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in the fact that the control response is determined from 

U(z) D 
R(z) = 1 + DG 

which for this example is 

H(z) 
G(z) , 

U(z) 13.06 z - 0.0793 (z - 1)(z - 0.9048) 
R(z) z2 - 0.7859z + 0.3679 z + 0.9672 

There is a root at z = -0.9672!. This is the source of the oscillation in the 
control response, but it did not show up in the output response because it 
was exactly canceled by a zero. The control oscillation causes the "intersam
pIe ripple" in the output response, and the designer should be alert to this 
if poorly behaved roots arise in the control response. An actual prediction 
of the output intersample ripple based on linear analysis was not possible 
with the z-transform method described so far; rather, one would need to 
apply the "modified z-transform," which is beyond the scope of this text. 
Alternatively, one can use a CAD simulation to find such oscillations quite 
easily, as was done here. To avoid this oscillation, we could introduce another 
term in H(z), b3Z-3, and require that H(z) be zero at z = -0.9672, so this 
zero of G(z) is not canceled by D(z). The result will be a simpler D(z) with 
a slightly more complicated H (z). However, rather than pursue this method 
further, we will wait until the more powerful method of pole assignment 
by state-variable analysis is developed in the next chapter, where computer 
algorithms are more readily provided. 

5.8 PID CONTROL 

Just as in continuous systems, there are three basic types of control: Propor
tional, Integral, and Derivative, hence the name, PID. In the design exam
ples so far, we have been using the discrete equivalent of lead compensation, 
which is essentially a combination of proportional and derivative control. Let 
us now review these three controls as they pertain to a discrete implementa
tion. The term PID is widely used because there are commercially available 
modules that have knobs for the user to turn that set the values of each of 
the three control types. 
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5.8.1 Proportional Control 

A discrete implementation of proportional control is identical to continuous; 
that is, where the continuous is 

u(t) = Kpe(t) => D(s) = Kp, 

the discrete is 

where e(t) is the error signal as shown in Fig 5.2. 

5.8.2 Derivative Control 

For continuous systems, derivative or rate control has the form 

where TD is called the derivative time. Differentiation can be approximated 
in the discrete domain as the first difference, that is, 

u(k) = KpTD (e(k) - e(k - 1)) 
T 

In many designs, the compensation is a sum of proportional and deriva
tive control (or PD control). In this case, we have 

or, equivalently, 

ID(Z)=K~I 
which is similar to the lead compensations that have been used in the designs 
in the previous sections. The difference is that the pole is at z = 0, whereas 
the pole has been placed at various locations along the ,z-plane real axis 
for the previous designs. In the continuous case, pure derivative control 
represents the ideal situation in that there is no destabilizing phase lag from 
the differentiation, or, equi,valently, the pole is at s = -00. This s-plane 
pole maps into z = 0 for discrete rate control; however, the z . 0 pole does 
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add some phase lag because of the necessity to wait for one cycle in order 
to compute the first difference. Any other stable pole location, whether on 
the positive or negative real axis, would also have some delay or phase lag 
associated with it for the same reason. 

5.8.3 Integral Control 

For continuous systems, we integrate the error to arrive at the control, 

u(t) = Kp it e(t)dt ::::} D(s) = Kp , 
T[ to T[s 

where T[ is called the integral, or reset time. The discrete equivalent is to 
sum all previous errors, yielding 

KT 
u(k) = u(k-1)+ ;[ e(k) ::::} 

Just as for continuous systems, the primary reason for integral control is to 
reduce or eliminate steady-state errors, but this typically occurs at the cost 
of reduced stability. 

5.8.4 PID Control 

Combining all the above yields the PID controller 

D(z) = Kp (1 + Tz + TD(Z - 1)) . 
T[(z - 1)Tz 

(5.61) 

This form of control law is able satisfactorily to meet the specifications for 
a large portion of control problems and is therefore packaged commercially 
and sold for general use. The user simply has to determine the best values 
of K p , TD, and T[. 

5.8.5 Ziegler-Nichols PID Tuning 

The parameters in the PID controller could be selected by any of the design 
methods previously discussed. However, these methods require a dynamic 
model of the process which is not always readily available. Ziegler-Nichols 
tuning is a method for picking the parameters based on fairly simple exper
iments on the process and thus bypasses the need to determine a complete 
dynamic model. 
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Figure 5.30 Process open-loop step response. 

There are two methods. The first, called the transient-response method, 
requires that a step response of the open-loop system is obtain~d which looks 
~ome~hing like that in Fig. 5.30. The response is reduced to two parameters, 
the time delay, L, and the steepest slope, R, which are defined in the figure. 
In order to achieve a damping of about ( . 0.2, the parameters are selected 
according to those in Table 5.2. 

The second method is called the stability-limit method. The system is 
first controlled using proportional control only. The gain, K p , is slowly in
creased until continuous oscillations result, at which point the gain and 
oscillation period are recorded and called Ku and Pu' The PID gains are 
then determlmid from Table 5.3. 

The rules are based on continuous systems and will apply to the discrete 
case for very fast sampling (more than 20 times the bandwidth) provided 
the designer uses the value of T in (5.61) that reflects the actual sample 
period being \.!.sed by the controller. For slower sampling, a response degra
dation similar to that in Example 5'.3 should be expected, and additional 
rate control (higher TD) would likely be required to make up for the sampling 
lag. 

Table 5.2 Ziegler-Nichols tuning 
parameters using transient response. 

P 
PI 
PID 

l/RL. 
0.9/RL 
1.2/RL 

Tr 

3L 
2L 

TD 

0.5L 
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Table 5.3 Ziegler-Nichols tuning 
parameters using stability limit. 

Kp TJ TD 

P O. 5Ku 

PI O.45Ku Pu /1.2 
PID O.6Ku Pu /2 Pu /8 

Example 5.12: Let us apply integral control to the system con
trolling temperature through mixing described in Appendix A. The 
transfer function is 

For the digital implementation, we assume a zero-order hold, sam
pling period T = 1 sec, system time constant a = 1 sec, and a 1 ~ 
period delay (Td = 1.5 sec). The transfer function for this example 
was determined in (2.42) as 

Z + 0.6065 
G3(Z) = 0.3935 2( 0 9) . 

Z Z - .367 
(5.62) 

As it stands, this transfer function has unity gain to a constant 
control and will have a steady-state error to a constant command 
or disturbance. If we assume that such behavior in the steady state 
is unacceptable, we can correct the problem by including integral 
control by using (5.60) to arrive at the effective system transfer func
tion of 

Z + 0.6065 
DG3 = 0.3935K ()( )' Z Z - 1 Z - 0.3679 

(5.63) 

where K = (KpT)/TI following (5.60). 
The root locus of this system versus K is sketched in Fig. 5.31(a) 

with the roots corresponding to K = 1 marked with a square 
and those corresponding to K = 0.3 marked with a triangle. The 
K = 0.3 roots have ( = 0.5 and, therefore, should have about a 
15% overshoot. Fig. 5.31(b) shows the step response, which verifies 
the overshoot and indicates that the system has a settling time of 
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Figure 5.31 Mixing-flow plant with pure discrete integral control: (a) root locus, 
(b) step response. 
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Figure 5.32 Mixing flow plant with lead compensation and discrete integral con
trol: (a) root locus, (b) step response. 
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ts = 18 sec. A system with an open-loop time constant of 1 sec is 
capable of a much faster response than this; however, the delay will 
cause stability problems if we ask for too much. Let's simply add 
a lead compensation in order to investigate how to speed up the 
system. One that cancels the plant pole at z = 0.3679 and the plant 
zero at z = -0.6065 is 

D L = K z - 0.3679 
z + 0.6065 

With this addition, the complete compensation becomes 

D(z) = K z{z - 0.3679) . 
(z - 1){z + 0.6065) , 

and the system open-loop transfer function reduces to 

- 1 
DG3 {z) = 0.3935K ( )' z z-1 

whose root locus versus K is sketched in Fig. 5.32{a). The triangle 
marks the location of ( = 0.5, which occurs for K = 1 and yields a 
step response as shown in Fig. 5.32{b). Note that the overshoot has 
slightly improved and the settling time has been cut in half to 9 sec. 

In this example, the transfer function was available for design 
purposes; therefore, it was possible to determine the integral control 
using the design methods discussed in Section 5.4. Had we riot had a 
model, the Zeigler-Nichols method could have been applied to help 
determine the gains. 

5.9 SUMMARY 

In this chapter we have reviewed the philosophy and specifications of the 
design of control systems by transform techniques and discussed four such 
methods. First we developed the relations between the time-domain speci
fications of overshoot, rise time, and settling time and poles in the z-plane. 
Using the theory and techniques of discrete equivalents, we then showed how 
a continuous design can be converted into a discrete design. This design pro
cess was called emulation. With a sample. rate of six times the bandwidth, 
we found that the approximation was quite coarse and would require sub
stantial adjustment to meet the design specifications. As a second design 
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approach, we discussed the root locus in the z-plane. We saw that the root 
locus is the same as for s-plane designs, but the relations to time-domain 
response must refer to the z-plane. Our third design method was based on 
frequency-response techniques. The process was carried out in the z-plane, 
where extensive reliance on a computer is required, and in the w-plane, where 
much of the experience from continuous design can be used more readily. 
Our final method was a direct transfer-function calculation wherein we found 
causality and stability constraints on an overall transfer function so that an 
acceptable compensator can be derived. Here we found that canceling poles 
near the unit circle can have undesirable effects. In the final section we 
presented a design by root locus methods for a plant which required the 
introduction of discrete integral control. 

PROBLEMS AND EXERCISES 
5.1 Use the z = e~T mapping function and prove that the curve of constant ( in 
s is a logarithmic spiral in z. 

5.2 Sketch the acceptable region in the s-plane for the specification on the antenna 
given before (5.15) and sketch the s-plane root locus corresponding to the controller 
of (5.15). 

5.3 Root locus review. The following root loci illustrate important features of the 
root locus technique. All are capable of being done by hand, and it is recommended 
that they be done that way in order to develop skills in verifying a computer's 
output. Once sketched roughly by hand, it is useful to fill in the details with a 
computer. 

a) The locus for 

is typical of the behavior near s = ° of a double integrator with lead 
compensation or a single integration with a lag network and one additional 
real pole. Sketch the locus for values of PI of 5, 9, and 20. Pay close 
attention to the real axis break-in and break-away points. 

b) The locus for 

1+K 1 
s(s + 1)((s + a)2 + 4) 

illustrates the possibility of complex multiple roots and shows the value 
of departure angles. Plot the locus for a = 0, -1, and -2. Be sure to note 
the departure angles from the complex poles in each case. 




