

This exam paper must not be removed from the venue

Venue	
Seat Number	
Student Number	
Family Name	
First Name	

School of Information Technology and Electrical Engineering EXAMINATION

Semester One Final Examinations, 2014

ELEC3004 Signals, Systems & Control

Th	is paper is for St Lucia Campus students.		
Examination Duration:	180 minutes	For Examine	r Use Only
Reading Time:	10 minutes	Question	Mark
Exam Conditions:			•
This is a Central Examination			
This is a Closed Book Examir	nation - specified materials permitted		
During reading time - write on	ly on the rough paper provided		
This examination paper will be	e released to the Library		
Materials Permitted In The E	Exam Venue:		
(No electronic aids are pern	nitted e.g. laptops, phones)		
Any unmarked paper dictiona	ry is permitted		
An unmarked Bilingual diction	ary is permitted		
Calculators - Any calculator p	ermitted - unrestricted		
One A4 sheet of handwritten	or typed notes double sided is permitted		
Materials To Be Supplied To	Students:		
1 x 6 Page Answer Booklet			
1 x 1cm x 1cm Graph Paper			
Rough Paper			
Instructions To Students:			
Please answer ALL question	ons. Thank you.		

(Total: 25%)

This exam has THREE (3) Sections for a total of 100 Points	
Section 1: Linear Signals & Systems	25 %
Section 2: Signal Processing	30 %
Section 3: Digital Control	45 %
Please answer ALL questions.	

⇒ PLEASE RECORD ALL ANSWERS IN THE ANSWER BOOKLET ←

Any material not in Answer Booklet(s) <u>will not be seen</u>. In particular, the exam paper <u>will not be graded</u> or reviewed.

Section 1: Linear Signals & Systems

Please Record Answers in the **Answer Book**

1. **Whatchamacallit?** (5%) Express the signals in the figure below by a single expression valid for all t.

2. A Fast and E-Z Fourier (5%)

Given a discrete-time unit impulse response with the following difference equation:

$$y[n] = \delta[n-3] - \delta[n+0] - \delta[n+0] + \delta[n+4]$$

- a) What is its Z-transform? (i.e., what is **Y(z)**)?
- b) What is its frequency (or Fourier) response? (i.e., what is $Y(\omega)$) [hint: for partial credit, you may leave it in terms of the phasor $e^{j\omega}$]

3. Is Digital Really Better?

(5%)

- a) Briefly give TWO advantages of digital signals over analogue signals?
- b) Briefly give TWO advantages of analogue signals over digital signals?

4. Characteristic Roots and Characteristic Modes

(5%)

For systems having the following pole-zero plots (on the **s-plane**), please sketch the corresponding zero-input response.

5. I Spy LTI?

(5%)

Please determine if the conditions can or cannot be determined. If it can be determined, then please state if it is or is not the case (please mark $a \times in$ the table [<u>in the booklet!!</u>]) [Note: Please treat each case separately. That is Case I is independent of Case II]

For **CASE I**, is the system:

	Yes	No	Indeterminate
Linear			
Time-Invariant			
Causal			

For **CASE II**, is the system:

	Yes	No	Indeterminate
Linear			
Time-Invariant			
Causal			

For **CASE III**. is the system:

	Yes	No	Indeterminate
Linear			
Time-Invariant			
Causal			

Section 2: Signal Processing

Please Record Answers in the **Answer Book** (Total: **30%**)

6. Battle of the Band(limited) Signals

(5%)

A signal f(t) is bandlimited to **B** Hz.

Show that the signal $f(t)^n$ is bandlimited to **nB** Hz.

[Hint: Start with n=2. Use frequency convolution property and the width property of convolution.]

7. Cogito Ergo Sum

(5%)

- a) <u>Briefly explain</u> (and/or show a simple sketch) what is meant by the terms *ergodic* and *ensemble* in the context of multiple stochastic digital samples or signals?
- b) Does the noise have to be "white" for the system to remain unbiased? (please **briefly explain**)

[Hint: what happens when "pink" noise is averaged?]

8. An Analogue to Filtering

(5%)

Consider a filter given by the following transfer function

$$H(s) = \frac{4\pi}{s + 4\pi}$$

- a) What is the order of H(s)?
- b) What is the cut-off frequency of H(s)?
- c) Design a low-pass digital filter, H(z), with a sampling frequency of 100 Hz, that has the same cut-off frequency as H(s).

9. A Filtered Whatchamacallit!

(5%)

What kind of compensator is described by pole-zero plots shown below. Please **<u>briefly</u> <u>iustify</u>** the conclusion using a transfer function **<u>and</u>** a rough sketch of the amplitude and phase response of the filter.

10. A-Great Filter (10%)

Design a high-pass filter for removing the **50 Hz** mains flicker from an audio signal from a guitar. The filter should have minimum transmission ≤ -120 dB (i.e., an approximate limit to human hearing). Also, the filter should not attenuate music signals from the note A-Great or higher (or more technically **110 Hz**, A₂ or "A") by more -3 dB. **The filtered audio is then played to a concert musician live on stage.**

[Note: if you need to you may assume 24-bit, 44.1-kHz sampled signals if needed]

- a) What type of filter should we use (analogue or IIR or FIR)? (Please **justify**)
- b) What order does this filter need to be?
- c) Please sketch the frequency response of this filter.

Section 3: Digital Control

Please Record Answers in the **Answer Book** (Total: **45**%)

11. A Discrete Convolution

(5%)

What is the convolution $(y_1 \circledast y_2)[n]$ between these discrete signals?

- a) $y_1[n] = \delta[n-3], y_2[n] = \delta[n+4]$
- b) $y_1[n] = \cos[2\pi n], y_2[n] = \delta[n-3]$

12. An E-Z Correspondence

(10%)

In mapping from the *s-plane* to the *z-plane*, recall that the duration of a time signal is related to the radius (of the pole location) and the sample rate is related to the angle by $z = e^{sT}$. From this we can sketch major features of the *s-plane* to the *z-plane* such that they have the same features.

For the following poles marked on the *s-plane*:

- a) "o"
- b) "Δ"
- c) "×".
- d) "~", and
- e) The axis labels (σ and $j\omega$)

please draw their corresponding locations (and/or terms) on the *z-plane*.

Please also **briefly justify** your mapping/answer.

13. **Got LTI?** (10%)

A system consists of two blocks, with the following input $\mathbf{u}(t)$ and output $\mathbf{y}(t)$ pairs:

- a) Please provide a transfer function, $H_1(s)$ and $H_1(z)$ for y_1 given u_1 .
- b) Is the entire system (H₁H₂) LTI? (please briefly explain)
- c) If it is LTI, what is the order of the system? If it is not LTI, what could be done to easily make it LTI?

14. Steer-by-Wire (10%)

A steer-by-wire system is proposed in which a DC motor regulates the hydraulic flow of a power steering system¹. It has the following continuous time plant

$$P(s) = \frac{1}{s(s+1)}$$

The system is connected to a digital controller D(z) by a ZOH process² having a period of **T=0.1sec**.

a) Determine G(z)

[**Hint**: For this part you may leave it in terms of the z-Transform, $\mathbb{Z}\{\bullet\}$ (i.e. $G(z)=\mathbb{Z}\{G(s)\}$).]

b) Sketch the impulse response of G(z)

Page 8 of 14

¹ Such systems are commercially available (often in very high-end vehicles) and should not be confused with all electric steer-by-wire systems (e.g. Nissan's Q50).

² Zero Order Hold. Recall that a ZOH is modelled by $G_{ZOH} = \frac{1 - e^{-sT}}{s}$

15. One Last Stop on the ELEC3004 Express!

(10%)

As part of an electric train, you need to implement a control system that stops a DC electric motor as fast as possible.

Recall that a DC motor is characterized by

$$v = k\omega + Ri + Li'$$

Where:

- v: the voltage at its electrical terminals
- *i* : the current
- i': the time derivative of i (i.e. \dot{i})
- ω: shaft rotational speed (in rad/sec)
- R : resistance of the motor winding
- L: inductance of the motor winding
- k: motor constant

Recall that the torque is given by $\tau = ki$. The mechanical torque model is given by $I\omega' = -b\omega + \tau$

To simplify exam calculations, assume unity values for all constants (with, of course, the appropriate physical units). Thus, R=1, L=1, k=1, J=1 and b=1.

Given that the motor has some initial speed when the brake is applied at t=0, $\omega(0)$, the task is to stop the motor. To do this, we throw a switch that disconnects the driving voltage and connects the terminals of the motor to a "stopping circuit". One basic design for this is a big resistor, R_{Big} , resulting in

$$v_{stopping} = -R_{Big}i$$

- a) Derive a discrete transfer function from $\omega(0)$ to $v_{stopping}(z)$ for this plant, using the Tustin's method.
- b) What is the slowest sampling rate that will not destabilise the system under unity-gain proportional negative feedback?
- c) Under what conditions can the inductance be ignored, and the motor treated as a single pole system?
- d) What value of R_{Big} results in the motor velocity stopping the fastest?
- e) Prof Gordian DuKnot suggests that the best thing to do is to set $R_{Big} = 0$. That is, short circuit the motor. DuKnot's argument is simple: "if more voltage makes it go faster, then less voltage makes it slower. Thus, zero voltage stops it." Is this wise? (please **explain** your reasoning)

END OF EXAMINATION — Thank you !!!

Is the wonder still there? •

ELEC 3004 / 7312: Systems: Signals & Controls Final Examination – 2014

Table 1: Commonly used Formulae

The Laplace Transform

$$F(s) = \int_0^\infty f(t)e^{-st} dt$$

The \mathcal{Z} Transform

$$F(z) = \sum_{n=0}^{\infty} f[n]z^{-n}$$

IIR Filter Pre-warp

$$\omega_a = \frac{2}{\Delta t} \tan \left(\frac{\omega_d \Delta t}{2} \right)$$

Bi-linear Transform

$$s = \frac{2(1 - z^{-1})}{\Delta t (1 + z^{-1})}$$

FIR Filter Coefficients

$$c_n = \frac{\Delta t}{\pi} \int_0^{\pi/\Delta t} H_d(\omega) \cos(n\omega \Delta t) d\omega$$

Table 2: Comparison of Fourier representations.

Time Domain	Periodic	Non-periodic	
	Discrete Fourier Transform	Discrete-Time Fourier Transform	0
Discrete	$\tilde{X}[k] = \frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j2\pi kn/N}$	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$	Periodic
7	$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{X}[k]e^{j2\pi kn/N}$	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	ш.
	Complex Fourier Series	Fourier Transform	
snonu	$X[k] = \frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) e^{-j2\pi kt/T} dt$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$	eriodic
Continuous	$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} X[k]e^{j2\pi kt/T}$	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	Non-periodic
	Discrete	Continuous	Freq. Domain

ELEC 3004 / 7312: Systems: Signals & Controls Final Examination – 2014

Table 3: Selected Fourier, Laplace and z-transform pairs.

Signal	\longleftrightarrow	Transform	ROC
$\tilde{x}[n] = \sum_{n=0}^{\infty} \delta[n - pN]$	$\stackrel{DFT}{\longleftrightarrow}$	$\tilde{X}[k] = \frac{1}{N}$	
$p{=}{-}\infty$			
$x[n] = \delta[n]$ $\tilde{x}(t) = \sum_{n=0}^{\infty} \delta(t - pT)$	$\stackrel{FS}{\longleftrightarrow}$	$X[k] = \frac{1}{T}$	
$p=-\infty$		$X(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$	
		$X(j\omega) = \pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0)$	
$\sin(\omega_0 t)$	$\stackrel{FT}{\Longleftrightarrow}$	$X(i\omega) = i\pi\delta(\omega + \omega_0) + \kappa\delta(\omega + \omega_0)$ $X(i\omega) = i\pi\delta(\omega + \omega_0) - i\pi\delta(\omega - \omega_0)$	
$x(t) = \begin{cases} 1 & \text{when } t \leqslant T_0, \\ 0 & \text{otherwise.} \end{cases}$	$\stackrel{FT}{\longleftrightarrow}$	$X(j\omega) = j\pi\delta(\omega + \omega_0) - j\pi\delta(\omega - \omega_0)$ $X(j\omega) = \frac{2\sin(\omega T_0)}{\omega}$	
$x(t) = \frac{1}{\pi t} \sin(\omega_c t)$	$\stackrel{FT}{\longleftrightarrow}$	$X(j\omega) = \begin{cases} 1 & \text{when } \omega \leq \omega_c , \\ 0 & \text{otherwise.} \end{cases}$	
$x(t) = \delta(t)$ $x(t) = \delta(t - t_0)$			
x(t) = u(t)	$\stackrel{FT}{\longleftrightarrow}$	$X(j\omega) = \pi\delta(w) + \frac{1}{iw}$	
$x[n] = \frac{\omega_c}{\pi} \operatorname{sinc} \omega_c n$	$\stackrel{DTFT}{\longleftrightarrow}$	$X(e^{j\omega}) = \begin{cases} 1 & \text{when } \omega < \omega_{c} , \\ 0 & \text{otherwise.} \end{cases}$	
$x(t) = \delta(t)$	$\stackrel{\mathcal{L}}{\longleftrightarrow}$	X(s) = 1	all s
(unit step) $x(t) = u(t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$X(s) = \frac{1}{s}$	
(unit ramp) $x(t) = t$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$X(s) = \frac{1}{s^2}$	
		$X(s) = \frac{s_0}{(s^2 + s_0^2)}$	
$x(t) = \cos(s_0 t)$	$\stackrel{\mathcal{L}}{\longleftrightarrow}$	$X(s) = \frac{s}{(s^2 + s_0^2)}$	
$x(t) = e^{s_0 t} u(t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$X(s) = \frac{s}{(s^2 + s_0^2)}$ $X(s) = \frac{1}{s - s_0}$	$\Re \mathfrak{e}\{s\} > \Re \mathfrak{e}\{s_0\}$
$x[n] = \delta[n]$ $x[n] = \delta[n - m]$ $x[n] = u[n]$	$\stackrel{z}{\longleftrightarrow}$	X(z) = 1	all z
$x[n] = \delta[n - m]$	$\stackrel{z}{\longleftrightarrow}$	$X(z) = z^{-m}$	
		$X(z) = \frac{1}{1 - z_0 z^{-1}}$	$ z > z_0 $
$x[n] = -z_0^n u[-n-1]$		· ·	$ z < z_0 $
$x[n] = a^n u[n]$	$\stackrel{z}{\longleftrightarrow}$	$X(z) = \frac{z}{z - a}$	z < a

Table 4: Properties of the Discrete-time Fourier Transform.

Property	Time domain	Frequency domain
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(e^{j\omega}) + bX_2(e^{j\omega})$
Differentiation (frequency)	nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$
Time-shift	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frequency-shift	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
Convolution	$x_1[n] * x_2[n]$	$X_1(e^{j\omega})X_2(e^{j\omega})$
Modulation	$x_1[n]x_2[n]$	$\frac{1}{2\pi}X_1(e^{j\omega}) \circledast X_2(e^{j\omega})$
Time-reversal	x[-n]	$X(e^{-j\omega})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Symmetry (real)	$\mathfrak{Im}\{x[n]\} = 0$	$X(e^{j\omega}) = X^*(e^{-j\omega})$
Symmetry (imag)	$\mathfrak{Re}\{x[n]\} = 0$	$X(e^{j\omega}) = -X^*(e^{-j\omega})$
Parseval	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2}$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left X(e^{j\omega}) \right ^2 d\omega$

Table 5: Properties of the Fourier series.

Property	Time domain	Frequency domain
Linearity	$a\tilde{x}_1(t) + b\tilde{x}_2(t)$	$aX_1[k] + bX_2[k]$
Differentiation (time)	$rac{d ilde{x}(t)}{dt}$	$\frac{j2\pi k}{T}X[k]$
Time-shift	$\tilde{x}(t-t_0)$	$e^{-j2\pi kt_0/T}X[k]$
Frequency-shift	$e^{j2\pi k_0 t/T} \tilde{x}(t)$	$X[k-k_0]$
Convolution	$\tilde{x}_1(t)\circledast \tilde{x}_2(t)$	$TX_1[k]X_2[k]$
Modulation	$ ilde{x}_1(t) ilde{x}_2(t)$	$X_1[k] * X_2[k]$
Time-reversal	$\tilde{x}(-t)$	X[-k]
Conjugation	$\tilde{x}^*(t)$	$X^*[-k]$
Symmetry (real)	$\mathfrak{Im}\{\tilde{x}(t)\}=0$	$X[k] = X^*[-k]$
Symmetry (imag)	$\mathfrak{Re}\{\tilde{x}(t)\}=0$	$X[k] = -X^*[-k]$
Parseval	$\frac{1}{T} \int_{-T/2}^{T/2} \tilde{x}(t) ^2 dt$	$dt = \sum_{k=-\infty}^{\infty} X[k] ^2$

13 ELEC 3004 / 7312: Systems: Signals & Controls Final Examination – 2014

Table 6: Properties of the Fourier transform.

Property	Time domain	Frequency domain
Linearity	$a\tilde{x}_1(t) + b\tilde{x}_2(t)$	$aX_1(j\omega) + bX_2(j\omega)$
Duality	X(jt)	$2\pi x(-\omega)$
Differentiation	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} \frac{dt}{x(\tau)} d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(j0)\delta(\omega)$
Time-shift	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency-shift	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$
Convolution	$x_1(t) * x_2(t)$	$X_1(j\omega)X_2(j\omega)$
Modulation	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Time-reversal	x(-t)	$X(-j\omega)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Symmetry (real)	$\mathfrak{Im}\{x(t)\} = 0$	$X(j\omega) = X^*(-j\omega)$
Symmetry (imag)	$\mathfrak{Re}\{x(t)\} = 0$	$X(j\omega) = -X^*(-j\omega)$
Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Parseval	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2}$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

Table 7: Properties of the *z*-transform.

Property	Time domain	z-domain	ROC
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	$ \subseteq R_{x_1} \cap R_{x_2} $
Time-shift	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x^\dagger
Scaling in z	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
Differentiation in z	nx[n]	$-z\frac{dX(z)}{dz}$	R_x^\dagger
Time-reversal	x[-n]	X(1/z)	$1/R_x$
Conjugation	$x^*[n]$	$X^*(z^*)$	R_x
Symmetry (real)	$\mathfrak{Im}\{x[n]\} = 0$	$X(z) = X^*(z^*)$	
Symmetry (imag)	$\Re \mathfrak{e}\{X[n]\} = 0$	$X(z) = -X^*(z^*)$	
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	$\subseteq R_{x_1} \cap R_{x_2}$
Initial value	x[n] =	$0, n < 0 \Rightarrow x[0] = \lim_{z \to \infty} X(z)$	

 $^{^{\}dagger}$ z=0 or $z=\infty$ may have been added or removed from the ROC.

ELEC 3004 / 7312: Systems: Signals & Controls Final Examination – 2014

Table 8: Commonly used window functions.

Rectangular:

$$w_{\text{rect}}[n] = \begin{cases} 1 & \text{when } 0 \leqslant n \leqslant M, \\ 0 & \text{otherwise.} \end{cases}$$

Bartlett (triangular):

$$w_{\rm bart}[n] = \begin{cases} 2n/M & \text{when } 0 \leqslant n \leqslant M/2, \\ 2-2n/M & \text{when } M/2 \leqslant n \leqslant M, \\ 0 & \text{otherwise.} \end{cases}$$

Hanning:

$$w_{\mathrm{hann}}[n] = egin{cases} rac{1}{2} - rac{1}{2}\cos\left(2\pi n/M
ight) & \mathrm{when} \ 0 \leqslant n \leqslant M, \\ 0 & \mathrm{otherwise}. \end{cases}$$

Hamming:

$$w_{\mathrm{hamm}}[n] = \begin{cases} 0.54 - 0.46\cos\left(2\pi n/M\right) & \text{when } 0 \leqslant n \leqslant M, \\ 0 & \text{otherwise.} \end{cases}$$

Blackman:

$$w_{\text{black}}[n] = \begin{cases} 0.42 - 0.5\cos\left(2\pi n/M\right) \\ + 0.08\cos\left(4\pi n/M\right) \\ 0 \end{cases} \quad \text{when } 0 \leqslant n \leqslant M,$$
 otherwise.

Type of Window	Peak Side-Lobe Amplitude (Relative; dB)	Approximate Width of Main Lobe	Peak Approximation Error, $20 \log_{10} \delta$ (dB)
Type of Willdow	(Kelative, ub)	of Maili Lobe	20 log ₁₀ 0 (db)
Rectangular	-13	$4\pi/(M+1)$	-21
Bartlett	-25	$8\pi/M$	-25
Hanning	-31	$8\pi/M$	-44
Hamming	-41	$8\pi/M$	-53
Blackman	-57	$12\pi/M$	-74