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One classical technique in determining pole variations with parameters is 
known as the root-locus method, invented by W. R. Evens, which will be in­
troduced in this chapter. It should be pointed out that in most cases it is more 
important to know how to quickly. sketch a root locus, which would indicate the trend 
of the root loci rather than the exact root-locus plot, which can be done by using a 
computer if necessary. Thus, attention is not focused on the exact details of root­
locus construction in this chapter. Instead, we shall concentrate on how we can use 
root locus as a tool for system analysis and controller design. 

Walter R. Evans (1920-1999) earned his BS degree in Electri­
cal Engineering from Washington University in 1941 and his MS 
Degree in Electrical Engineering from the University of Califor­
nia, Los Angeles, in 1951. He taught as an instructor in the 
Department of Electrical Engineering at Washington University 
from 1946 to 1948. In 1948; Mr Evans moved to Autonetics, 
a division of North American Aviation, now known as Rockwell 
International. It was during his lectures to his colleagues on anal­
ysis of servo-mechanisms in August 1948 that he finally came up 
with the root-locus techniques. That same year, he developed 
the Spirule, a tool used in conjunction with the application of 

the root-locus method, and The Spirule Company (formed by him) sold in the next 
few decades over 100,000 copies of the Spirule over 75 countries around the world. His 
root-locus method was published in the paper "Graphical analysis of control systems," 
Transactions of the American Institute of Electrical Engineers, vol. 67, pp. 547-
551, 1948, and in the paper "Control system synthesis by root-locus method," Trans­
actions of the American Institute of Electrical Engineers, vol. 69, pp. 66-69, 1950. 
Mr Evans worked with the technical staff of the Guidance and Control Department of 
the Re-Entry Systems Operation of the Ford Aeronautic Company from 1959 to 1971. 
He rejoined Autonetics where he worked with the technical staff of the Strategic Sys­
tems Division until his retirement in 1980. Mr Evans was awarded the prestigious Rufus 
Oldenburger Medal by the American Society of Mechanical Engineers in 1987 and the 
Richard E. Bellman Control Heritage Award of the American Automatic Control Council 
in 1988. 

5.1 ROOT-LOCUS TECHNIQUES 

Consider a standard feedback system for stabilization shown in Figure 5.1 or a unity 
feedback system shown in Figure 5.2. 

The closed-loop poles are given by the roots of the following equation: 

1 + P(s)C(s) = O. 

For simplicity of presentation, we shall denote 

L(s) := P(s)C(s) 

and a 
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Yl 

FIGURE 5.1: Feedback system for stabilization. 

FIGURE 5.2: A unity feedback system. 

and assume that L( 8) has the following form: 

L ( 8) = _K---,(_8 _-_Z-,-1 )-'-( 8_-_Z2-'.-) _ .. _. -'.-( 8_-_Zm~) 
(8 - Pl)(8 - P2) ... (8 - Pn) 

where ZI, ... , Zm are the open-loop zeros; PI, ... , Pn are the open-loop poles; and K 
is a variable gain. Our objective is to study how the closed-loop poles change when 
K varies from 0 to 00. We shall show later how problems involving other system 
parameters may be converted into problems like this. 

Thus, our goal is to find all points that satisfy 

L(8) = -1. 

This equation can be equivalently written into two equations: 

Magnitude condition: 

Phase condition: 

IL(8)1 = 1 (5.1) 

LL(8) = (2k+1)180°, k=O,±l, ... (5.2) 

It is easy to see that the magnitude condition can always be satisfied by a 
suitable K 2: O. On the other hand, the phase condition does not depend on the 
value of K (but depends on the sign of K): 

m n 

i=1 j=1 

Thus, the key is to find all those points that satisfy the phase condition. Consider, 
for example, a system with open-loop transfer function 

L(s) _ K(8 - ZI)(8 - Z2) 
- (8 - PI) (8 - P2) (8 - P3) , 

The open-loop poles and zeros of the system are shown in Figure 5.3 where a pole 
is represented by "x" and a zero is represented by "0." The phase of L(8) at a 
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1m 

P2 

FIGURE 5.3: The phase of L(8) at a point 8. 

point s in the complex plane is computed as 

LL(s) = L(S - ZI) + L(S - Z2) - L(S - PI) - L(S - P2) - L(S - P3) 

= (PI + (/>2 - al - a2 - a3· 

Several basic rules can be derived from the phase condition, which will facili­
tate the sketching of the root locus. These rules are summarized in Table 5.1. The 
terminologies used in the table such as "asymptotes," "breakaway points," "angle 
of departure," and "angle of arrival" are illustrated in the following two examples. 

EXAMPLE 5.1 

In this example, asymptotes and breakaway points are illustrated. Consider an 
open-loop transfer function 

K 
L(s) = s(s + 4)(s + 5)' 

The system has three poles and no zero, so the angles of the three asymptotes 
can be calculated as 

e = (2k + 1) 180° = 600 -60° 1800 
3 " 

for k = 0, -I , and I, and the intersection of the asymptotes with the real axis is 
given by 

0-4-5 
fi, = 3 = -3. 

Note that we could have set k = 0, 1,2 to get e = 60°,180°, 300°, which are the 
same angles. The three asymptotes are shown in Figure 5.4. 

The asymptotes clearly indicate that the system will become unstable when 
the gain is sufficiently large. It is quite easy to see by Rule 4 that this is always 
the case if the relative degree of L( s) is at least 3, since in that case there will be 
at least one asymptote with an angle less than 90° . 
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[IJ. The root locus is symmetric with respect to the real axis. 

1]]. The root loci start from n poles Pi (when K = 0) and approach the n zeros 
(m finite zeros Zi and n - m infinite zeros when K ---7 00). 

[]J. The root locus includes all points on the real axis to the left of an odd number 
of open-loop real poles and zeros. 

[±]. As K ---7 00, n - m branches of the root-locus approach asymptotically n - m 
straight lines (called asymptotes) with angles 

(2k + 1)180° e = , k = 0, ±1, ±2, ... 
n-m 

and the starting point of all asymptotes is on the real axis at 

n m 

LPi - L Zj 
i=1 j=1 

K= 
n-m 

L poles - L zeros 

n -:- m 

5. The breakaway points (where the root loci meet and split away, usually on 
real axis) and the breakin points (where the root loci meet and enter the 

real axis) are among the roots of the equation: d~~S) = O. (On the real axis, 

only those roots that satisfy Rule 3 are breakaway or breakin points.) 

6. The departure angle (h (from a pole, Pk) is given by 

m n 

i=1 j=1 ,j#k 

(In the case Pk is l repeated poles, the departure angle becomes (hie.) 
The arrival angle 'l/Jk (at a zero, Zk) is given by 

m n 

i=1 ,i#k j=1 

(In the case Zk is l repeated zeros,· the arrival angle becomes 'l/Jkl e.) 

TABLE 5.1: Root locus rules: 0 :::; K :::; 00 . 
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-5 -4 -3 \ , , , , , 

FIGURE 5.4: Breakaway point and asymptotes. 

EXAMPLE 5.2 

In this example, departure and arrival angles are illustrated. Consider an open-loop 
transfer function 

L 8 _ K (82 + 48 + 8) 
() - (8+3)(82 +28+2) 

with zeros at ZI = -2 + j2 and Z2 = -2 - j2 and poles at PI = -3, P2 = -1 + j , 
and P3 = -1 - j. 

The departure angle ¢ at P2 = -1 + j satisfies the following equation 

i.e., 

which gives ¢ = 90° , while the arrival angle at the zero ZI = -2 + j2 can be 
calculated from 

i.e. , 
'!jJ + 90° - tan- I 2 - 135° - (180° - tan- I 3) = -180° 

which gives '!jJ = 36.87°. 
The departure angle at P3 = -1 - j and the arrival angle at Z2 = - 2 - j2 are 

-¢ and -'!jJ, respectively. All these angles are shown in Figure 5.5. 
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Arrival angle fj; = 36.87° 

~~ 
Departure angl::~'\'" ~ 90' I '~L--

-3 -2 -1 0 

J 
FIGURE 5.5: Departure and arrival angles. 

The detailed derivations of these rules in Table 5.1 are given in the next 
section. We shall only look at Rule 3 here. Take s to be a point on the real axis as 
shown in Figure 5.6. It is easy to see that any complex pair of poles or zeros will 
contribute totally zero degree of phase for any test point on the real axis. Thus, we 
only need to look at real zeros and poles. It is also clear that any real pole or real 
zero on the left-hand side of the testing point s (real number) will also contribute 
zero degree of phase, and any pole or zero on the right-hand side will contribute 
180 degree of phase. Hence, Rule 3 is verified. 

1m 

s 

o Re 

P2 

FIGURE 5.6: The phase of L(8) at a point 8 on the real axis. 

Normally, a quick sketch of the root-locus can be obtained by using only Rules 
1-4. Rules 5 and 6 are rarely used nowadays since the exact root-locus can be easily 
generated using a computer program. 

EXAMPLE 5.3 

Consider a feedback system shown in Figure 5.2 with 

8K(s + 2) 
L(s) = P(s)C(s) = (s + l)(s + 5)(s + 10) 
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We would like to study how the closed-loop poles change when K varies from 0 to 
+00. This is done by constructing a root-locus plot of the system with respect to K. 
From Rule 3, we know there are root loci 
on the real axis in two intervals: [-2, -1] 
and [-10, -5]. By Rule 2, one root locus 
starts from -1, a pole, and ends at -2, 
a zero, and other two root loci start from 
-10 and -5, respectively, and then ap­
proach two infinite zeros with two asymp­
totes. The two asymptotes start at 

(-1 - 5 - 10) - (-2) 
r;,= =-7 

3-1 

on the real axis with 90° and -90°, re­
spectively. With the above information, a 
rough root locus can be sketched. 

z=-2; vector of zeros 

p= [-1, -5, -10J; vector of poles 

k=8; gain (not the variable gain 
K) 

L=zpk (z ,p ,k) form the trans­
fer function of the system 

rlocus (L) generate a root-locus 
plot with an automatically 
chosen range of gain K 

An accurate root-locus plot can be generated by using the sequence of MAT­
LAB commands listed in the box. The root-locus plot is shown in Figure 5.7. 
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FIGURE 5.7: Root locus for Example 5.3. 

Table 5.2 shows some typical root-locus plots with the given open-loop pole 
and zero patterns. 

In many applications, the varying parameters do not necessarily appear as 
gains and they can, in general, appear anywhere in the transfer functions . The 
following example shows how to convert a nonstandard root-locus problem into a 
standard one. 
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(1) (2) (3) 

( 4) (5) (6) 

(7) (8) (9) 

( 
(10) (11) (12) 

TABLE 5.2: Some typical root-locus plots. 

EXAMPLE 5.4 

Consider a feedback system with 

P(s)C(s) = 4(s+3) 
s(s + l)(s + K) 

where K is a variable pole position. We would like to analyze how K affects the 
system stability and performance. This problem is obviously not in the standard 
root-locus format. Nevertheless, the closed-loop poles are given by the roots of 

1 + P(s)C(s) = 0 
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or 

s(s + l)(s + K) + 4(s + 3) = 0 

which can be written as 

(s + 2)(s2 - S + 6) + Ks(s + 1) = 0 

or 
1 + K s( s + 1) = 0 

(S+2)(S2-S+6) . 

Let 

Ls= Ks(s+l) 
() (s + 2)(S2 - S + 6)" 

num= [1,1, OJ ; numerator coeffi­
cients of L(s) excluding K 

den=conv( [1 ,2J, [1,-1 ,6J); 
denominator coefficients of 
L(s) 

L=tf (num, den) create the 
transfer function 

rlocus (L) generate a root-locus 
plot 

We can then construct the root locus for this system as usual. We can also use the 
above MATLAB commands for the task. The root locus of this system is shown 
in Figure 5.S. 
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FIGURE 5.8: Root locus for Example 5.4 (The root locations for K = 1.2749 are shown with 
"+"). 

We can also get the numerical value of any point on the root-locus plot and 
the corresponding gain value by using rlocfind: 

» [K, polesJ =rlocfind(L) (just point and click on any desired point on the 
plot after entering this command) 

For example, to get the critical value of K where the root locus enters the left 
half plane, simply enter the above command and then click on the intersection of 
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the root locus and the imaginary axis. We get 

K = 1.2749, poles = -2.2749, ±j2.2967. 

(The actual numerical value may be slightly different from the above depending 
on how accurate the point was actually clicked.) This shows that the closed-loop 
system will only be stable for K > 1.2749. 

This critical value of K can also be determined exactly by applying the Routh­
Horwitz stability test in Chapter 3 to the characteristic polynomial: 

s(s + l)(s + K) + 4(s + 3) = s3 + (1 + K)S2 + (K + 4)s + 12. 

The stability criterion then shows that the system is stable if and only if 

i.e., 

(K + l)(K + 4) - 12 > 0, 

K > J57 - 5 = 1.2749. 
2 , 

5.2 DERIVATIONS OF ROOT-LOCUS RULES* 

Here we shall revisit the root-locus rules. Note that the closed-loop charac­
teristic equation is 

c(s) := (s - Pl)(S - P2) ... (s - Pn) + K(s - Zl)(S - Z2)'" (s - zm) = 0. (5.3) 

Rule 1. This is obvious. Since (5.3) has real coefficients, all roots of the 
equation appear in complex conjugate pairs. 

Rule 2. When K = 0, (5.3) reduces to 

such that the solutions are S = Pi, i = 1,2, ... , n . When K increases, the 
roots are moving continuously away from Pi. 

When K ~ 00, we can rewrite (5.3) as 

If lsi is finite, then the equation approaches 


