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This practice exam is based on the same template as the final exam paper.  I have tried 
to ask practice questions that will help you study the material.  In my opinion, the practice 
exam is harder than the actual exam, which is to say that I think that if you can handle 
this exam you should be able to handle the final exam paper.   I have tried to include 
example problems from Lathi so as to allow one to one to reference associated material 
covered in the textbook.  The problems in the exam are mostly written by me. 

This practice exam has THREE (3) Sections for a total of 100 Points 

Section 1:  Linear Systems  ....................................................................................... 30 % 

Section 2:  Signal Processing .................................................................................... 30 % 

Section 3:  Digital Control .......................................................................................... 40 % 

Please answer ALL questions 
 

 

Section 1:  Linear Systems 
Please Record Answers in the Answer Book (Total: 30%) 
 
1. Digital Convolution  (5%) 
Suppose an LTI system has the following impulse response h[n] given below:          

 
Suppose the input to the system is:  

𝑥[𝑛] = 𝑢[𝑛 + 1] + 𝑢[𝑛 − 2] 
Plot the output of the system, y[n]. Please Label your plot. 
 
 
 
 

2. Linearity  (5%) 
Consider a system given with the following impulse response:  
 

ℎ[𝑛] = 4𝑢[1 − 𝑛] 
 
a) Is the system LTI?   
b) Is it causal?   
c) Is it stable? 
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3. The Everlasting Exponential (10%) 

Show that the transfer function of an ideal integrator is  
 

𝑯(𝒔) =
𝟏

𝒔
 

 
and that of an ideal differentiator is  

𝑯(𝒔) = 𝒔 
 

 
[Practice Exam Hint: This is based on Lathi 2.4-4.  See Eq 2.48 and Eq. 2.50.  You also 
may need to use the result in Prob. 1.4-9.] 
 
 
 
 
 
 
 
 
 
 
 
4. Just in BIBO (10%) 
For the following systems, please: 

(i) Determine its character roots; 
(ii) Plot its characteristic roots in the complex plane;  
(iii)Use this to determine whether it is asymptotically stable, marginally stable, or 

unstable (assuming that the equations describe its internal system); and, 
(iv) Also, determine BIBO stability for each system. 

 
 

(a) D(D + 2)y(t) = 3x(t) 
(b) (D + 1)(D + 2)y(t) = (2D + 3)x(t) 
(c) (D + 1)(D2 −4D + 9)y(t) = (D + 7)x(t) 

 
[Practice Exam Hints:   
• This is also Lathi Example E2.16, p. 214  
• Also, Section 2.7 of Lathi is a good overview section. ] 
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Section 2:  Signal Processing 
Please Record Answers in the Answer Book (Total: 30%) 
 
5. Sketch the Following Signals (5%) 
 

a) u[n − 2] − u[n − 6] 
b) (n − 2) {u[n − 2] − u[n − 6]} 
c) (n − 2){u[n − 2] − u[n − 6]} + (− n + 8){u[n − 6] − u[n − 9]} 

 
[Practice Exam Hints:   
• This is from Lathi Problem 3.3-3  
• On the nature of Signals, Lathi Example 3.4 (Savings Account) is a good example to 

look at. ] 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Digital Processing of Analog Signals (5%) 
Design a digital filter to realize an analog transfer function given by 

𝑯(𝒔) =
𝟐𝟎

𝒔 + 𝟐𝟎
 

 
 
[Practice Exam Hint:  See also Lathi Exercise E5.22] 
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7. Frequency Response from Pole-Zero Location (5%) 
Pole-zero configurations of certain filters are shown in Fig. P5.6-1. Sketch roughly the 
amplitude response of these filters. 
 

  
a)  b)  

 
 [Practice Exam Hints:   
• Review Section 5.6 (Frequency Response from Pole-Zero Location )  
• See also Lathi Problem 5.6-1 ] 
 
 
 
 
 
 
 
 
 
 
 
 
8. Filter.  The Truth (5%) 

For each statement, please and briefly justify if it is TRUE or FALSE. 
 
a) FIR filters have numerical stability issues 
b) IIR filters have numerical stability issues 
c) IIR filters do not contain feedback 
d) FIR filter order is the same as filter length 
e) IIR filters are all poles. 
 
 
 
 
 
 
 
 
  

×

×1

×

× 1



PRACTICE Final Examinations, 2013  ELEC3004 Signals, Systems & Control 

Page 6 of 14 

9. A Lone Filter AM I (10%) 
Help design an analog bandpass filter for tuning into an AM radio station at 792 kHz.  
The passband is +/─ 15 KHz.  This is used to send signal to diode across which a 
crystal earpiece is connected in parallel. 
 
 

a) What order is needed to have -20 dB of attenuation at +/─ 50 KHz? 
 
 

b) Imagine we are lost in the desert, but happen to have a collection of passive circuit kit 
(do not leave home without it!).  If we wish to construct the tuner using as two first-
order stages, what values of R, L, and/or C will we need for both sides (i.e., the low 
and high bands) of a passband filter to tune into this station?     
 
[note: As a thought exercise, what is the performance of this filter?  And, where should the 
cutoff frequencies be so that the signal at the station carrier (i.e., 792 kHz) is not attenuated 
too much (i.e., more than 3 dB)?  Being a second-order filter (comprised of two first order 
stages), the performance of this filter may be (well) less than in part (a)].   
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Section 3:  Digital Control   
Please Record Answers in the Answer Book (Total: 40%) 
 
10. A Canonical State (10%) 
Determine the canonical state space form of a system described by the following transfer 
function: 

𝐻(𝑠) =
2𝑠 + 10

𝑠3 + 8𝑠2 + 19𝑠 + 12
 

= (
2

𝑠 + 1
) (

𝑠 + 5

𝑠 + 3
) (

1

𝑠 + 4
) = (

11
3

𝑠 + 1
) (

2

𝑠 + 3
)(

2
3

𝑠 + 4
) 

 
a) What are the components of the state vector (typically  )? 
b) What are dimensions of the state matrices (typically A, B, C, D)?  
c) What are the values of the state matrices  

(i.e., the matrices dimensioned in part (b))? 
 

[Practice Exam Hints:   
• Review Section 10.2 (A Systematic Procedure for Determining State Equations)  
• See also Lathi Example10.4, pp. 904-911] 
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11. Burn-Out (15%) 
“An electric car should burn-out tyres not battery packs” says Uncle Robert.  Employing 
his electrifying and harmonious talents, he has designed a water-cooled battery pack that 
can store 85 kWhr of energy for an electric car, the Nikola. 
 
However, it needs a controller.  Prof. F. Pe, an old engineering friend, suggests the 
following controller with 𝑘1 as a tuning factor.   
 

𝐷(𝑠) =
2𝑠 + 1

𝑠 + 𝑘1
 

 
You would like to digitize this controller for better performance and to make it less 
sensitive to tuning values. 
 

a) Using the Euler controller emulation approach, what is the resulting transfer 
function D(z) for a yet to be determined sampling time of Ts ? 

b) For what range of tuning values for the factor 𝑘1will the discrete-time controller, 
D(z) (as found in part (a) using the Euler controller emulation approach) be 
asymptotically stable? 

c) Will this same range of 𝑘1 values be stable for the continuous controller D(s)?  If 
not, what range of 𝑘1 values will be stable for both the continuous D(s) and the 
discrete D(z)?  
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12. A Smart Response (15%) 
Dr. Tjohi, a rather caring, but overworked, engineer, decides to join Uncle Robert and 
wants to design a smart motor controller for the Nikola car. 
 
Consider an electric motor with shaft angular velocity ω.  The motor is controlled by input 
voltage u(t).  The equations of motion for the system are:  

𝜏 = 𝐼
𝑑𝜔

𝑑𝑡
 

𝜏 = 𝜆𝑖 
𝑢 = 𝑅𝑖 + 𝜆𝜔 + 𝐿

𝑑𝑖

𝑑𝑡
 

where I=0.01 Nm/rad/s2  is the rotational inertia of the rotor, τ is the output torque of 
the motor in Nm, λ=0.01 V/rad/s  is the flux-linkage coefficient of the motor, R = 
0.02 Ω is the motor internal resistance and L=15 mH (unless otherwise stated) is the 
inductance of the motor windings.  

a) Derive a discrete transfer function from u(t) to ω for this plant, using the matched 
pole-zero method. 

b) If the inductance is equal to 15 mH, what is the slowest sampling rate that will not 
destabilise the system under unity-gain proportional negative feedback?  

c) Under what conditions can the inductance be ignored, and the motor treated as a 
single pole system? 

 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

END OF EXAMINATION  —  Thank you  
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Table 1: Commonly used Formulae
The Laplace Transform

F (s) =

∫ ∞
0

f(t)e−st dt

The Z Transform

F (z) =
∞∑
n=0

f [n]z−n

IIR Filter Pre-warp

ωa =
2

∆t
tan

(
ωd∆t

2

)
Bi-linear Transform

s =
2(1− z−1)

∆t(1 + z−1)

FIR Filter Coefficients

cn =
∆t

π

∫ π/∆t

0

Hd(ω) cos(nω∆t) dω

Table 2: Comparison of Fourier representations.

Time
Domain

Periodic Non-periodic

D
is

cr
et

e

Discrete Fourier
Transform

X̃[k] =
1

N

N−1∑
n=0

x̃[n]e−j2πkn/N

x̃[n] =
N−1∑
k=0

X̃[k]ej2πkn/N

Discrete-Time
Fourier Transform

X(ejω) =

∞∑
n=−∞

x[n]e−jωn

x[n] =
1

2π

∫ π

−π
X
(
ejω
)
ejωn dω

P
er

io
di

c

C
on

tin
uo

us

Complex Fourier Series

X[k] =
1

T

∫ T/2

−T/2
x̃(t)e−j2πkt/T dt

x̃(t) =

∞∑
k=−∞

X[k]ej2πkt/T

Fourier Transform

X(jω) =

∫ ∞
−∞

x(t)e−jωt dt

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωt dω

N
on

-p
er

io
di

c

Discrete Continuous Freq.
Domain
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Table 3: Selected Fourier, Laplace and z-transform pairs.

Signal ←→ Transform ROC

x̃[n] =
∞∑

p=−∞

δ[n− pN ]
DFT←−→ X̃[k] =

1

N

x[n] = δ[n]
DTFT←−−→ X(ejω) = 1

x̃(t) =
∞∑

p=−∞

δ(t− pT )
FS←→ X[k] =

1

T

δT [t] =
∞∑

p=−∞

δ(t− pT )
FT←→ X(jω) =

2π

T

∞∑
k=−∞

δ(ω − kω0)

cos(ω0t)
FT←→ X(jω) = πδ(ω − ω0) + πδ(ω + ω0)

sin(ω0t)
FT←→ X(jω) = jπδ(ω + ω0)− jπδ(ω − ω0)

x(t) =

{
1 when |t| 6 T0,
0 otherwise.

FT←→ X(jω) =
2sin(ωT0)

ω

x(t) =
1

πt
sin(ωct)

FT←→ X(jω) =

{
1 when |ω| 6 |ωc|,
0 otherwise.

x(t) = δ(t)
FT←→ X(jω) = 1

x(t) = δ(t− t0)
FT←→ X(jω) = e−jωt0

x(t) = u(t)
FT←→ X(jω) = πδ(w) +

1

jw

x[n] =
ωc
π

sincωcn
DTFT←−−→ X(ejω) =

{
1 when |ω| < |ωc|,
0 otherwise.

x(t) = δ(t)
L←→ X(s) = 1 all s

(unit step) x(t) = u(t)
L←→ X(s) =

1

s

(unit ramp) x(t) = t
L←→ X(s) =

1

s2

x(t) = sin(s0t)
L←→ X(s) =

s0

(s2 + s0
2)

x(t) = cos(s0t)
L←→ X(s) =

s

(s2 + s0
2)

x(t) = es0tu(t)
L←→ X(s) =

1

s− s0

Re{s} > Re{s0}

x[n] = δ[n]
z←→ X(z) = 1 all z

x[n] = δ[n−m]
z←→ X(z) = z−m

x[n] = u[n]
z←→ X(z) =

z

z − 1

x[n] = zn0u[n]
z←→ X(z) =

1

1− z0z−1
|z| > |z0|

x[n] = −zn0u[−n− 1]
z←→ X(z) =

1

1− z0z−1
|z| < |z0|

x[n] = anu[n]
z←→ X(z) =

z

z − a
|z| < |a|
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Table 4: Properties of the Discrete-time Fourier Transform.

Property Time domain Frequency domain

Linearity ax1[n] + bx2[n] aX1(ejω) + bX2(ejω)

Differentiation (fre-
quency)

nx[n] j
dX(ejω)

dω

Time-shift x[n− n0] e−jωn0X(ejω)
Frequency-shift ejω0nx[n] X(ej(ω−ω0))
Convolution x1[n] ∗ x2[n] X1(ejω)X2(ejω)
Modulation x1[n]x2[n] 1

2π
X1(ejω) ~X2(ejω)

Time-reversal x[−n] X(e−jω)
Conjugation x∗[n] X∗(e−jω)
Symmetry (real) Im{x[n]} = 0 X(ejω) = X∗(e−jω)
Symmetry (imag) Re{x[n]} = 0 X(ejω) = −X∗(e−jω)

Parseval
∞∑

n=−∞

|x[n]|2 =
1

2π

∫ π

−π

∣∣X(ejω)
∣∣2 dω

Table 5: Properties of the Fourier series.

Property Time domain Frequency domain

Linearity ax̃1(t) + bx̃2(t) aX1[k] + bX2[k]

Differentiation
(time)

dx̃(t)

dt

j2πk

T
X[k]

Time-shift x̃(t− t0) e−j2πkt0/TX[k]
Frequency-shift ej2πk0t/T x̃(t) X[k − k0]
Convolution x̃1(t) ~ x̃2(t) TX1[k]X2[k]
Modulation x̃1(t)x̃2(t) X1[k] ∗X2[k]
Time-reversal x̃(−t) X[−k]
Conjugation x̃∗(t) X∗[−k]
Symmetry (real) Im{x̃(t)} = 0 X[k] = X∗[−k]
Symmetry (imag) Re{x̃(t)} = 0 X[k] = −X∗[−k]

Parseval
1

T

∫ T/2

−T/2
|x̃(t)|2 dt =

∞∑
k=−∞

|X[k]|2
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Table 6: Properties of the Fourier transform.

Property Time domain Frequency domain

Linearity ax̃1(t) + bx̃2(t) aX1(jω) + bX2(jω)
Duality X(jt) 2πx(−ω)

Differentiation
dx(t)

dt
jωX(jω)

Integration
∫ t

−∞
x(τ) dτ 1

jω
X(jω) + πX(j0)δ(ω)

Time-shift x(t− t0) e−jωt0X(jω)
Frequency-shift ejω0tx(t) X(j(ω − ω0))
Convolution x1(t) ∗ x2(t) X1(jω)X2(jω)
Modulation x1(t)x2(t) 1

2π
X1(jω) ∗X2(jω)

Time-reversal x(−t) X(−jω)
Conjugation x∗(t) X∗(−jω)
Symmetry (real) Im{x(t)} = 0 X(jω) = X∗(−jω)
Symmetry (imag) Re{x(t)} = 0 X(jω) = −X∗(−jω)

Scaling x(at)
1

|a|
X

(
jω

a

)
Parseval

∫ ∞
−∞
|x(t)|2 dt =

1

2π

∫ ∞
−∞
|X(jω)|2 dω

Table 7: Properties of the z-transform.

Property Time domain z-domain ROC

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊆ Rx1 ∩Rx2

Time-shift x[n− n0] z−n0X(z) R†x
Scaling in z zn0x[n] X(z/z0) |z0|Rx

Differentiation in z nx[n] −zdX(z)

dz
R†x

Time-reversal x[−n] X(1/z) 1/Rx

Conjugation x∗[n] X∗(z∗) Rx

Symmetry (real) Im{x[n]} = 0 X(z) = X∗(z∗)
Symmetry (imag) Re{X[n]} = 0 X(z) = −X∗(z∗)
Convolution x1[n] ∗ x2[n] X1(z)X2(z) ⊆ Rx1 ∩Rx2

Initial value x[n] = 0, n < 0⇒ x[0] = lim
z→∞

X(z)

† z = 0 or z =∞ may have been added or removed from the ROC.
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Table 8: Commonly used window functions.

Rectangular:

wrect[n] =

{
1 when 0 6 n 6M ,
0 otherwise.

0 0.5 1
−80

−60

−40

−20

0

ω (× π)

20
 lo

g 10
 |W

re
ct

(e
jω

)|

Bartlett (triangular):

wbart[n] =


2n/M when 0 6 n 6M/2,
2− 2n/M when M/2 6 n 6M ,
0 otherwise.

0 0.5 1
−80

−60

−40

−20

0

ω (× π)

20
 lo

g 10
 |W

ba
rt
(e

jω
)|

Hanning:

whann[n] =

{
1
2 −

1
2 cos (2πn/M) when 0 6 n 6M ,

0 otherwise.

0 0.5 1
−80

−60

−40

−20

0

ω (× π)

20
 lo

g 10
 |W

ha
nn

(e
jω

)|

Hamming:

whamm[n] =

{
0.54− 0.46 cos (2πn/M) when 0 6 n 6M ,
0 otherwise.

0 0.5 1
−80

−60

−40

−20

0

ω (× π)

20
 lo

g 10
 |W

ha
m

m
(e

jω
)|

Blackman:

wblack[n] =


0.42− 0.5 cos (2πn/M)
+ 0.08 cos (4πn/M)

when 0 6 n 6M ,

0 otherwise.

0 0.5 1
−80

−60

−40

−20

0

ω (× π)

20
 lo

g 10
 |W

bl
ac

k(e
jω

)|

Type of Window
Peak Side-Lobe Amplitude

(Relative; dB)
Approximate Width

of Main Lobe
Peak Approximation Error,

20 log10 δ (dB)

Rectangular −13 4π/(M + 1) −21
Bartlett −25 8π/M −25
Hanning −31 8π/M −44
Hamming −41 8π/M −53
Blackman −57 12π/M −74
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