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DISCRETE-TIME SYSTEM 

ANALYSIS USING THE 

z-TRANSFORM 

The counterpart of the Laplace transform for discrete-time systems is the z-transfonn. Th 
Laplace transform converts inte.gro-differentia~ eq~ations into ~lgebra~c equations. In the sarn~ 
way, the z-transforms changes dIfference equatlOns mto algebraic equatlOns, thereby simplifyin 
the analysis of discrete-time systems. The z-transform method of analysis of discrete-time sys~ 
terns parallels the Laplace transform method of analysis of continuous-time systems, with some 
minor differences. In fact, we shall see that the z-transform is the Laplace transform in disguise. 

The behavior of discrete-time systems is similar to that of continuous-time systems (with 
some differences). The frequency-domain analysis of discrete-time systems is based on the 
fact (proved in Section 3.8-3) that the response of a linear, time-invariant, discrete-time (LTID) 
system to an everlasting exponential Zll is the same exponential (within a multiplicative constant) 
given by H[z]zn. We then express an input x[n] as a sum of (everlasting) exponentials of the 
form zn. The system response to x [n] is then found as a sum of the system's responses to aU 
these exponential components .. The tool that allows us to represent an arbitrary input x[n] as a 
sum of (everlasting) exponentials of the form Zll is the z-transforrn. 

5.1 THE z-TRANSFORM 

We define X[z], the direct z-transform of x[n], as 

00 

X[z] == L x[n]z-Il (5.1) 

11=-00 

where z is a complex variable. The signal x[n], which is the inverse z-transform of X[z], can be 
obtained from X[z] by using the following inverse z-transformation: 

x[n] = _1_. f X[z]zn-l dz 
2Jr} 

(5.2) 

The symbol f indicates an integration in counterclockwise direction around a closed path in ~e 
complex plane (see Fig. 5.1). We derive this z-transform pair later, in Chapter 9, as an extensIOIl 
of the discrete-time Fourier transform pair. 
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As in the case of the Laplace transform, we need not worry about this integral at this 
point because inverse z-transforms of many signals of engineering interest can be found in a 
z-transform table. The direct and inverse z .. transforms can be expressed symbolically as 

X[z] = Z{x[n]} and x[n] = Z-l{X[Z]} 

or simply as 

x[n] {=::::} X[z] 

Note that 

Z-l[Z{x[n]}] = x[n] 

LINEARITY OF THE z-TRANSFORM 

and Z[Z- l{X[Z]}] = X[z] 

Like the Laplace transform, the z-transform is a linear operator. If 

then 

(5.3) 

The proof is trivial and follows from the definition of the z -transform. This result can be extended 
to finite sums. 

THE UNILATERAL z-TRANSFORM 

For the same reasons discussed in Chapter 4, we find it convenient to consider the unilateral 
z -transform. As seen for the Laplace case, the bilateral transform has some complications because 
of nonuniqueness of the inverse transform. In contrast, the unilateral transform has a unique 
inverse. This fact simplifies the analysis problem considerably, but at a price: the unilateral 
version can handle only causal signals and systems. Fortunately, most of the practical cases are 
causal. The more general bilateral z-transform is discussed later, in Section 5.9. In practice, the 
term z-transform generally means the unilateral z-transform. 

In a basic sense, there is no difference between the unilateral and the bilateral z-transform. 
The unilateral transform is the bilateral transform that deals with a subclass of signals starting 
at n = 0 (causal signals). Hence, the definition of the unilateral transform is the same as that of 
the bilateral [Eq. (5.1)], except that the limits of the sum are from 0 to 00 

00 

X[z] = L x[n]z-n (5.4) 
n=O 

The expression for the inverse z-transform in Eq. (5.2) remains valid for the unilateral case also. 

THE REGION OF CONVERGENCE (ROC) 
OF X[z] 
The sum in Eq. (5.1) [or (5.4)] defining the direct z-transform X[z] may not converge (exist) 
for all values of z. The values of z (the region in the complex plane) for which the sum in 
Eq. (5.1) converges (or exists) is called the region of existence, or more commonly the region of 
convergence (ROC), for X[z]. This concept will become clear in the following example. 
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Find the z-transform and the corresponding ROC for the signal ynu[n]. 

By definition 
00 

Since u[n] = 1 for all n ~ 0, 

X[zj = f= G)" 
n=O 

= 1 + (~) + (~)2 + (~)3 + ... + ... (5.5) 

It is helpful to remember the following well-known geometric progression and its sum: 

2 3 1 
1 + x + x + x + ... = -- if Ixl < 1 (5.6) 

I-x 

Use of Eq. (5.6) in Eq. (5.5) yields 

1 
X[z] = --y 

1- -
z 

z 
z-y 

I~I < I 

Izl> Iyl (5.7) 

Observe that X[z] exists only for Izl > Iyl . For Izl < Iyl , the sum in Eq. (5.5) may not 
converge; it goes to infinity. Therefore, the ROC of X[z] is the shaded region outside the 
circle 0fradius Iyl , centered at the origin, in the z-plane, as depicted in Fig. 5.1b. 

1m 

Re 

o 1 2 3 4 5 6 k~ 

Figure 5.1 yltu[n] and the region of convergence of its z-transform. 
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Later in Eq. (5.85), we show that the z-transform of another signal -ynu[ -en + 1)] is 
also z/(z - y). However, the ROC in this case is Izl < Iyl. Clearly, the inverse z-transfonn 
of z/(z - y) is not unique. However, if we restrict the inverse transform to be causal, then 
the inverse transform is unique, namely, ynu[n]. 

The ROC is required for evaluating x[n] from X[z], according to Eq. (5.2). The integral 
in Eq. (5.2) is a contour integral, implying integration in a counterclockwise direction along 
a closed path centered at the origin and satisfying the condition I z I > I y I. Thus, any circular 
path centered at the origin and with a radius greater than I y I (Fig. 5.1 b) will suffice. We can 
show that the integral in Eq. (5.2) along any such path (with a radius greater than Iyl) yields 
the same result, namely x [n]. t Such integration in the complex plane requires a background 
in the theory of functions of complex variables. We can avoid this integration by compiling a 
table of z-transfonns (Table 5.1), where z-transform pairs are tabulated for a variety of signals. 
To find the inverse z-transform of say, z/(z - y), instead of using the complex integration in 
Eq. (5.2), we consult the table and find the inverse z-transform of z/(z - y) as ynu[n]. Because 
of uniqueness property of the unilateral z-transform, there is only one inverse for each X[~]. 
Although the table given here is rather short, it comprises the functions of most practical intere·st. 

The situation of the z -transform regarding the uniqueness of the inverse transfonn is parallel 
to that of the Laplace transform. For the bilateral case, the inverse z-transfonn is not unique 
unless the ROC is specified. For the unilateral case, the inverse transfonn is unique; the region 
of convergence need not be specified to determine the inverse z-transfonn. For this reason, we 
shall ignore the ROC in the unilateral z-transfonn Table 5.1 . 

EXISTENCE OF THE z-TRANSFORM 

By definition 
00 00 x[n] 

X[z] = L x[n]z-n = L z. 
n=O n=O 

The existence of the z-transfonn is guaranteed if 

~ Ix[n]1 
IX[z]1 :::: ~ -- < 00 

. n=O Izln 

for some Izi. Any signal x[n] that grows no faster than an exponential signal r~, for some ro, 
satisfies this condition. Thus, if 

Ix[n]1 :::: r3 for some ro (5.8) 

then 

IX[zll :s f ( ~ ) " 1 
--- Izl > ro ro 

. n=O Izl 1--
Izl 

tIndeed, the path need not even be circular. It can have any odd shape, as long as it encloses the pole(s) of 
X[z] and the path of integration is counterclockwise. 
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TABLE 5.1 (Unilateral) z-Transform Pairs 

No. 

2 

3 

4 

5 

6 

8 

9 

10 

lIa 

lIb 

12a 

12b 

12c 

x[n] 

8[n - k] 

u[n] 

nu[n] 

n(n - i)(n - 2) ... (n - m + 1) 
----------ynu[n] 

ymm! 

Iyln cos fJn u[n] 

rlY In cos (fJn + B)u[n] 

rlyln cos (fJn + B)u[n] 

rlyln cos (fJn + B)u[n] 

r= 
A 21yl2 + B2 - 2AaB 

lyl2 - a2 

-a 
fJ = cos- 1 -

Iyl 

Aa - B 
B = tan- 1 --;=.== 

AVlYl2 - a2 

x[z] 

z 
z - 1 

z 
(z - 1)2 

z(z + 1) 

(z - 1)3 

Z(Z2 + 4z + 1) 

(z - 1)4 

z 
z-y 

z-y 

yz 

(z - y)2 

yz(z + y) 

(z - y)3 

z 
(z - y)m+! 

z(z - Iyl cos fJ) 

Z2 - (21yl cos fJ)z + lyl2 

zlyl sin fJ 
Z2 - (2lylcos fJ)z + lyl2 

rz[z cos B - Iy I cos (fJ - B)] 

Z2 - (21yl cos fJ)z + lyl2 

(O.5re je )z (O.5re- je)z 
---+----

z - y z - y * 

z(Az + B) 

Z2 + 2az + lyl2 
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Therefore, X[z] exists for Izl > roo Almost all practical signals satisfy condition (5.8) and are 
therefore z-transformable. Some signal models (e.g., yn2) grow faster than the exponential signal 
ro (for any ro) and do not satisfy Eq. (5.8) and therefore are not z-transformable. Fortunately, 
such signals are of little practical or theoretical interest. Even such signals over a finite interval 
are z-transformable. 

Find the z-transforms of 

(a) 8[n] 

(b) urn] 

(c) cos f3n urn] 

(d) The signal shown in Fig. 5.2 

x[n] 

o 234 
Figure 5.2 

Recall that by definition 
00 

X[z] = L x[n]Z-n 

n=O 

x[l] x[2] x[3] 
=X[O]+-+-+-+··· z Z2 Z3 

(a) For x[n] = 8[n], x[O] = 1 and x[2] = x[3] = x[4] = ... = O. Therefore 

8[n] ~ 1 for all z 

(b) For x[n] = urn], x[O] = x[l] = x[3] = ... = 1. Therefore 

From Eq. (5.6) it follows that 

1 1 1 
X[z] = 1 + - + - + - + ... 

Z Z2 Z3 

1 
X[z] = --1 

1- -
z 

z 
= z-1 

Izl> 1 

(5.9) 

(5.10) 
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Therefore 
Z 

u[n]~ -­
Z -1 

Izl > 1 

(c) Recall that cos f3n = (e jfin + e- jfin )/2. Moreover, according to Eq. (5.7), 

Izl > je±jfil = 1 

Therefore 

X[z] = ~ [_z_ + __ z_] 
2 z - e jfi Z - e- jfi 

z(z - cos f3) 
Izl> I 

Z2 - 2z cos f3 + I 

(5.11) 

(d) Here x[O] = x[l] = x[2] = x[3] = x[4] = i and x[5] = x[6] = ... = O. Therefore, 
according to Eq. (5.9) 

I 1 I 1 
X[z] = I + - + - + - +-

Z Z2 Z3 Z4 

Z4 + Z3 + Z2 + z + I 
Z4 

for all z =I 0 

We can also express this result in a more compact form by summing the geometric progression 
on the right-hand side of the foregoing equation. From the result in Section B.7-4 with 
r = liz, m = 0, and n = 4, we obtain 

X[z] = U)' -U)" = _z_(1_ z-s) 
~-1 z-l 
z 
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5.1-1 Finding the Inverse Transform 
As in the Laplace transform, we shall avoid the integration in the complex plane required to find 
the inverse z-transform [Eq. (5.2)] by using the (unilateral) transform table (Table 5.1). Many of 
the transforms X[z] of practical interest are rational functions (ratio of polynomials in z), which 
can be expressed as a sum of partial fractions, whose inverse transforms c~m be readily found 
in a table of transform. The partial fraction method works because for every transformable x [n ] 

defined for n ~ 0, there is a corresponding unique X[z] defined for Izl > ro (where ro is some 
constant), and vice versa. 

Find the inverse z -transform of 

(a) 8z - 19 
(z - 2)(z - 3) 

z(2z2 - lIz + 12) 
(b) (z - 1)(z - 2)3 

(c) 2z(3z + 17) 
(z - 1)(z2 - 6z + 25) 

(a) Expanding X[z] into partial fractions yields 

8z - 19 3 5 
X[z] = = -- + - -

(z - 2)(z - 3) z - 2 z - 3 

From Table 5.1, pair 7, we obtain 

x[n] = [3(2t- 1 + 5(3t- l ]u[n - 1] (5.12a) 

If we expand rational X[z] into partial fractions directly, we shall always obtain an answer 
that is multiplied by urn - 1] because of the nature of pair 7 in Table 5.1. This form is 
rather awkward as well as inconvenient. We prefer the form that contains urn] rather than 
urn - 1]. A glance at Table 5.1 shows that the z-transform of every signal that is multiplied 
by urn] has a factor z in the numerator. This observation suggests that we expand X[z] into 
modified partial fractions, where each term has a factor z in the numerator. This goal can 

" I 

, ; 

I: . 
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be accomplished by expanding X[z]/z into partial fractions and then multiplying both sides 
by z. We shall demonstrate this procedure by reworking part (a). For this case 

X[z] 8z - 19 

z z(z - 2)(z - 3) 

= (-19/6) + (3/2) + (5/3) 
z z-2 z-3 

Multiplying both sides by z yields 

X[z] = _ 19 + ~ (_z ) + ~ (_z ) 
6 2 z-2 3 z-3 

From pairs 1 and 6 in Table 5.1, it follows that 

x[n] = -.tt8[n] + [~(2t + ~(3t] u[n] (5.12b) 

The reader can verify that this answer is equivalent to that in Eq. (5.12a) by computing x[n] 

in both cases for n = 0, 1,2,3, ... , and comparing the results. The form in Eq. (5.12b) is 
more convenient than that in Eq. (5.12a). For this reason, we shall always expand X[z]/z 
rather than X[z] into partial fractions and then multiply both sides by z to obtain modified 
partial fractions of X[z], which have a factor z in the numerator. 

(b) 

and 

where 

z(2z2 
- 11z + 12) 

X[z] = (z _ l)(z - 2)3 

X[z] 2z2 
---.: 11z + 12 

z (z - l)(z - 2)3 

k ao al a2 
=--+ + +--z - 1 (z - 2)3 (z - 2)2 (z - 2) 

Therefore 

X[z] 2z2 - 11z + 12 -3 2 al a2 
-= =--- + +-- (5.13) 

z (z - l)(z - 2)3 Z - 1 (z - 2)3 (z - 2)2 (z - 2) 

We can determine al and a2 by clearing fractions. Or we may use a shortcut. For example, 
to determine a2, we mUltiply both sides of Eq. (5.13) by z and let z --)- 00. This yields 

o = -3 - 0 + 0 + a2 ===* a2 = 3 
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This result leaves only one unknown, aI, which is readily determined by letting z take any 
convenient value, say z = 0, on both sides qfEq. (5.13). This step yields 

12 1 al 3 
-=3+-+---
8 4 4 2 

which yields al = -1. Therefore 

and 

X[z] -3 2 1 3 
-=--- - +--

z z ~ 1 (z - 2)3 (z - 2)2 Z - 2 

z z 
X[z] = -3-- - 2---

z - 1 (z - 2)3 
__ z_+3_z _ 
(z - 2)2 Z - 2 

Now the use of Table 5.1, pairs 6 and 10, yields 

x[n] = [-3 - 2 n(n 8- 1) (2)" - ~(2)" + 3(2)"] urn] 

= - [3 + ~(n2 + n - 12)2"] urn] 

(c) Complex Poles. 

2z(3z + 17) 
X[z] = ------­

(z - 1)(z2 - 6z + 25) 

2z(3z + 17) 

(z - l)(z - 3 - j4)(z - 3 + j4) 

Poles of X[z] are 1, 3 + j4, and 3 - j4. Whenever there are complex conjugate poles, the 
problem can be worked out in two ways. In the first method we expand X[z] into (modified) 
first -order partial fractions. In the second method, rather than obtain one factor corresponding 
to each complex conjugate pole, we obtain quadratic factors corresponding to each pair of 
complex conjugate poles. This procedure is explained next. 

METHOD OF FIRST-ORDER FACTORS 

X[z] 2(3z + 17) 2(3z + 17) 

z (z - 1)(z2 - 6z + 25) (z - l)(z - 3 - j4)(z - 3 + j4) 

We find the partial fraction of X[z]/z using the Heaviside "cover-up" method: 

X[z] 2 1.6e-j2.246 . 1.6ej2.246 
--=--+ +----

z z - 1 z - 3 - j4 z - 3 + j4 

and 
X[z] = 2_z _ + (1.6e- j2.246) z. + (1.6ej2.246) z. 

z - 1 z - 3 - J4 z - 3 + J4 

The inverse transform of the first term on the right-hand side is 2u [n]. The inverse transform of 
the remaining two terms (complex conjugate poles) can be obtained from pair 12b (Table 5.1) 
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by identifyingrj2 = 1.6, () = -2.246 rad, Y = 3 + j4 = 5ejO.927, so that iYi ::::: 5, 
f3 = 0.927. Therefore 

x[n] = [2 + 3.2(5r cos (0.927n - 2.246)]u[n] 

METHOD OF QUADRATIC FACTORS 

X[z] 2(3z+17) . 2 Az+B 
------- = -- + ----

z (z - 1)(z2 - 6z + 25) z - 1 Z2 - 6z + 25 

Multiplying both sides by z and letting z ~ 00, we find 

0= 2 + A ==} A =-2 

and 
2(3z + 17) 2 - 2z + B 

------- = -- + ----
(z - 1)(z2 - 6z + 25) z - 1 Z2 - 6z + 25 

To find B, we let z take any convenient value, say z = O. This step yields 

-34 B 
- = -2+ - ==} B = 16 
25 25 

Therefore 
X[z] 2 -2z + 16 
--=--+----

z z - 1 Z2 - 6z + 25 
and 

2z z( -2z + 16) 
X[z] = -- + ----

z - 1 Z2 - 6z + 25 

We now use pair 12c, where we identify A = -2, B = 16, iY i = 5, and a = -3. Therefore 

100 + 256 - 192 (3) r = = 3.2, f3 = cos- 1 -5 = 0.927 rad 
25 - 9 

and 

() = tan- 1 C=_~O) = -2.246rad 

so that 

x[n] = [2 + 3.2(5r cos (0.927n - 2.246)]u[n] 
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INVERSE TRANSFORM BY EXPANSION 
OF X[ z] IN POWER SERIES OF Z-l 

By definition 
00 

X[z] = :L x[n]z-n 
n=O 

x[l] x[2] x[3] 
=x[O]+-+-+-+··· 

z Z2 Z3 

= x[O]zo + x[l]z-1 + X[2]Z-2 + X[3]Z-3 + ... 
This result is a power series in Z-1. Therefore, if we can expand X[z] into the power series in Z-1, 
the coefficients of this power series can be identified as x[O], x[I], x[2], x[3], .... A rational 
X[z] can be expanded into a power series of Z-1 by dividing its numerator by the denominator. 
Consider, for example, 

z2(7z - 2) 
X[z] = -------­

(z - 0.2)(z - 0.5)(z - 1) 

Z3 - 1.7z2 + 0.8z - 0.1 

To obtain a series expansion in powers of Z-1, we divide the numerator by the denominator as 
follows: 

7 + 9.9z-1 + 11.23z-2 + 11.87z-3 + ... 
Z3 - 1.7z2 + 0.8z - 0.1 )7z3 - 2z2 

7z3 - 11.9z2 + 5.60z - 0.7 
9.9z2 - 5.60z + 0.7 
9.922 - 16.83z + 7.92 - 0.99z-1 

11.23z - 7.22 + 0.99z- 1 

11.23z - 19.09 + 8.98z- 1 

11.87 - 7.99z- 1 
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Thus 
2(7 2) 

X[z] = z z - = 7 + 9.9z- 1 + 11.23z-2 + 11.87z-3 + ... 
(z - 0.2)(z - 0.5)(z - 1) 

Therefore 

x[O] = 7, x[l] = 9.9, x[2] = 11.23, x[3] = 11.87, ... 

Although this procedure yields x[n] directly, it does not provide a closed-fonn E'olution. 
For this reason, it is not very useful unless we want to know only the first few tenns of the 
sequence x [n ]. 

. ' 

llsing long division to find the power' s-eries in Z-:- 1, show that the jnverse z-transfortn of 
t z!(z - 0.5) is (O.5)"ufnJ or (2)-ll u.[n]. . 

RELATIONSHIP BETWEEN h[n] AND H[z] 
For an LTID system, if h[n] is its unit impulse response, then fromEq. (3.71b), where we defined 
H[z], the system transfer function, we write 

00 

H[z] = L h[n]z-n (5. 14a) 
n=-oo 

For causal systems, the limits on the sum are from n = 0 to 00. This equation shows that the 
transfer function H[z] is the z-transfonn of the impulse response h[n] of an LTID system; that is, 

h[n] {=:=} H[z] (5.14b) 

This important result relates the time-domain specification h[n] of a system to H[z], the 
frequency-domain specification of a system. The result is parallel to that for LTIC systems. 

'EXERCISE ES.4 ~ 

'Redo Exercise E3.14 by~lOng theiuyersez~tr:~sforni of H[z], '"as given by 'Eq. (3.73). 

5.2 SOME PROPERTIES OF THE z-TRANSFORM 

The z-transform properties are useful in the derivation of z-transfonns of many functions and 
also in the solution of linear difference equations with constant coefficients. Here we consider 
a few important properties of the z-transfonn. 

In our discussion, the variable n appearing in signals, such as x[nJand y[n], mayor may 
not stand for time. However, in most applications of our interest, n is proportional to time. For 
this reason, we shall loosely r~fer to the variable n as time. 
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In the following discussion of the shift property, we deal with shifted signals x[n]u[n], 
x[n - k]u[n - k], x[n - k]u[n], and x[n +k]u[n]. Unless we physically understand the meaning 
of such shifts, our understanding of the shift ,property remains mechanical rather than intuitive 
or heuristic. For this reason using a hypothetical signal x[n], we have illustrated various shifted 
signals for k = 1 in Fig. 5.4. 

-5 

-5 

-4 

-4 

-6 

x[n] 

5 
. , ' ' . 

o 

(a) 

x[n]u[n] 
5 , 

o 

(b) 

5 

x[n - 1]u[n - 1] 

5 

o 

(c) 

x[n - l]u[n] 
5 

o 

(d) 

x[n + l]u[n] 
5 

o 

(e) 

4 

n ---

n ---

Figure 5.4 A signal x[n] and its shifted versions. 
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RIGHT SHIFT (DELAY) 

If 

then 

In general, 

Moreover, 

x[n]u[n] ~ X[z] 

1 
x[n - l]u[n - 1] ~ -X[z] 

z 

1 
x[n - m]u[n - m] ~ -X[z] 

zm 

1 
x[n - l]u[n] ~ - X[z] + x[ -1] 

z 
Repeated application of this property yields 

x[n-2]u[nH==> ~ [~X[Z]+X[-l]] +x[-2] 

1 1 = -X[z] + - x[-l] +x[-2] 
Z2 z 

In general, for integer value of m 

m 

x[n - m]u[n] ~ z-m X[z] + z-m LX[ -n]zn 
n=l 

(5.15a) 

(5.15b) 

(5.16a) 

(5.16b) 

(5.16c) 

A look at Eqs. (5.15a) and (5.16a) shows that they are identical except for the extra 
term x[ -1] in Eq. (5.16a). We see from Fig. 5.4c and 5.4d that x[n - l]u[n] is the same as 
x[n - l]u[n - 1] plus x[ -1]8[n] . Hence, the difference between their transforms is x[ -1]. 

Proof. For integer value of m 

00 

Z{x[n - m]u[n - m]} = Lx[n - m]u[n - m]z-n 
n=O 

Recall thatx[n-m]u[n-m] = 0 for n < m, so that the limits on the summation on the right-hand 
side can be taken from n = m to 00. Therefore 

00 

Z{x[n - m]u[n - m]} = Lx[n - m]z-n 
n=m 

00 

= Lx[r]z-<r+m) 

r=O 

1 00 1 = - ~ x[r]z-r = -X[z] 
zm ~ zm 

r=O 
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To prove Eq. (S.16c), we have 

00 00 
Z{x[n - m]u[n]} = L.t[n - m]z-n = L x[r]z-Cr+m) 

n=O r=-m 

[ 

-I 00 ] 
= z-m r~ x[r]z-r + ~x[r]Z-r 

m 

= z- m Lx[-n]zn + z-mX[z] 
n=1 

LEFT SHIFT (ADVANCE) 

If 

x[n]u[n] ~ X[z] 

then 

x[n + l]u[n] ~ zX[z] - zx[O] 

Repeated application of this property yields 

x[n + 2]u[n] ~ z{z(X[z ] - zx[O]) - x[l]} 

= Z2 X[z] - Z2X [O] - zx[l] 

and for integer value of m 

m-l 

x[n + m]u[n] ~ zm X[z] - zm L x[n]z-n 
n=O 

Proof. By definition 

00 
Z{x[n + m]u[n]} = L x[n + m]z-n 

n=O 
00 

= Lx[r]z-Cr-m) 
r=m 

00 

m-I 

= zmX[z] - zm Lx[r]z-r 
r=O 

(S.17a) 

(S.17b) 

(S.17c) 
, 
, . 

II 

i: 



510 CHAPTER 5 DISCRETE-TIME SYSTEM ANALYSIS USING THE z-TRANSFORM 

Find the z-tral!sform of the signal x[n] depicted in Fig. S.S. 

x[n] 

5 ·· · ········ ·· ·· ·· ······· · ··· · 

o 2 3 4 5 n~ Figure 5.5 

The signal x [n] can be expressed as a product of n and a gate pulse u [n ] - u [n - 6]. Therefore 

x[n] = n{u[n] - u[n - 6]) 

= nu[n] - nu[n - 6] 

We canno.t find the z-transform of nu[n - 6] directly by using the right-shift property 
[Eq. (S.ISb)]. So we rearrange it in terms of (n - 6)u[n - 6] as follows: 

x[n] = nu[n] - (n - 6 + 6)u[n - 6] 

= nu[n] - (n - 6)u[n - 6] - 6u[n - 6] 

We can now find the z-transform of the bracketecj. term by using the right-shift property 
[Eq. (S.ISb)]. Because u[n] ~ z/(z - 1) 

. 1 z 1 
u[n-6] ~ --- = ---

. Z6 Z - 1 ZS(z - 1) 

Also, because nu[n] ~ z/(z - 1)2 

1 z 1 
(n - 6)u[n - 6] ~ ----

Z6 (z - 1)2 ZS(z - 1)2 

Therefore 

X[ ] _ z 
z - (z _ 1)2 

1 6 
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or 

(1 -" ~ + ~) Y[z] _ (3 _ ~), = _3_ + __ 5_ 
Z Z2 z Z - 0.5 z(z - 0.5) 

from which we obtain 

so that 

and 

Therefore 

and 

( 
2 _ 5 6)Y[] = z(3z

2 
- 9.5z + 10.5) 

z z + z (z _ 0.5) 

z(3z2 - 9.5z + 10.5) 
Y[z] = ------­

(z - 0.5)(Z2 - 5z + 6) 

Y[z] 3z2 - 9.5z + 10.5 

z (z - 0.5)(z - 2)(z - 3) 

= (26/15) _ (7/3) + (18/5) 
z - 0.5 z - 2 z - 3 

Y[z] - - -- - - -- + - --26 ( z ) 7 ( z) 18 ( z ) 
15 z - 0.5 3 z - 2 5 z - 3 

(5.26b) 

(5.27) 

(5.28) 

This example demonstrates the ease with which linear difference equations with constant 
coefficients can be solved by z-transform. This method is general; it can be used to solve a single 
difference equation or a set of simultaneous difference equations of any order as long as the 
equations are linear with constant coefficients. 

Comment. Sometimes, instead of initial conditions y[-l], y[-2], ... , y[-n], auxiliarycondi­
tions y[O], y[l], ... , y[N - 1] are given to solve a difference equation. In this case, the equation 
can be solved by expressing it in the advance operator form and then using the left-shift property 
(see later: Exercise E5 .11). 

ANSWER 

y[n] =:?[12-1SHf .:'¥ If(~r] u[n.~ 
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ANSWER 
y[n] = [~ + 2( -It - ~(~2Y] u[n] 

ZERO-INPUT AND ZERO-STATE COMPONENTS 

In Example 5.5 we found the total solution of the difference equation. It is relatively easy to 
separate the solution into zero-input and zero-state components. All we have to do is to separate 
the response into terms arising from the input and terms arising from initial conditions. We can 
separate the response in Eq. (5.26b) as follows: 

( 1 - ~z + z~) Y[z] - (3 - l
z
1) = _3_ + 5 (5.29) 

,z - 0.5 z(z - 0.5)# 

Therefore 

~ v-------
initial condition terms terms arising from input 

( 1 - ~ + ~) Y[Z] = 
z Z2 

(3z + 5) +---­
z(z - 0.5) 
~ 

initial condition terms input terms 

Multiplying both sides by Z2 yields 

(Z2 _ 5z + 6)Y[z] = ~ + Z;3~ ~.~) 
initial condition terms ~ 

input terms 

and 
z(3z - 11) z(3z + 5) 

Y[z] = + -------
Z2 - 5z + 6 (z - 0.5) (Z2 - 5z + 6) 
'-..--' ' # 

zero-input response zero-state response 

We expand both terms on the right-hand side into modified partial fractions to yield 

(5.30) 

Y[z] - 5 -- - 2 -- + - -- - - -- + - --[ ( Z) (Z) 1 [26 ( z ) 22 ( Z) 28 ( z ) 1 
, Z - 2 z - 3 # ,15 z - 0.5 3 z - 2 5 z - 3 # 

and 

v 

zero input zero state 

y[n] = [?(2r ~ 2(3r# - ,¥(2t + ¥(~n + ~(0.5)~] u[n] 

zero mput zero state 

= [_~(2)n + ¥(3)n + ~(0.5tJ u[n] 

which agrees with the result in Eq. (5.28). 
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Solve 

if the initial conditions are )1[-1] = 2, )' [-2] = ·0, and the input x[n] = . urn]. Separate the . 
response into zero-input and zero-state 'cpmpont~nts: ". . 

5.3-1 Zero-State Response of L TID Systems: 
The Transfer Function 

Consider an Nth-order LTID system specified by the difference equation 

or 

or 

Q[E]y[n] = P[E]x[n] 

(EN + aIEN- I + ... + aN-IE + aN)y[n] 

= (boEN + bIEN- I + ... + bN-lE + bN)x[n] 

y[n + N] + aIy[n + N - 1] + ... + aN-ly[n + 1] + aNy[n] 

= box[n + N] + ... + bN-1x[n + 1] + bNx[n] 

(S.31a) 

(S.31b) 

(S.31c) 

We now derive the general expression for the zero-state response: that is, the system response 
to input x[n] when all the initial conditions y[-I] = y[-2] = ... = y[-N] = ° (zero state). 
The input x[n] is assumed to be causal so that x[ -1] = x[ -2] = ... = x[ -N] = O. 

Equation (S.31c) can be expressed in the delay operator form as 

y[n] + aIy[n - 1] + ... + aNy[n - N] 

= box[n] + bIx[n - 1] + ... + bNx[n - N] 

Because y[-r] = x[-r] = 0 for r = 1,2, ... , N 

1 
y[n - m]u[n] {=:::} -Y[z] zm 

1 
x[n - m]u[n] {=:::} -X[z] zm m = 1,2, ... , N 

(S.31d) 
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Now the z-transform ofEq. (5.31d) is given by 

( 
al a2 aN) (bl b2 bN) 1 + - + - + ... + - Y[z] = bo + - + - + ... + - X[z] 
z Z2 ZN Z Z2 ZN 

Multiplication of both sides by ZN yields 

(ZN + alz
N

-
1 + .. . + aN-lZ + aN)Y[Z] 

= (bozN + blzN- l + ... + bN-lZ + bN )X[z] 

Therefore 

Y[z] = (boZ
N + b1z

N
-

1 + ... + bN-IZ + bN) X[z] 
ZN + alzN - 1 + ... + aN-IZ + aN 

(5.32) 

= p[z] X[ ] 
Q[z] z 

(5.33) 

We have shown in Eq. (5.19) that Y[z] = X[z]H[z]. Hence, it follows that 

P[z] bozN + htzN- 1 + ... + bN-lZ + bN H[z] = -- = -----------
Q[z] ZN + alzN - 1 + ... + aN-lZ + aN 

(5.34) 

As in the case of LTIC systems, this result leads to an alternative definition of the LTID 
system transfer function as the ratio of Y[z] to X[z] (assuming all initial conditions zero). 

Y[z] Z[zero-state response] 
H[z] == -- = -------

X[z] Z[input] 
. (5.35) 

ALTERNATE INTERPRETATION 
OF THE z-TRANSFORM 

SO far we have treated the z-transform as a machine, which converts linear difference equations 
into algebraic equations. There is no physical understanding of how this is accomplished or what 
it means. We now discuss more intuitive interpretation and meaning of the z-transform. 

In Chapter 3, Eq. (3.71 a), we showed that LTID system response to an everlasting exponential 
zn is H[z]zn. If we could express every discrete-time signal as a linear combination of everlasting 
exponentials of the form zn, we -could readily obtain the system response to any input. For 
example, if 

K 

x[n] = L X[Zk]Z~ (5.36a) 
k=l 

the response of an LTID system to this input is given by 

K 

y[n] = L X[zk]H[Zk]Z~ (5.36b) 
k=l 

Unfortunately, a very small class of signals can be expressed in the form ofEq. (5.36a). However, 
we can express almost all signals of practical utility as a sum of everlasting exponentials over a 
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x[n] 

Expresses x[n] 
as a sum of 

everlasting exponentials 

Y[z] = H[z]X[z] 

System response to 
an exponential component 

X[z]zn is H[z]X[z]zn 

(a) 

X[z] Y[z] = H[z]X[z] 

(b) 

The sum of all exponential 
responses results 
in the outputy[n] 

Figure 5.6 The transformed representation of an LTID system. 

continuum of values of z. This is precisely what the z-transform in Eq. (S.2) does. 

x[n] = _1_. f X[z]zn-l dz 
2n:} 

(S.37) 

Invoking the linearity property of the z-transform, we can find the system response y[n] to input 
x[n] in the Eq. (S.37) as t 

Clearly 

y[n] = _1_. f X[z]H[z]zn-l dz = Z-l{X[z]H[z]} 
2n:} 

Y[z] = X[z]H[z] 

This viewpoint of finding the response of LTID system is illustrated in Fig. S.6a. Just as in 
continuous-time systems, we can model discrete-time systems in the transformed manner by 
representing all signals by their z-transforms and all system components (or elements) by their 
transfer functions, as shown in Fig. S.6b. 

The result Y[z] = H[z]X[z] greatly facilitates derivation of the system response to a given 
input. We shall demonstrate this assertion by an example. 

Find the response y[n] of an LTID system described by the difference equation 

y[n + 2] + y[n + 1] + O.16y[n] = x[n + 1] + O.32x[n] 

or 
(E 2 + E + O.16)y[n] = (E + O.32)x[n] 

tIn computing y[n], the contour along which the integration is performed is modified to consider the ROC of 
X[z] as well as H[z]. We ignore this consideration in this intuitive discussion. 
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for the input x[n] = (-2)-n u [n] and with all the initial conditions zero (system in the zero 
state). 

From the difference equation we find 

H[z] = P[z] = z + 0.32 
Q[z] Z2 + z + 0.16 

For the input x[n] = (-2)-nu [n] = [(-2)-1 ]nu(n) = (-0.5tu[n] 

z 
X[z] =--

z +0.5 

and 
z(z + 0.32) 

Y[z] = X[z]H[z] = (Z2 + z + 0.16)(z + 0.5) 

Therefore 
Y[z] (z + 0.32) (z + 0.32) 

Z (Z2 + z + 0.16)(z + 0.5) (z + 0.2)(z + 0.8)(z + 0.5) 

=~_~+_2_ (538) 
z + 0.2 z + 0.8 z + 0.5 . 

so that 

Y[z]-- -- -- -- +2 --2( z ) 8( z) ( Z ) 
3 z + 0.2 3 z + 0.8 z + 0.5 

(5.39) 

and 

y[n] = [~(-0.2)n - ~(-0.8)n + 2(-0.5)n] u[n] 

Show that the transfer function of a unit delay is liz. 

If the input to the unit delay is x[n]u[n], then its output (Fig. 5.7) is given by 

x[n]u[n] 

X[z] 

y[n] = x[n - l]u[n - 1] 

x[n - l]u[n - 1] 

'\ 1 
Y[z] = Z X[z] 

Figure 5.7 Ideal unit delay and its transfer 
function. 
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The z-transform of this equation yields [see Eq. (S.1Sa)] 

1 
Y[z] = ~X[z] 

z 
= H[z]X[z] 

I It follows that the transfer function of the unit delay is 

I H[z] = ~ (S.40) 
I z 

L-------------------------------------------------------------------~ 

5.3-2 Stability 
Equation (S.34) shows that the denominator of H[z] is Q[z], which is apparently identical to 
the characteristic polynomial Q[y] defined in Chapter 3. Does this mean that the denominator 
of H[z] is the characteristic polynomial of the system? This mayor may not be the case: if P[z] 
and Q[z] in Eq. (S.34) have any common factors, they cancel out, and the effective denominator 
of H[z] is not necessarily equal to Q[z]. Recall also that the system transfer function H[z], like 
hEn], is defined in terms of measurements at the external terminals. Consequently, H[z] and hEn] 
are both external descriptions of the system. In contrast, the characteristic polynomial Q[z] is 
an internal description. Clearly, we can determine only external stability, that is, BIBO stability, 
from H[z]. If all the poles of H[z] are within the unit circle, all the terms in h[z] are decaying 
exponentials, and as shown in Section 3.10, hEn] is absolutely summable. Consequently, the 
system is BIBO stable. Otherwise the system is BIBO unstable. 

If P[z] and Q[z] do not have common factors, then the denominator of H[z] is identical 
to Q[z].t The poles of H[z] are the characteristic roots of the system. We can now determine 

tThere is no way of determining whether there were cornmon factors in P[z] and Q[z] that were canceled out 
because in our derivation of H[z], we generally get the final result after the cancellations are already effected. 
When we use internal description of the system to derive Q[z], however, we find pure Q[z] unaffected by any 
common factor in P[z]. 
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internal stability. The internal stability criterion in Section 3.10-1 can be restated in terms of the 
poles of H[z], as follows. 

1. An LTID system is asymptotic all y stable if and only if all the poles of its transfer function 
H[z] are within the unit circle. The poles may be repeated or simple. 

2. An LTID system is unstable if and only if either one or both of the following conditions 
exist: (i) at least one pole of H[z] is outside the unit circle; (ii) there are repeated poles 
of H[z] on the unit circle. 

3. An LTID system is marginally stable if and only if there are no poles of H[z] outside 
the unit circle, and there are some simple poles on the unit circle. 

5.3-3 Inverse Systems 

If H[z] is the transfer function of a system S, then Si, its inverse system ?as a transfer function 
Hi [z] given by 

1 
Hi[z] = H[z] 

This follows from the fact the inverse system Si undoes the operation of S. Hence, if H[z] is 
placed in cascade with Hi [z], the transfer function of the composite system (identity system) 
is unity. For example, an accumulator, whose transfer function is H[z] = z/(z - 1) and a 
backward difference system whose transfer function is Hi[z] = (z - 1)/z are inverse of each 
other. Similarly if 

its inverse system transfer function is 

z - 0.4 
H[z] = -­

z -0.7 

z -0.7 
Hi[z] = z - 0.4 

as required by the property H[z]Hi [z] = 1. Hence, it follows that 

h[n] * hi [n] = 8[n] 
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5.4 SYSTEM REALIZATION 

Because of the similarity between LTIC and LTID systems, conventions for block diagrams and 
rules of interconnection for LTID are identical to those for continuous-time (LTIC) systems. It is 
not necessary to rederive these relationships. We shall merely restate them to refresh the reader's 
memory. 

The block diagram representation of the basic operations such as an adder a scalar multiplier, 
unit delay, and pick off points were shown in Fig. 3.11. In our development, the unit delay, which 
was represented by a box marked D in Fig. 3.11, will be represented by its transfer function 
liz. All the signals will also be represented in terms of their z-transforms. Thus, the input and 
the output will be labeled X[z] and Y[z], respectively. 

When two systems with transfer functions HI [z] and H2 [z] are connected in cascade (as 
in Fig. 4.1Sb), the transfer function of the composite system is H I [z]H2 [z]. If the same two 
systems are connected in parallel (as in Fig. 4.1Sc), the transfer function of the composite 
system is H I [z]H2 [z]. For a feedback system (as in Fig. 4.1Sd), the transfer function is G[z]1 
(1 + G[z]H[z]). 

We now consider a systematic method for realization (or simulation) of an arbitrary 
Nth-order LTID transfer function. Since realization is basically a synthesis problem, there is no 
unique way of realizing a system. A given transfer function can be realized in many different 
ways. We present here the two forms of direct realization. Each of these forms can be executed 
in several other ways, such as cascade and parallel. Furthermore, a system can be realized by the 
transposed version of any known realization of that system. This artifice doubles the number of 
system realizations. A transfer function H[z] can be realized by using time delays along with 
adders and multipliers. 

We shall consider a realization of a general Nth-order causal LTID system, whose transfer 
function is given by 

(5.41) 

This equation is identical to the transfer function of a general Nth-order proper LTIC system 
given in Eq. (4.60). The only difference is that the variable z in the former is replaced by 
the variable s in the latter. Hence, the procedure for realizing an LTID transfer function is 
identical to that for the LTIC transfer function with the basic element lis (integrator) replaced 
by the element liz (unit delay). The reader is encouraged to follow the steps in Section 4.6 and 
rederive the results for the LTID transfer function in Eq. (5.41). Here we shall merely reproduce 
the realizations from Section 4.6 with integrators (1 Is) replaced by unit delays (1 I z). The direct 
form I (DFI) is shown in Fig. 5.Sa, the canonic direct form (DFII) is shown in Fig. 5.Sb and 
the transpose of canonic direct is shown in Fig. 5.Sc. The DFII and its transpose are canonic 
because they require N delays, which is the minimum number needed to implement an Nth­
order LTID transfer function in Eq. (5.41). In contrast, the form DFI is a noncanonic because it 
generally requires 2N delays. The DFII realization in Fig. 5.Sb is also called a canonic direct 
form. 




