/6/2014 at 4:30pm
— Location: TBA
— Closed-book
— Practice exam will be posted soon
(Working on it too too too!!)
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Lab 4
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PID

» Three basic types of control:
— Proportional
— Integral, and

— Derivative

» The next step up from lead compensation
— Essentially a combination of
proportional and derivative control
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Proportional Control

A discrete implementation of proportional control is identical to continuous;
that is, where the continuous is

the discrete is

u(t) = Kpe(t) = D(s)=K,,

u(k) = Kpe(k) = W

where e(t) is the error signal as shown in Fig 5.2.
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Derivative Control

For continuous systems, derivative or rate control has the form
u(t) = KpTpe(t) = D(s)= K,Tps

where T'p is called the derivative time. Differentiation can be approximated
in the discrete domain as the first difference, that is,

(e(k) — e(k —1)) 1-2z1 z—1
u(k) = K dp———g— = D(z) = KpTp—r— = KpTp——

In many designs, the compensation is a sum of proportional and deriva-
tive control (or PD control). In this case, we have

D(z) = K, (1 + TL;;lZ)

or, equivalently,

Derivative Control [2]

 Similar to the lead compensators
— The difference is that the pole isatz=0

[Whereas the pole has been placed at various locations
along the z-plane real axis for the previous designs. ]

» |n the continuous case:

— pure derivative control represents the ideal situation in that there
is no destabilizing phase lag from the differentiation
— the poleisats = -

* In the discrete case:
- 2z=0
— However this has phase lag because of the necessity to wait for
one cycle in order to compute the first difference




Integral Control

For continuous systems, we integrate the error to arrive at the control,

t
o) = %’ /t d(idt = Dis)= —TI%

where T7 is called the integral, or reset time. The discrete equivalent is to
sum all previous errors, yielding

K,T
T

B = | D= e B

u(k) = u(k—1)+ S Ti-71) Te-1

(5.60)

Just as for continuous systems, the primary reason for integral control is to
reduce or eliminate steady-state errors, but this typically occurs at the cost
of reduced stability.
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PID Control

B 1z Tp(z—1)
D(z)—Kp(1+Tl(z_1)+ = )

The user simply has to determine the best values of
. Kp

+ Tpand

. TI
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PID as Difference Equation

R(z E(z) D(7) Ulz) N G(—") Y(z) >

H(z)

U(z) Tz z—1
m=D(Z)=Kp+Ki(m)+Kd< T2 >

F 3

‘ u(k) = [Kp + K;T + (54)] - e(k) — [KqT] - e(k — 1) + [K;]
e 1)

State-Space Control

X = Fx

(That can not be all of it? There has to be more to it than this...)




State-Space Control

X = Fx 4+ Gu

Benefits:

+ Characterises the process by systems of coupled, first-order
differential equations

» More general mathematical model

— MIMO, time-varying, nonlinear

Mathematically esoteric (who needs practical solutions)

Yet, well suited for digital computer implementation

— That is: based on vectors/matrices (think LAPACK = MATLAB)

Difference Equations & Feedback

£

Input H output 5; % k H y

« Start with the Open-Loop:
y = Hu

 Close the loop:

u=ke=k(y-y)>y=Hk® -yl
_ Hk
" 1+Hk

« Alleasy! (yesal)




Difference Equations & Feedback

|anuIz_> H _oyusz> SN 5]\—><%>—> k H

« Now add delay (image the plant is a replica with a delay 1)
y() =u(t—1)
* Close the loop:
u(t —1) = ke(t —7) = k [§(t = 7) — y(t = 7)]
2y =k [t —1) -yt —1)]

 Notice we have a difference equation!

Difference Equations & Feedback

£

Input H +put 5; % k H

« What happens with a single delay and a unit step?
u(t) = k for O<t< 1

y(t) = u(t — ) for t<t<2t
« Then with feedback we get:

u(t) =k(1—k) =k —k?

y() =k —k?+ k34 -+ (=D g
« Ifk<1: then:
Slim y(t) = -

1+k




Example O:

PID
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Great, so how about control?
« Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F — GK) <0

* Infact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!




Example: PID control

» Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x3 = x,

1
x= 1
—2

y=1[0 1 0]x+0u

x — Ku

X, 1S the output state of the system;
x11s the value of the integral;
x5 Is the velocity.

» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2 — K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.
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Example 1.

Command Shaping
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Command Shaping

A, ===A, Response
""" A, Response
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Command Shaping

oS SR

Ay ;
>x< A2 / From A
JE— From Ay

Initial Command Input Shaper Shaped Command

« Zero Vibration (ZV)

1 K
{ﬂ: 1+K 1+K [
oo 2] e
« Zero Vibration and Defivative (Z2vD)
1 2K K?
{ﬂ: 1+K)? (1+K)? (+K)?
b 0 T T,

2

_gﬂ

J1-¢2

|

Can you use this for more than Control?

*Yes
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Frequency Response in State Space

1

Hiz)=C(zI-A)'B+D=——
10022 — 2002 + 80

Poles at == 0.55, 1.45.

Eigenvalues of A:

1.1,1.45, .55 : %

What are the (physical)
implications?

The Approach:

» Formulate the goal of control as an optimization (e.g. minimal impulse response,
minimal effort, ...).

* You’ve already seen some examples of optimization-based design:

— Used least-squares to obtain an FIR system which matched (in the least-squares sense)
the desired frequency response.

— Poles/zeros lecture: Butterworth filter

Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
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How?

» Constrained Least-Squares ...
One formulation: Given z[0]

o ) ul1]
minimize  ||u||*, where @ = _
w[0],u[l],...,u[N] :
u[N]
subjectto  x[N] = 0.
Note that !
xz[n] = A"x[0] + Z AT=1=R) By k],
k=0

so this problem can be written as

Apgrrs — bi||* subjectto  Creaye = Dy

minimize
I

Shannon Information Theory

Information

Source Transmitter Receiver Destination
= [} >
Signal Received
Signal
Message Message

Noise
Source

On the transmission of information over a noisy channel:

« An information source that produces a message

« A transmitter that operates on the message to create a signal which can be sent
through a channel

» A channel, which is the medium over which the signal, carrying the information
that composes the message, is sent

» Arreceiver, which transforms the signal back into the message intended for
delivery

» A destination, which can be a person or a machine, for whom or which the
message is intended



http://en.wikipedia.org/wiki/Signal_(electrical_engineering)

Additional Use IlI:

Estimation

ELEC 3004: Systems
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Along multiple dimensions
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State Space

« We collect our set of uncertain variables into a vector ...
X = [Xqy Xopevy Xp]T

 The set of values that x might take on is termed the state space

» There is a single true value for X,
but it is unknown

State Space Dynamics

x = Ax 4+ Bu
vy = Cx + Du

H(s)=C(sI — A)'B

19



Measured versus True

» Measurement errors are inevitable

 So, add Noise to State...
— State Dynamics becomes:

x=Ax+Bu+w
. y=Cx+Du+v . .
* Can represent this as a ‘INormai  vistribution

r 1 . — 2
N(z3p,0) = (Var) o exp (_ (TQU;) )

Recovering The Truth

* Numerous methods

* Termed “Estimation” because we are trying to estimate the
truth from the signal

» A strategy discovered by Gauss

 Least Squares in Matrix Representation

][ E] (2]
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Recovering the Truth: Terminology

x=Fx1+Guitw

z=Hx+v

x @ the state vector
Xaip ¢ the state of x at time A based on data taken up to time B
X : estimate of the true state vector
F : system dynamics matrix in continuous time (equivalent to A in Eq. 1)
G : system control matrix relating deterministic input, u, to the state (equivalent to B in Eq. 1)
H : measurement matrix in continuous time (equivalent to C in Eq. 2)

F; : system model in discrete time at ¢t = f;

H,; : measurement model in discrete time at t = ¢;

P; : estimate covariance in discrete time at { = ¢,

w @ process uncertainty (noise) vector (of type N(0, s))
Q : process noise matrix, Q = E {u'u'T]
Q; : Q indiscrete time at ¢t = ¢;

v : measurement noise vectors (of type N'(0,0))

R; : the measurement variance matrix, R = F [Nr] in discrete time at { = {;

General Problem...

True state

O

v

Observed state

(Measurement)

=

&
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Duals and Dual Terminology

Estimation

Control

Model:

%x=Ax, A=F]!

x = Fx (discrete: x = Fyx) >
Regulates: P (covariance) — | M (performance matrix)
Minimized function: Q (or GQGT) — v
Optimal Gain: K — | G
Completeness law: Observability «— | Controllability
Estimation Process in Pictures
System: OX Xy
< —>
USRI (USSRt
v~R,=N(0,r)
Z +U
Measured: g
k.
___________________________________________ {-------
w~Q,, | A
A . Xk
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Kalman Filter Process

Initial state (x)
& covariance (P) Measurement (z)
Compute optimal observer
Project state & gain (“Kalman gain”)

covariance forward then update state
and covariance estimates

N~

KF Process in Equations

Prediction: )A(Mk,1 = kal)ﬁ(kfl\kfl- (statle prediction)
Pk\k—l = Qkfl + kalpk—uk—lFkals (covariance prediction)

Kalman Gain: K = P;L.‘;;_lHT[HPHk_lHT + Rk:_l._
Update: Pk\k = [I - K;\.H}Pk‘k_lz (covariance update)
)Ack‘k = )ACMk,l + K. (Z_z; — H)A(Mk,]) (state update)
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KF Considerations

Xpe—1 = Fr—1 Xp—qp—1 + Gr—1 up—1
Nt S S~

nxl nxn nxj jxl

1
Prip—1= Q-1 +F1 P g1 Fli
[ — S -

X nxn

-1
K; =Py H [HP,_HT + R,
Sk Kk lv[ k|k—1 k)
nxm nxXm

M Im
Pip = [T — KeH[P iy
ik|k = )ﬁ(k“C,] + Kk( 2 — H kk|k71 - Hlel,l;_lj

mx1 mxn

Ex: Kinematic KF: Tracking

« Consider a System with Constant Acceleration

i=—g
y=gt+m

2
y=po+pit+ %

—_

0

0
0 Fk:(gm%w
é 0 OJ

X = Froixp—1 + Ki(zp — HF . _1x.1)

e5|
Il
coo o

coco
oo -
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In Summary

+ KF:
— The true state (x) is separate from the measured (z)
— Lets you combine prior controls knowledge with
measurements to filter signals and find the truth

— It regulates the covariance (P)
» As P is the scatter between z and x
* So, if P > 0, then z > x (measurements -> truth)

+ EKF:

— Takes a Taylor series approximation to get a local “F” (and
G‘G” and ‘CH”)
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