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Announcements:

Lab 3: Next week (Weeks 10-11) l
PS 3: Due Tomorrow

PS 2: Initial Finalization done

ELEC 7312 Students:

— Final Paper Review Due 23/6/2014 by 11:59pm

— Details to be out later this week

Final Exam:

— 15 Questions (60% Short Answer, 40% Regular Problems)

— 3 Hours

— Closed-book

— Yes, it has an unexpected twist at the end, but you’ll like it. ©
Final Exam Logistics:

— Saturday 21/6/2014 at 4:30pm

— Location: TBA

— Should we do this METR4202 Style?

PS 2 Bloopers

Ummm. .. 57

Answer for ‘answered 2 limes, estimated grade: 10/ 10):

Marker Grade Comment Confidence
(Peer) 210 Na effort is seer X/5
(Peer) 0/10 Need more effort.. 5/5

(Peer) 0/10 oo 5/56

{Tutor) 0/10




Recap from METR4201 / Paul’s Lecture:
Some cases for control design

The system...
— Isn’t fast enough
— Isn’t damped enough
— Overshoots too much
— Requires too much control action
(“Performance”)

— Attempts to spontaneously disassemble itself
(“Stability”)

Designing in the Purely Discrete...

Analyse/design a discrete controller D(z):
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by considering the purely discrete time system:
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Closed loop system tranfer function: = - -
R(z) 14 G(z)D(z)

How do the closed loop poles relate to — stability?

— performance?




Recall dynamic responses

« Ditto the z-plane:
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Dynamic compensation

» We can do more than just apply gain!

— We can add dynamics into the
response
compensator plant
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But what dynamics to add?

» Recognise the following:
— Aroot locus starts at poles, terminates at zeros
“Holes eat poles”
— Closely matched pole and zero dynamics cancel
— The locus is on the real axis to the left of an odd number of poles
(treat zeros as ‘negative’ poles)
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Some standard approaches

« Control engineers have developed time-tested strategies for
building compensators
e Three classical control structures:
— Lead
— Lag
— Proportional-Integral-Derivative (PID)
(and its variations: P, I, P1, PD)

How do they work?




Lead/lag compensation

« Serve different purposes, but have a similar dynamic structure:

Ss+a

D(s)=s+b

Note:

Lead-lag compensators come from the days when control engineers
cared about constructing controllers from networks of op amps using
frequency-phase methods. These days pretty much everybody uses
PID, but you should at least know what the heck they are in case

someone asks.

Lead compensation: a<b

Faster than
system dynamics Img(s)
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plant dynamics
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« Acts to decrease rise-time and overshoot
— Zero draws poles to the left; adds phase-lead
— Pole decreases noise

* Set a near desired w,,; set b at ~3 to 20x a




Lag compensation: a>b

Very slow ‘ Img(s)

Close to pole \\
VM
LR 1
plant -a -b
dynamics
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» Improves steady-state tracking
— Near pole-zero cancellation; adds phase-lag
— Doesn’t break dynamic response (too much)

» Set b near origin; setaat ~3to 10x b

PID — the Good Stuff

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

Proportional I, ]
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©




PID — the Good Stuff

» PID control performance is driven by three parameters:
- k: system gain
- ;. integral time-constant
- 1, derivative time-constant

You’re already familiar with the effect of gain.
What about the other two?

Integral

« Integral applies control action based on accumulated output
error
— Almost always found with P control
* Increase dynamic order of signal tracking
— Step disturbance steady-state error goes to zero
— Ramp disturbance steady-state error goes to a constant offset

Let’s try it!




Integral

 Consider a first order system with a constant load
disturbance, w; (recall as t - o, s —= 0)

=k -
y=k o =y +w
_ k N (s+a)
y_s+k+ar s+k+aW
Steady state gain = a/(k+a) |

+ - €

(never truly goes away) '
u 1
r k —> —>Yy
s+a

Now with added integral action

1 1
=k(1+— -y)+
Y < Tl-s>s+a(r n+w

Same dynamics

k(s + 1) s(s +a)

= r I w
Must go to zero Y (s2+ (k+a)s+=~ k(s -|Jri-1)

for constant w!

w
+ - € 1 u 1
r k<1+—> —>Yy
us st+a
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Derivative

 Derivative uses the rate of change of the error signal to
anticipate control action
— Increases system damping (when done right)
— Can be thought of as ‘leading’ the output error, applying
correction predictively
— Almost always found with P control*

*What kind of system do you have if you use D, but don t care
about position? Is it the same as P control in velocity space?

Derivative

« ltis easy to see that PD control simply adds a zero at s = —Tl

with expected results '
— Decreases dynamic order of the system by 1
— Absorbs a pole as k — oo

 Not all roses, though: derivative operators are sensitive to
high-frequency noise

IC(w)l /
1

Bode plot of
a zero

w
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PI1D

 Collectively, PID provides two zeros plus a pole at the origin
— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors
» Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

Be alert

« If gains and time-constants are chosen poorly, all of these
compensators can induce oscillation or instability.

» However, when used properly, PID can stabilise even very
complex unstable third-order systems

11



Now in discrete

 Naturally, there are discrete analogs for each of these controller
types:

PR .
ead/lag.

J 1-Bz~1

. -1
PID: k(1+ i t =2 )

But, where do we get the control design parameters from?
The s-domain?

Emulation vs Discrete Design

* Remember: polynomial algebra is the same, whatever symbol
you are manipulating:
eg. s?+2s+1=(s+1)?
7224+ 2z+1=(z+1)>
Root loci behave the same on both planes!
« Therefore, we have two choices:

— Design in the s-domain and digitise (emulation)
— Design only in the z-domain (discrete design)




Emulation design process

Derive the dynamic system model ODE
Convert it to a continuous transfer function
Design a continuous controller

Convert the controller to the z-domain
Implement difference equations in software

arwnh e

Img(s) Img(s) 1 Img@)

Re(s) @ Re(s) %%_» Re(z)

Emulation design process

» Handy rules of thumb:
— Use a sampling period of 20 to 30 times faster than the closed-
loop system bandwidth
— Remember that the sampling ZOH induces an effective T/2 delay

— There are several approximation techniques:
 Euler’s method
¢ Tustin’s method
 Matched pole-zero
» Modified matched pole-zero

13



Tustin’s method

 Tustin uses a trapezoidal integration approximation (compare
Euler’s rectangles)
* Integral between two samples treated as a straight line:
u(kT) = Z [x(k — 1) + x(k)]
Taking the derivative, then z-transform yields:

_2z71
T 1 .
z X(tk+1) ‘///
which can be substituted into continuous models
X(t)
(k=T kT

Matched pole-zero

 If z = 5T, why can’t we just make a direct substitution and go
home?

Y(s) _ s+a i> Y(z) z—e 9T
X(s)  s+b X(z)  z—e-bT
« Kind of!
— Still an approximation
— Produces quasi-causal system (hard to compute)
— Fortunately, also very easy to calculate.

14



Matched pole-zero

The process:
1. Replace continuous poles and zeros with discrete equivalents:

(s + a)g> (z — e~T)

2. Scale the discrete system DC gain to match the continuous
system DC gain

3. If the order of the denominator is higher than the enumerator,

multiply the numerator by (z + 1) until they are of equal
order*

* This introduces an averaging effect like Tustin’s method

Modified matched pole-zero

» We’re prefer it if we didn’t require instant calculations to
produce timely outputs

* Modify step 2 to leave the dynamic order of the numerator one
less than the denominator
— Can work with slower sample times, and at higher frequencies

15



Discrete design process

Derive the dynamic system model ODE
Convert it to a discrete transfer function
Design a digital compensator

Implement difference equations in software
Platypus Is Divine!

ok e

4. Img(2) 4 Img(2) o Img(@)

Re(z)

Re(z) ,7_@_. Re(2)

Discrete design process

» Handy rules of thumb:

— Sample rates can be as low as twice the system bandwidth
* but 5to 10x for “stability”
20 to 30 x for better performance

— A zero at z = —1 makes the discrete root locus pole behaviour
more closely match the s-plane

— Beware “dirty derivatives”
e dy/dt terms derived from sequential digital values are called ‘dirty
derivatives’ — these are especially sensitive to noise!
« Employ actual velocity measurements when possible

16



Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e”* cos(bt) U(t) (U(t) = unit step)
+ sample:  y(kT) = r* cos(k8) U(ET) with r = e T & § =0T

1 z 1 z

2 (z — rei?) *3 (z —re—d¥)
z(z —rcosf)

T (z—rei?)(z — re—i?)

* transform: Y'(z) =

Im(z)A
* e.g. yi is the pulse response of G(z): ) .
z(z — rcosf) '
G(z) = - . X
() (z —rei?)(z — re—i9) : re
oo [ 7= rei? ﬁé;—.‘g—e—]b Re(z)
poles: { z=re I !
zeros: { = 0 *
’ { z =rcosl
Response of 2nd order system [1/3]
Responses for varying r: 1
r=0."7
oor<l 05y 6=m/4]
+ of ) e ——
exponentially decaying T T
envelope 05 2 2 6 8 10
sample k
bor=1 S '

A
- ~
0.5 \
+
= Of

sinusoidal response

. r=1.0
with 27 /6 samples o5t e
. ) P #=m/4
per period 4 . e . .
0 2 4 6 8 10
sample k
= r>1 10
A
N N ) 5 A \
exponentially increasing - \
P N
envelope of T r=13%
-
e 6=m/4
0 2 4 6 8 10
sample k

17



Response of 2nd order system [2/3]

Responses for varying 8: 1
r=0.7
> #=0 = 05} S =0
4 \q‘---'-""ﬂ--.,__r_
decaying exponential 0 ‘ ‘ +""‘f--f—+_7_*_ |
0 2 4 6 8 10
sample k
g o 1 \ T
> H=m/2 \ r=0.7
[} ) 0.5r \_\ 0= ?T,"Q_
2r /0 =4 samples. ok . /K\P ]
per period -
05 2 1 6 8 10
sample k
=3 f=m ! I
05t *
A / .
- x \ / . _
2 samples per period = 0p // \/\\L,f‘ " "’"E]-’T“
r=0.
—05f N/
¥ f=m
o 2 8 10

sample k

Response of 2nd order system [3/3]

Some special cases:

> for # =0, Y(z) simplifies to:

Y(z) =
— exponentially decaying response

> whenf#=0and r=1:

— unit step

> when r =0:

— unit pulse

> whenf=0and -1 <r<0:

samples of alternating signs

18



2" Order System Response

0.8F

0.6F
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 Response of a 2" order system to increasing levels of damping:

Damping and natural frequency

z=eSTwheres = —(w, + jwp/1 — {2

10 -

,,,,,,,,,,,,,,

0.8~

06/

0.4 -

,,,,,,,,,,,,,

————————————————————————————————

-0.6

-04 -02 0 0.2 0.4 0.6

[Adapted from Franklin, Powell and Emami-Naeini]
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Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle
unstable

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r

2" Order System Specifications

Characterizing the step response:

N

"4 xﬂ(7777:-,‘—=— _____ T__

v

+ Rise time (10% - 90%): mf

e

. . My =
Overshoot: v -

* Settling time (to 1%): ¢, = ﬂ
Cwo

+ Steady state error to unit step:
eSS
+ Phase margin:

dppr =~ 100¢

20



2" Order System Specifications

Characterizjng the step response:

v *1%

u,& "4 \—T‘(_—_—H_ __:-_—T—::

0.1

>

* Risetime (10% -> 90%) & Overshoot:
t, M, 2 { o, : Locations of dominant poles
» Settling time (to 1%):
t, = radius of poles: |- <co1%
» Steady state error to unit step:
e, > final value theorem ¢, = lim (=~ 1) F(2)}

Ex: System Specifications = Control Design [1/4]

Design a controller for a system with:
« A continuous transfer function: & (s) =
» A discrete ZOH sampler
« Sampling time (T,): T,=1s
+ Controller:
UL = —O.5uk71 + 13 (ek - 0.8861{:71)

0.1
s(s+0.1)

The closed loop system is required to have:
« M, <16%

+ t,<10s

¢ eSS< 1

21



Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G/(s) plus the ZOH

¥ e Uy | ) ) 3L 0)) y
o o P e L g [
- i G@) i

o) === 2{ S0 = B2 )

e.g. look up Z{a/s*(s +a)} in tables:

) = (= —1) z((().l —14+e 0 (1 — e — 0.1670'1))
z 0.1(z—1)2(z — e 01)
0.0484(z 4 0.9672)
T (z=1)(z = 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z)
E(z)

(1-088z71) 4 (z—088)

= D) =13 (1+052-1) — 7 (z+0.5)

Ex: System Specifications = Control Design [3/4]

2. Check the steady state error e, when 7, = unit ramp

ess = lim ep = lim (2 — 1)E(z)
k— oo z—1

R E U Y E@z) _ LI
4_'_.?_, D(z) G(z2) » R(z) 1+ D(2)G(»)
- Tz
B(‘:) - (2 _ 1)2
Tz 1 T
s = li z—1 = lim ———
0 e =l (E DT e T D(;)G(;)} 2GS 1D)D(R)GR)
= 111m =
z 0.0484(z + 0.9672 @
(= — 1)(z — 0.9048) 5
T 6f-
1 —0.9048 =
= = 0.96 ]
0.0484(1 + 0.9672)D(1) ’ B
s of-
—> ess <1 (as required) ©
0

5
Time (sec)
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Ex: System Specifications = Control Design [4/4]

3. Step response: overshoot M, < 16% == (¢ > 0.5
settling time t, < 10 = |z] < 0.01"/*° = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
(2 — 0.88) 0.0484(z + 0.9672)
(z+0.5) (z—1)(» —0.9048)
z=10.88, —0.050 £ ;0.304

1+13

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
{ r=031, =173
¢ =0.56

2= —0.050 £ j0.304 = re*7’

Output y and input u/10

4 all specs satisfied!

5
Time (sec)

LTID Stability

im Unstable

Marginally stable

Stable
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Characteristic roots location
and the corresponding characteristic modes [1/2]

LGl

Characteristic roots location
and the corresponding characteristic modes [2/2]

2
o

111 L }ulh,q“wdll

@

VA =\

,ll]]”

il
el T ||1 II

o
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S-Plane to z-Plane [1/2]

s-plane
Im(s)
ha
0
s=0 4+ jw
o = constanjt S I
I z =
|z| = ¢”T = constant
Alm(s)
0 : I Re(2)
s =04+ jw
w = constant jw
arg(z) = w1 constant

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio ¢ < 1
Im(s)

24 Cwos + wd=0

4 0
s =—Cwo£j/1—(Cwo %0 'Re(s)
cosl = ¢

=05 Alm(s)

C=0.7 -

C=05
s = —C(wo + j\/1 — (2wp: ¢ = constant 2 = e~SwoT =i/ 1=¢PwoT




Relationship with s-plane poles and z-plane transforms

If F'(s) has a pole at s = a F(s) FRT) F(2)
then F(z) has a pole at z = ¢"? -
- (kT R
s z—1
L kT ( “”
consistent with z = ¢*? ; N
1 e—akT z
s+a R
1 . P 4 Tze=oT .
. (s+a)? (z —e—aT)2
What about transfer functions?
2(1 — =T
} L[ Gls) “ joeabr  _FU )
Glz)=(1—z2 )2 —= s(s +a) (z = 1)(z —e=o7T)
s
b—1 —akT —bkT (“7”7 e M )z
-_—— € —
+ (s+a)(s+b) (z— e aT)(z — e~ bT)
If GG(s) has poles s = a; a kT zsinal
then G(z) has poles z = e*' s* + a? e 22 — (2cosal)z + 1
[). . —akT G b T . ,tz.‘ '”Thir“ b _
but the zeros are unrelated (s +a)2+ b2 z2 — 2e~2T(cos bT)z + e~ 20T

Fast sampling revisited

e Forsmall T:
N2
z=e$T=1+sT+%+...zl+sT

z—1
—zx~14s8T 5= ——
+ T

« Hence, the unit circle under the map from z to s-plane becomes:

Im(z — 1)

[N
\_/

Re(z — 1)
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Specification bounds

» Recall in the continuous domain, response performance
metrics map to the s-plane:

Img(s) 4 Img(s) Img(s)
wy, = |s| _ 9
£ X
'I
3 Re(s) Re(s) Re(s)
\\ X X
\\
S =
|S|_? g:? 6 =sin~1¢
T S

O

Discrete bounds

» These map to the discrete domain:

In practice, you’d use Matlab to plot these, and check that the spec is satisfied
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Example Code:

%% Input System Model G
numg=5; deng=[1 20 0]; sysg=tf (numg, deng);

%% Approximate the ZOH (l-e”-sT)/(s)
[nd, dd]=pade(l,2); %pade gives us the "hold" or -e”-sT of a ZOH
sysp=tf(nd, dd); sysi=tf([1],[1,0]); %Now we need the "1/s" portion

sysl=series (l-sysp, sysi); % Approximation as a series

%% Open loop response
syso=series (sysl, sysg); % computer the open loop G with the ZOH

sys=feedback(syso,1l); % Computer the unity feedback response
step(sys) % Display the step response

ELEC 3004: Systems 13 May 2014 - 55
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