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Announcements: /\

 Final Exam Logistics: A

— Saturday 21/6/2014 at 4:30pm

— Location: TBA

— Closed-book

— Practice exam will be posted by the end of the week.
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Or more aptly...

Welcome to

State-Space!

(It be stated -- Hallelujah!)

« More general mathematical model
— MIMO, time-varying, nonlinear

« Matrix notation (think LAPACK = MATLAB)
» Good for discrete systems

* More design tools!

Affairs of state

* Introductory brain-teaser:
— If you have a dynamic system model with history (ie. integration)
how do you represent the instantaneous state of the plant?

Eg. how would you setup a simulation of a step response, mid-step?
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Introduction to state-space

* Linear systems can be written as networks of simple dynamic
elements:
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Introduction to state-space

» We can identify the nodes in the system
— These nodes contain the integrated time-history values of the
system response
— We call them “states”
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Linear system equations

» We can represent the dynamic relationship between the states

with a linear system:

.x:l - —7x1 - 12x2 + u
.x:z - x1 + 0x2 + Ou
y = x1+ 2x,+0u

State-space representation

« We can write linear systems in matrix form:

e =[7 P+l
y =[1 2]x+0u
Or, more generally:

X = Ax + Bu “State-space
y=Cx+Du equations”




State-Space Terminology

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

« wlnput:  u: [0,00) — RF

« X: State; z : [0,00) — R"™

« y:Output ¥y : [0,00) — R™

State-Space Terminology

D
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z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)




LTI State-Space

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

« If the system is linear and time invariant,
then A,B,C,D are constant coefficient

— = Az + Bu

— y = Cx + Du

Discrete Time State-Space

#(t) = A@)z () + B () u(t)
y(@)=C@® =z )+ D#)u(?)

* If the system is discrete,
then x and u are given by difference equations

Salk41] = A[K] @ [K] + B[k u K]
y [k] = C [k] z [k] + D [k] u [K]
—>x+=A$—|—Bu

y=Czx+ Du




Block Diagram Algebra in State Space

« Series:

X(S) Y(s)

X(s) Y(s) x Ag BgeCr| |26 BaDr
F(s)G o= |
6 A | R

System 1: Yo _ C'(,' Dc;C[_' Tag DGDF u
_1';__ = A'lf.xl'f.' + Bj-'li Yr o [} C‘F rrp ]

Dp
yr = Crrr + Dru
System 2:

+

1'2; = Agrg + Bgyr
Yo = Cerq + Dayr

Block Diagram Algebra in State Space

« Parallel:

x(s) [ F6) E Y(s)
G(s)

al=18 a5

=] C’z}[ii]+(D1+D2)u




State-space representation

+ State-space matrices are not necessarily a unique

representation of a system
— There are two common forms

 Control canonical form
— Each node — each entry in x — represents a state of the system
(each order of s maps to a state)

« Modal form
— Diagonals of the state matrix A are the poles (“modes”) of the
transfer function

A Procedure for Determining State Equations
in Electrical Circuits

1. Choose all independent capacitor voltages and inductor
currents to be the state variables.

2. Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

3. Write loop equations, and eliminate all variables other than
state variables (and their first derivatives) from the equations
derived in steps 2 and 3.




A Quick Example
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1. The inductor current g, and the capacitor voltage g2 as the state variables.
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Another Example

Bismuth-211*

p a | 2.1 minutes

36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes
Thallium-207

. L0 NI®

dt

dN2(5)
dt

== A N2(H) + A (N1(z)
. Q'-_-\'_j-‘llf - 343\."3([) + A 24?\"—2({)

At

£20 = ) ,N3(2)

* dt
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Another Example

Bismuth-211*
B @ | 2.1 minutes
36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes
Thallium-207
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Another Example

Bismuth-211*

p a | 2.1 minutes

36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes

Thallium-207

* N;y(t)=N;(0)exp(-A;t)

. N2(1) = N2(0)exp(= & 1) - N1(0)t=(exp( b ,1) = exp(= A 1))

exp(—h 1) ) exp(=h +7)
I TN N S N N T

= N3(0) =k A aN10) [ s |

O )0 k)

° 17\""4(0 =1 l}h 2)“ 3;\’.1(0) [u — exp(—h 17) exp(—h 5f) _ exp(-D 37) 1 ]

0 sk =R ) ’ O =k )0 5= =70 Y I )R ) + S
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State-space representation

+ State-space matrices are not necessarily a unique
representation of a system
— There are two common forms

 Control canonical form
— Each node — each entry in x — represents a state of the system
(each order of s maps to a state)

« Modal form
— Diagonals of the state matrix A are the poles (“modes”) of the
transfer function

Controllability matrix

« To convert an arbitrary state representation in F, G, H and J to
control canonical form A, B, C and D, the “controllability
matrix”

€¢=[G FG F?G -- F" '@l
must be nonsingular.

Why is it called the “controllability” matrix?

12



Controllability matrix

 If you can write it in CCF, then the system equations must be
linearly independent.

 Transformation by any nonsingular matrix preserves the
controllability of the system.

» Thus, a nonsingular controllability matrix means x can be
driven to any value.

Why is this “Kind of awesome™?

» The controllability of a system depends on the particular set of
states you chose

* You can’t tell just from a transfer function whether all the
states of x are controllable

» The poles of the system are the Eigenvalues of F, (p;).

13



State evolution

 Consider the system matrix relation:
x =Fx+ Gu
y=Hx+Ju

The time solution of this system is:
t

x(t) = eFt=to) x(ty) + f = eF(t=?) Gu(r)dr
to
If you didn’t know, the matrix exponential is:

1 1
eKt =1+ Kt +5K2t2 +§K3t3 +

Great, so how about control?

» Given x = Fx + Gu, if we know F and G, we can design a
controller u = —Kx such that
eig(F — GK) <0

* Infact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

14



Example: PID control

» Consider a system parameterised by three states:
- X1,X2,X3
— where x, = x; and x3 = x,

1
x= 1
—2

y=1[0 1 O0]x+0u

x — Ku

X, 1s the output state of the system;
x11s the value of the integral;
x5 1S the velocity.

» We can choose K to move the eigenvalues of the system
as desired:
1-K;
det 1-K, =0
—2 — K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

15



Just scratching the surface

« There is a lot of stuff to state-space control

* One lecture (or even two) can’t possibly cover it all in depth

Go play with Matlab and check it out!

Discretisation FTW!

» We can use the time-domain representation to produce
difference equations!

kT+T

x(kT +T) = efT x(kT) + f eFUT+T-D) Gy (7)dt
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.

We can structure this by using the form:
u(t) = u(kT), kT <t <kT+T

16



Discretisation FTW!

» Put this in the form of a new variable:
n=kT+T-—1

Then:
KT+T

x(kT +T) = efTx(kT) + <f eF”dr)> Gu(kT)
k

T

Let’s rename @ = efT and T = (f:;”rT andn) G

Discrete state matrices

So,
x(k+1) = ®dx(k) + Tu(k)
y(k) = Hx(k) + Ju(k)

Again, x(k + 1) is shorthand for x(kT + T)

Note that we can also write & as:

®=1+FTWY
where
B F F2T?
lP—I-l—i‘l' 30

17



State-space z-transform

We can apply the z-transform to our system:
(z = ®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:
Y(2)

X0~ G(z) = H(zl — @)~ 1T

State-space control design
ie.cQue pasa????

 Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:
u = —Kx
such that det(zl — ® +T'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[T &r o&o?r ... on1r] to be full-rank.

18



Solving State Space...

* Recall:

r — f ('/I;? u) t)
» For Linear Systems:
z(t)=A()z(t)+ B(@)u(l)
y(t) =C )z (t) + D () u(t)
* For LTI
— x = Ax + Bu

—y = Cz + Du

Solving State Space

+ In the conventional, frequency-domain approach the
differential equations are converted to transfer functions as
soon as possible
— The dynamics of a system comprising several subsystems is

obtained by combining the transfer functions!

 With the state-space methods, on the other hand, the
description of the system dynamics in the form of differential
equations is retained throughout the analysis and design.

19



State-transition matrix ®(t)

» Describes how the state x(t) of the system at some time t
evolves into (or from) the state x(t) at some other time T.

x(t) =D (t,7)x(7)

Solving State Space...
Time-invariant dynamics The simplest form of the general differential equation
of the form (3.1) is the ““homogeneous,” i.e., unforced equation
%= Ax (3.2)

where A is a constant k by k matrix. The solution to (3.2) can be expressed as

x(t) = e*c (33)

where e’ is the matrix exponential function

r* v
e ::1+A:+A25+ A3;+'-~ (3.4)

and ¢ is a suitably chosen constant vector. To verify (3.3) calculate the
derivative of x{r)
() _d

dli ;E;(ém)() (35)

and, from the defining series (3.4),

_‘{ Aty 2 3‘2 . 212 _ At
V= AT AT A= AT A At ) = A
Thus (3.5) becomes
dx(t
% = Aec = Ax(1)




Solving State Space

LGl

which was to be shown. To evaluate the constant ¢ suppose that at some time 7
the state x(7) is given. Then, from (3.3),

x(7) = e™e (3.6)
Multiplying both sides of (3.6) by the inverse of e”” we find that
c=(e") "'x(7)

Thus the general solution to (3.2) for the state x() at time ¢, given the state x(7)
at time 7, is

x(1) = e*(e?) 'x(7) (3.1

The following property of the matrix exponential can readily be established by
a variety of methods—the casiest perhaps being the use of the series definition
(3.4)—

e AT = gMgdh (3.8)
for any f, and t,. From this property it follows that
(e") ' =e (3.9)
and hence that (3.7) can be written

x(1) = e Vx(7) (3.10)

Solving State Space

o

The matrix e "

subsequently.

We now turn to the problem of finding a “particular” solution to the
nonhomogeneous, or ‘‘forced,” differential equation (3.1) with A and B being
constant matrices. Using the “method of the variation of the constant,”[1] we
seek a solution to (3.1) of the form

x(1) = eMe(t) (3.11)

is a special form of the state-fransition matrix to be discussed

where ¢(t) is a function of time to be determined. Take the time derivative of
x(t) given by (3.11) and substitute it into (3.1) to obtain:

AeMe(t) + eMé(1) = Ae™e(t) + Bu(t)

or, upon cancelling the terms A e*'c(¢) and premultiplying the remainder by

e —Al’

é(t) = e ™Bu(1) (3.12)
Thus the desired function ¢(t) can be obtained by simple integration (the
mathematician would say “by a quadrature™)

e(1) = J"_e”“Bu(;\) dA

The lower limit T on this integral cannot as yet be specified, because we will
need to put the particular solution together with the solution to the

21



Solving State Space

LGl

homogeneous equation to obtain the complete (general) solution. For the
present, let T be undefined. Then the particular solution, by (3.11), is

1 t
x(r) = e™ J e ™Bu(A) dx = J AN BY (L) dA (3.13)
T T

In obtaining the second integral in (3.13), the exponential e®, which does not
depend on the variable of integration A, was moved under the integral, and
property (3.8) was invoked to write gMlg Mo pALER),

The complete solution to (3.1) is obtained by adding the “complementary
solution” (3.10) to the particular solution (3.13). The result is

x(t) = e*\("’)x(r)‘FJ- M Bu(n) di (3.14)
F
We can now determine the proper value for lower limit T on the integral. At
t =7 (3.14) becomes
x(7) = x(7r) + J e M Bu(A) dr (3.15)
-

Thus, the integral in (3.15) must be zero for any u(r), and this is possible only
if T = 7. Thus, finally we have the complete solution to (3.1) when A and B are
constant matrices

x(1) =™ Vx(r) + j e By () da (3.16)

T

Solving State Space

This important relation will be used many times in the remainder of the book.
Tt is worthwhile dwelling upon it. We note, first of all, that the solution is the
sum of two terms: the first is due to the “initial’ state x(7) and the second—
the integral—is due to the input u(7) in the time interval r = A = ¢ between the
“initial” time 7 and the “present” time f The terms initial and present are
enclosed in quotes to denote the fact that these are simply convenient defini-
tions. There is no requirement that ¢t = 7. The relationship is perfectly valid even
when t = 7.

Another fact worth noting is that the integral term, due to the input, is a
“convolution integral”: the contribution to the state x(r) due to the input u is
the convolution of u with e*B. Thus the function e™B has the role of the
impulse response[ 1] of the system whose output is x(f) and whose input is u(t).

If the output y of the system is not the state x itself but is defined by the
observation equation

y=Cx

then this output is expressed by

1
p(1) = Cer x(1) + J Ce* " MByu(\) dr (3.17)

T

22



Solving State Space

and the impulse response of the system with y regarded as the output is
CeA(J~A)B.

The development leading to (3.16) and (3.17) did not really require that B
and C be constant matrices. By retracing the steps in the development it is
readily seen that when B and C are time-varying, (3.16) and (3.17) generalize to

x(£) = e* x(r) + J e ul) Y ax (3.18)
and

r

y(t) = C(1) e"“‘”x(*r)-kj C(1) e MB(A)u(1) da (3.19)

T

Digital State Space:
Recall from the Last Episode ...

« Difference equations in state-space form:

x[n+ 1] = Az[n] + Bu[n]
y[n| = Can] + Duln]

» Where:
— u[n], y[n]: input & output (scalars)
— x[n]: state vector

23



Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

% =Fx + Gu, (6.1)
and (2.44),

y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k + 1) = ®x(k) + Tu(k),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /n eF1dnG, (6.4b)

Can you use this for more than Control?

*Yes

24



Frequency Response in State Space

1

Hiz)=C(zI-A)'B+D=——
10022 — 2002 + 80

Poles at == 0.55, 1.45.

Eigenvalues of A:

1.1,1.45, .55 : %

What are the (physical)
implications?

The Approach:

» Formulate the goal of control as an optimization (e.g. minimal impulse response,
minimal effort, ...).

* You’ve already seen some examples of optimization-based design:

— Used least-squares to obtain an FIR system which matched (in the least-squares sense)
the desired frequency response.

— Poles/zeros lecture: Butterworth filter

Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

,
. 08
06
8" 0
2 2
T 04 = O X
2 = o2
= 0.4r -0.4
-06
02t -08
-1
% 1 5 6 -1 05 05 1

2 3 4
Frequency (rad/sec)




“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

’
’ 0.8
0.6
L 0.4
8 08 X
5 o 02
= @
c 06 c 0 O
g = -0z
= 0.4 -0.4 ' X
-0.6
0.2f -0.8
-1
0 , .
0 1 2 3 4 5 3 -1 -05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

Magnitude

I
s
T

0.2

0 1

2 3 4
Frequency (rad/sec)
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

;
] 0.8
06 X
L 0.4
g 0.8
S o 02 X
= @
c 0.6 c 0 O
@ = oz X
= 0.4 -0.4 .
-06 : X
0.2+ -0.8 :
-1
0 .
0 1 5 6 -1 -0.5 0.5 1

2 3 4
Frequency (rad/sec)

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

;
; 0.8
0.6 X
L 0.4
g 0.8 %
S o 0.2
2
T 06 g 0 O
=) £
© -0.2
=04 ~0.4
-06 X
0.2¢ -08
-1
o )
0 1 5 6 -1 0.5 0.5 1

2 3 4
Frequency (rad/sec)
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
; 08
06 X
F 04
2 0.8 X
S = 02 %
'C 06 = O x
= — 02
= 0.4+ -0.4 X
-06 :
X
0.2} -08 .
-1
0 . : ,
0 1 2 3 4 5 6 -1 -05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
,
1 0.8
0.6 X
o 08 0.4 X
o 0.2 X
=1 (o))
= E o O X
% — -02 b
= 0.4F -0.4 X
-06 -
0.2r -0.8 X
-1
o ‘ : ‘
0 1 2 3 4 5 6 -1 -0.5 0 05 1
Frequency (rad/sec) Real
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How?

» Constrained Least-Squares ...
One formulation: Given z[0]

minimize  ||@]|>. where @ =

w0 u[l],...,u[N]

subjectto  x[N] = 0.

Note that

n—1

wln] = A™e[0) + > AU Bulk),

k=0
so this problem can be written as

P 9 .
minimize || Ajszs — bis||© subjectto  Cigxys = Dys.
I
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