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Lecture Schedule: 
Week Date Lecture Title 

1 
4-Mar Introduction & Systems Overview 

6-Mar [Linear Dynamical Systems] 

2 
11-Mar Signals as Vectors & Systems as Maps 

13-Mar [Signals] 

3 
18-Mar Sampling & Data Acquisition & Antialiasing Filters 

20-Mar [Sampling] 

4 
25-Mar System Analysis & Convolution 

27-Mar [Convolution & FT]  

5 
1-Apr Frequency Response & Filter Analysis 

3-Apr [Filters] 

6 
8-Apr Discrete Systems & Z-Transforms 

10-Apr [Z-Transforms] 

7 
15-Apr Introduction to Digital Control 

17-Apr [Feedback] 

8 
29-Apr Digital Filters 

1-May [Digital Filters] 

9 
6-May Digital Control Design 

8-May [Digitial Control] 

10 13-May Stability of Digital Systems 
15-May [Stability] 

11 
20-May State-Space 

22-May Controllability & Observability 

12 
27-May PID Control & System Identification 

29-May Digitial Control System Hardware 

13 
3-Jun Applications in Industry & Information Theory & Communications 

5-Jun Summary and Course Review 
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• Lab 3: Next week (Weeks 10-11) 
• PS 3: Due Tomorrow 
• PS 2: Initial Finalization done 
• ELEC 7312 Students: 

– Final Paper Review Due 23/6/2014 by 11:59pm 
– Details to be out later this week 

• Final Exam: 
– 15 Questions (60% Short Answer, 40% Regular Problems) 
– 3 Hours 
– Closed-book 
– Yes, it has an unexpected twist at the end, but you’ll like it.   

• Final Exam Logistics: 
– Saturday 21/6/2014 at 4:30pm 
– Location: TBA 
– Should we do this METR4202 Style? 
 
 
  
 

 
 
 
 

 

 
 

 
 

 

Announcements: 

! 
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PS 2 Bloopers 
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Recap from METR4201 / Paul’s Lecture: 
Some cases for control design 
 

 

The system… 
– Isn’t fast enough 

– Isn’t damped enough 

– Overshoots too much 

– Requires too much control action 

(“Performance”) 

 

– Attempts to spontaneously disassemble itself 

(“Stability”) 
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Designing in the Purely Discrete… 
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Recall dynamic responses 
• Ditto the z-plane: 

Img(z) 

Re(z) 

   

“More unstable” 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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Dynamic compensation 
• We can do more than just apply gain! 

– We can add dynamics into the controller that alter the open-loop 

response 

 

 

1

𝑠(𝑠 + 1)
 𝑠 + 2 

u -y y 
compensator plant 

𝑠 + 2

𝑠(𝑠 + 1)
 

y -y 
combined system 

Increasing k 

Img(s) 

Re(s) 

13 May 2014 - ELEC 3004: Systems 8 



5 

• Recognise the following: 
– A root locus starts at poles, terminates at zeros  

–  “Holes eat poles” 

– Closely matched pole and zero dynamics cancel 

– The locus is on the real axis to the left of an odd number of poles 

(treat zeros as ‘negative’ poles) 

But what dynamics to add? 

Img(s) 

Re(s) 
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Some standard approaches 
• Control engineers have developed time-tested strategies for 

building compensators 

• Three classical control structures: 
– Lead 

– Lag 

– Proportional-Integral-Derivative (PID) 
(and its variations: P, I, PI, PD) 

 

How do they work? 
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Lead/lag compensation 
• Serve different purposes, but have a similar dynamic structure: 

 

𝐷 𝑠 =
𝑠 + 𝑎

𝑠 + 𝑏
 

 

Note: 

Lead-lag compensators come from the days when control engineers 

cared about constructing controllers from networks of op amps using 

frequency-phase methods.  These days pretty much everybody uses 

PID, but you should at least know what the heck they are in case 

someone asks. 
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Lead compensation: a < b 
 

 

 
 

 

 

 

 

 

 

• Acts to decrease rise-time and overshoot 
– Zero draws poles to the left; adds phase-lead 

– Pole decreases noise 

• Set a near desired 𝜔𝑛; set b at ~3 to 20x a 

Img(s) 

Re(s) 

Faster than 

system dynamics 

Slow open-loop 

plant dynamics 

-a -b 
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Lag compensation: a > b 
 

 

 
 

 

 

 

 

 

 

• Improves steady-state tracking 
– Near pole-zero cancellation; adds phase-lag 

– Doesn’t break dynamic response (too much) 

• Set b near origin; set a at ~3 to 10x b 

Img(s) 

Re(s) 

Very slow 

plant 

dynamics 

-a -b 

Close to pole 
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• Proportional-Integral-Derivative control is the control 

engineer’s hammer* 
– For P,PI,PD, etc. just remove one or more terms 

 

C s =  𝑘 1 +
1

𝜏𝑖𝑠
+ 𝜏𝑑𝑠  

 

 

 

 

 

 

 
 

*Everything is a nail.  That’s why it’s called “Bang-Bang” Control  

 

 

 

PID – the Good Stuff 

Proportional 

Integral 

Derivative 
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PID – the Good Stuff 
• PID control performance is driven by three parameters: 

– 𝑘: system gain 

– 𝜏𝑖: integral time-constant 

– 𝜏𝑑: derivative time-constant 

 

You’re already familiar with the effect of gain. 

What about the other two? 
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Integral 
• Integral applies control action based on accumulated output 

error 
– Almost always found with P control 

• Increase dynamic order of signal tracking 
– Step disturbance steady-state error goes to zero 

– Ramp disturbance steady-state error goes to a constant offset 

 

Let’s try it! 
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Integral 

• Consider a first order system with a constant load 

disturbance, w; (recall as 𝑡 → ∞, 𝑠 → 0) 

𝑦 = 𝑘
1

𝑠 + 𝑎
(𝑟 − 𝑦) + 𝑤 

(𝑠 + 𝑎)𝑦 = 𝑘 (𝑟 − 𝑦) + (𝑠 + 𝑎)𝑤 

𝑠 + 𝑘 + 𝑎 𝑦 = 𝑘𝑟 + 𝑠 + 𝑎 𝑤 

𝑦 =
𝑘

𝑠 + 𝑘 + 𝑎
𝑟 +

(𝑠 + 𝑎)

𝑠 + 𝑘 + 𝑎
𝑤 

 

1

𝑠 + 𝑎
 𝑘 S y r 

u e - + 
S 

w 
Steady state gain = a/(k+a) 

(never truly goes away) 
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Now with added integral action 

𝑦 = 𝑘 1 +
1

𝜏𝑖𝑠

1

𝑠 + 𝑎
(𝑟 − 𝑦) + 𝑤 

 

𝑦 = 𝑘
𝑠 + 𝜏𝑖

−1

𝑠

1

𝑠 + 𝑎
(𝑟 − 𝑦) + 𝑤 

 

𝑠 𝑠 + 𝑎 𝑦 = 𝑘 𝑠 + 𝜏𝑖
−1 𝑟 − 𝑦 + 𝑠 𝑠 + 𝑎 𝑤 

 

𝑠2+ 𝑘 + 𝑎 𝑠 + 𝜏𝑖
−1 𝑦 = 𝑘 𝑠 + 𝜏𝑖

−1 𝑟 + 𝑠 𝑠 + 𝑎 𝑤 
 

𝑦 =
𝑘 𝑠 + 𝜏𝑖

−1

𝑠2+ 𝑘 + 𝑎 𝑠 + 𝜏𝑖
−1

𝑟 +
𝑠 𝑠 + 𝑎

𝑘 𝑠 + 𝜏𝑖
−1

𝑤 

 

 

 

 

1

𝑠 + 𝑎
 𝑘 1 +

1

𝜏𝑖𝑠
 S y r 

u e - + 
S 

w 

𝑠 

Must go to zero 

for constant w! 

Same dynamics 

13 May 2014 - ELEC 3004: Systems 18 



10 

Derivative 
• Derivative uses the rate of change of the error signal to 

anticipate control action 
– Increases system damping (when done right) 

– Can be thought of as ‘leading’ the output error, applying 

correction predictively 

– Almost always found with P control* 

*What kind of system do you have if you use D, but don’t care 

about position?  Is it the same as P control in velocity space? 

13 May 2014 - ELEC 3004: Systems 19 

Derivative 
• It is easy to see that PD control simply adds a zero at 𝑠 = − 1

𝜏
𝑑

  

with expected results 
– Decreases dynamic order of the system by 1 

– Absorbs a pole as 𝑘 → ∞ 

• Not all roses, though: derivative operators are sensitive to 

high-frequency noise 

 

𝜔 

𝐶(𝑗𝜔)  

Bode plot of 

a zero 
1
𝜏𝑑
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PID 
• Collectively, PID provides two zeros plus a pole at the origin 

– Zeros provide phase lead 

– Pole provides steady-state tracking 

– Easy to implement in microprocessors 

• Many tools exist for optimally tuning PID 
– Zeigler-Nichols 

– Cohen-Coon 

– Automatic software processes 
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Be alert 
• If gains and time-constants are chosen poorly, all of these 

compensators can induce oscillation or instability. 

 

• However, when used properly, PID can stabilise even very 

complex unstable third-order systems 
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Now in discrete 
• Naturally, there are discrete analogs for each of these controller 

types: 

Lead/lag: 
1−𝛼𝑧−1

1−𝛽𝑧−1
 

PID: 𝑘 1 + 
1

𝜏𝑖(1−𝑧
−1)

+ 𝜏𝑑(1 − 𝑧−1)  

 

But, where do we get the control design parameters from? 

The s-domain? 
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Emulation vs Discrete Design 
• Remember: polynomial algebra is the same, whatever symbol 

you are manipulating: 

 eg. 𝑠2+ 2𝑠 + 1 = 𝑠 + 1 2 

  𝑧2+ 2𝑧 + 1 = 𝑧 + 1 2 

Root loci behave the same on both planes! 

• Therefore, we have two choices: 

– Design in the s-domain and digitise (emulation) 

– Design only in the z-domain (discrete design) 
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1. Derive the dynamic system model ODE 

2. Convert it to a continuous transfer function 

3. Design a continuous controller 

4. Convert the controller to the z-domain 

5. Implement difference equations in software 

Emulation design process 

Img(s) 

Re(s) 

Img(s) 

Re(s) 

Img(z) 

Re(z) 
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Emulation design process 
• Handy rules of thumb: 

– Use a sampling period of 20 to 30 times faster than the closed-

loop system bandwidth 

– Remember that the sampling ZOH induces an effective T/2 delay 

– There are several approximation techniques: 
• Euler’s method 

• Tustin’s method 

• Matched pole-zero 

• Modified matched pole-zero 
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Tustin’s method 
• Tustin uses a trapezoidal integration approximation (compare 

Euler’s rectangles) 

• Integral between two samples treated as a straight line: 

𝑢 𝑘𝑇 = 𝑇
2
 𝑥 𝑘 − 1 + 𝑥(𝑘)  

Taking the derivative, then z-transform yields: 

 𝑠 =
2

𝑇

𝑧−1

𝑧+1
 

 

which can be substituted into continuous models 

(𝑘 − 1)𝑇 

x(tk) 

x(tk+1) 

𝑘𝑇 
13 May 2014 - ELEC 3004: Systems 27 

Matched pole-zero 
• If 𝑧 = 𝑒𝑠𝑇, why can’t we just make a direct substitution and go 

home? 
 

𝑌(𝑠)

𝑋(𝑠)
=

𝑠+𝑎

𝑠+𝑏
         

𝑌(𝑧)

𝑋(𝑧)
=

𝑧−𝑒−𝑎𝑇

𝑧−𝑒−𝑏𝑇
 

• Kind of! 
– Still an approximation 

– Produces quasi-causal system (hard to compute) 

– Fortunately, also very easy to calculate. 
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Matched pole-zero 
The process: 

1. Replace continuous poles and zeros with discrete equivalents: 

(𝑠 + 𝑎)       (𝑧 − 𝑒−𝑎𝑇) 
 

 

2. Scale the discrete system DC gain to match the continuous 

system DC gain 

 

3. If the order of the denominator is higher than the enumerator, 

multiply the numerator by (𝑧 + 1) until they are of equal 

order* 
 

* This introduces an averaging effect like Tustin’s method 
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Modified matched pole-zero 
• We’re prefer it if we didn’t require instant calculations to 

produce timely outputs 

• Modify step 2 to leave the dynamic order of the numerator one 

less than the denominator 
– Can work with slower sample times, and at higher frequencies 
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Discrete design process 

1. Derive the dynamic system model ODE 

2. Convert it to a discrete transfer function 

3. Design a digital compensator 

4. Implement difference equations in software 

5. Platypus Is Divine! 

Img(z) 

Re(z) 

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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• Handy rules of thumb: 
– Sample rates can be as low as twice the system bandwidth  

• but 5 to 10× for “stability” 

• 20 to 30 × for better performance 

 

– A zero at 𝑧 = −1 makes the discrete root locus pole behaviour 

more closely match the s-plane 

 

– Beware “dirty derivatives” 
• 𝑑𝑦 𝑑𝑡  terms derived from sequential digital values  are called ‘dirty 

derivatives’ – these are especially sensitive to noise! 

• Employ actual velocity measurements when possible 

 

 

Discrete design process 
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Direct Design: 
Second Order Digital Systems 
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Response of 2nd order system [1/3] 
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Response of 2nd order system [2/3] 
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Response of 2nd order system [3/3] 
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• Response of a 2nd order system to increasing levels of damping: 

2nd Order System Response  
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Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 
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𝑧 = 𝑒𝑠𝑇  where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 
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• Poles inside the unit circle 

are stable 

 

• Poles outside the unit circle 

unstable 

 

• Poles on the unit circle 

are oscillatory 

 

• Real poles at 0 < z < 1 

give exponential response 

 

• Higher frequency of 

oscillation for larger  

 

• Lower apparent damping 

for larer  and r 

Pole positions in the z-plane 
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%): 

 

• Overshoot:  

 

• Settling time (to 1%):  

 

• Steady state error to unit step:  

ess 

• Phase margin:  
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Characterizing the step response: 

 

 

2nd Order System Specifications 

• Rise time (10%   90%)  & Overshoot:  

   tr, Mp  ζ, ω0 : Locations of dominant poles 

• Settling time (to 1%):  

   ts  radius of poles: 

• Steady state error to unit step:  

ess  final value theorem  

13 May 2014 - ELEC 3004: Systems 41 

Design a controller for a system with: 

• A continuous transfer function: 

• A discrete ZOH sampler  

• Sampling time (Ts):  Ts= 1s 

• Controller:  

 

 

The closed loop system is required to have: 

• Mp < 16% 

• ts < 10 s 

• ess < 1 

 

Ex: System Specifications  Control Design [1/4] 
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Ex: System Specifications  Control Design [2/4] 
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Ex: System Specifications  Control Design [3/4] 
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Ex: System Specifications  Control Design [4/4] 
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LTID Stability 
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Characteristic roots location  
and the corresponding characteristic modes [1/2] 
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Characteristic roots location  
and the corresponding characteristic modes [2/2] 
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S-Plane to z-Plane [1/2] 
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S-Plane to z-Plane [2/2] 
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Relationship with s-plane poles and z-plane transforms 
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• For small T: 

 

 

 

 

• Hence, the unit circle under the map from z to s-plane becomes: 

 

 

Fast sampling revisited 
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Specification bounds 
• Recall in the continuous domain, response performance 

metrics map to the s-plane: 

Img(s) 

Re(s) 

𝑠 =
4.6

𝑡𝑠
 

𝑠 = 𝜎 

Img(s) 

Re(s) 

𝜃 = sin−1𝜁 

𝜃 

Img(s) 

Re(s) 

𝑠 =
1.8

𝑡𝑟
 

𝜔𝑛 = 𝑠  
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• These map to the discrete domain: 

 

 

 

 

 

 

 

 

 

 
In practice, you’d use Matlab to plot these, and check that the spec is satisfied 

Discrete bounds 

Img(z) 

Re(z) 

𝑧 = 𝑒−𝑡𝑠𝑇 

𝑧  

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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%% Input System Model G  

numg=5; deng=[1 20 0]; sysg=tf(numg, deng);  

 

%% Approximate the ZOH (1-e^-sT)/(s)  

[nd, dd]=pade(1,2);  %pade gives us the "hold" or -e^-sT of a ZOH  

sysp=tf(nd, dd); sysi=tf([1],[1,0]); %Now we need the "1/s" portion  

sys1=series(1-sysp, sysi); % Approximation as a series  

 

%% Open loop response 

syso=series(sys1, sysg); % computer the open loop G with the ZOH  

sys=feedback(syso,1); % Computer the unity feedback response  

step(sys) % Display the step response 

Example Code: 
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