AC LAND	Http://elec3004.com
PID Control & Estimation	
ELEC 3004: Digital Linear Systems : Signals & Controls Dr. Surya Singh	
Lecture 12	
elec3004@itee.uq.edu.au	May 27, 2014
© 2014 School of Information Technology and Electrical Engineering at The University of Queensland	(CC) BY-NO-SA

~ -		
re <u>Sch</u>	<u>edule:</u>	
Weel	Date	Lecture Title
1	4-Mar	Introduction & Systems Overview
1	6-Mar	[Linear Dynamical Systems]
2	11-Mar	Signals as Vectors & Systems as Maps
2	13-Mar	[Signals]
2	18-Mar	Sampling & Data Acquisition & Antialiasing Filters
3	20-Mar	[Sampling]
4	25-Mar	System Analysis & Convolution
4	27-Mar	[Convolution & FT]
5	1-Apr	Frequency Response & Filter Analysis
3	3-Apr	[Filters]
6	8-Apr	Discrete Systems & Z-Transforms
0	10-Apr	[Z-Transforms]
7	15-Apr	Introduction to Digital Control
/	17-Apr	[Feedback]
0	29-Apr	Digital Filters
0	1-May	[Digital Filters]
0	6-May	Digital Control Design
9	8-May	[Digitial Control]
10	13-May	Stability of Digital Systems
10	15-May	[Stability]
11	20-May	State-Space
11	22-May	Controllability & Observability
12	27-Mav	PID Control & System Identification
12	29-May	Digitial Control System Hardware
	3-Jun	Applications in Industry & Information Theory & Communications
13	5-Jun	Summary and Course Review
: Systems		

PID

- Three basic types of control:
 - Proportional
 - Integral, and
 - Derivative

• The next step up from lead compensation

 Essentially a combination of proportional and derivative control

Proportional Control

A discrete implementation of proportional control is identical to continuous; that is, where the continuous is

$$u(t) = K_p e(t) \quad \Rightarrow \quad D(s) = K_p,$$

the discrete is

$$u(k) = K_p e(k) \quad \Rightarrow \quad D(z) = K_p$$

where e(t) is the error signal as shown in Fig 5.2.

ELEC 3004: Systems

Derivative Control

For continuous systems, derivative or rate control has the form

$$u(t) = K_p T_D \dot{e}(t) \quad \Rightarrow \quad D(s) = K_p T_D s$$

where T_D is called the *derivative time*. Differentiation can be approximated in the discrete domain as the first difference, that is,

$$u(k) = K_p T_D \frac{(e(k) - e(k-1))}{T} \quad \Rightarrow \quad D(z) = K_p T_D \frac{1 - z^{-1}}{T} = K_p T_D \frac{z - 1}{Tz}.$$

In many designs, the compensation is a sum of proportional and derivative control (or PD control). In this case, we have

$$D(z) = K_p \left(1 + \frac{T_D(z-1)}{Tz} \right).$$

or, equivalently,

$$D(z) = K \frac{z - \alpha}{z}$$

ELEC 3004: Systems

Derivative Control [2]
Similar to the lead compensators
- The difference is that the pole is at $z = 0$
[Whereas the pole has been placed at various locations along the z-plane real axis for the previous designs.]
 In the continuous case: pure derivative control represents the ideal situation in that there is no destabilizing phase lag from the differentiation the pole is at s = -∞
 In the discrete case: z=0 However this has phase lag because of the necessity to wait for one cycle in order to compute the first difference
ELEC 3004: Systems 27 May 2014 - 8

Integral Control

ELEC 3004: Systems

For continuous systems, we integrate the error to arrive at the control,

$$u(t) = \frac{K_p}{T_I} \int_{t_o}^t e(t) dt \quad \Rightarrow \quad D(s) = \frac{K_p}{T_I s},$$

where T_I is called the *integral*, or *reset time*. The discrete equivalent is to sum all previous errors, yielding

$$u(k) = u(k-1) + \frac{K_p T}{T_I} e(k) \quad \Rightarrow \quad D(z) = \frac{K_p T}{T_I (1-z^{-1})} = \frac{K_p T z}{T_I (z-1)}.$$
(5.60)

Just as for continuous systems, the primary reason for integral control is to reduce or eliminate steady-state errors, but this typically occurs at the cost of reduced stability.

Example: PID control

Example 1: Command Shaping

27 May 2014 - **21**

ELEC 3004: Systems

How?

• Constrained Least-Squares ... One formulation: Given x[0] $\lim_{u[0],u[1],...,u[N]} ||\vec{u}||^2, \text{ where } \vec{u} = \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[N] \end{bmatrix}$ subject to x[N] = 0.Note that $x[n] = A^n x[0] + \sum_{k=0}^{n-1} A^{(n-1-k)} Bu[k],$ so this problem can be written as $\min_{x_{ls}} ||A_{ls}x_{ls} - b_{ls}||^2 \text{ subject to } C_{ls}x_{ls} = D_{ls}.$

Additional Use II: Estimation

ELEC 3004: Systems

ELEC 3004: Systems

- We collect our set of uncertain variables into a vector ... $\mathbf{x} = [x_1, x_2, ..., x_N]^T$
- The set of values that **x** might take on is termed the *state space*
- There is a *single* true value for **x**, but it is unknown

Recovering The Truth• Numerous methods• Termed "Estimation" because we are trying to estimate the truth from the signal• A strategy discovered by Gauss• Least Squares in Matrix Representation $\begin{bmatrix} p_0 \\ p_1 \end{bmatrix} = \begin{bmatrix} n & \sum_{1}^{n} t_i \\ \sum_{1}^{n} t_i^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{1}^{n} z_i \\ \sum_{1}^{n} t_i z_i \end{bmatrix}$
ELEC 3004: Systems 27 May 2014 - 40

Duals and Du	al Terminology		
	Estimation		Control
Model	$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x}$ (discrete: $\mathbf{x} = \mathbf{F}_1 \mathbf{x}$)	\leftrightarrow	$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \ \mathbf{A} = \mathbf{F}^{\dagger}$
Regulates:	P (covariance) $P = \frac{1}{k} \frac$	\leftrightarrow	M = 12R, 11 = 1 M (performance matrix)
Minimized function:	Q (or GQG^{\dagger})	\leftrightarrow	V
Optimal Gain:		\leftrightarrow	G
Completeness law:	Observability	\leftrightarrow	Controllability
ELEC 3004: Systems			27 May 2014 - 43

In Summary

