DISCRETE SYSTEMS

® PROBLEM 13.g,

Determine the stability of both discrete systems

-~
X (k+1) 1 3 x; (k)

x, (k+1) 2 L X, (k)

-

x; (k+1) X, (k)

X, (k+1) «3 x2 (k)

Solution: From det|AI - A| =

0 we compute the eigenvalues of
the matrix A for the first system.

(A - 1)%2-6 =0

A

Il

1+ V6

The system is unstable since eigenvalues are greater than
unity.

For the second system we have

det

I
o

(A - 0.4)(A - 0.3) =0
A1 = 0.4
A2 = 0.3
The system (2) is stable since

A ] <1 and Al < L

e PROBLEM 13-97

Show that the system described by the equation

%1 (k+1) 0 A %1 (k) 0
= + u (k)
X2 (k+1) -4 -5 %z (k) i
x, (k)
y(k) = [1 0]
X2 (k)
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where k is a discrete parameter, is unstable. Find a scalar
function H such that

u(k) = -Hy(k)

will stabilize the system.

solution: The eigenvalues of the matrix A

are Ay = -1, Az = -4 so the open-loop system is unstable.

In order to stabilize the system we seek a scalar function H,
such that taking into account the output feedback

u(k) = -Hy(k)

the eigenvalues of A,where A is a closed-loop matrix are less
than unity in magnitude.

A=A - BHC = - H[1l 0]

The characteristic polynomial of A is

det |AI - A| = det =0

A2 + 5A + 4 +H=0

Ky = % + /25-4 (4+H)
5 e ———
Az = - 3" V25-4 (4+H)

We notice that there is no value of H that can make both
roots of the polynomial less than unity in magnitude, hence
the system is not stable and cannot be stabilized using
output feedback.
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® PROBLEM 13-98

Check the stability of the following system

x (k + 1) = x (k)
1 2

x (k + 1) 2.5x (k) + x (k) + u(k)
2 1 2

y (k) xl(k}

If the system is unstable, use the output feedback,
u(k) = -Hy(k) to stabilize the system, determine the
range of H.

Solution: We rewrite the equations in the vector notation

x (k + 1) 0 1} x (k)| {0
: - SN A e
x (k + 1) 2.5 If|=x (k)| |1
2 2
x (k)
y(k) = [1 0] |1
x (k)
2
! x(k + 1) = Bax(k) + Bu(k)
y(k) = cx(k)
From det|AI - A| = 0 we calculate the eigenvalues of the matrix A
A2 =2 = 2,5=0
_ 1 q%
A —§+/4——2.16
_ 1 /11 _
12—3—/—4— = -1.16

The open-loop system is unstable. We shall try to stabilize the
system using output feedback

u(k) = -Hy (k)
and determining the range of H. The closed-loop matrix A is
0 0 0 1

A=A - BHC = - H[1 0] =
2.5 1 2.5-H 1

P e

The eigenvalues of A are

]
o

det|r I - A

A -1
det

I
o

Ay = il




! A2 -2 4+ (H-2.5) =0
11— - _1, 1 pe—
;\1—§+§/1 4(H 2.5}—-2-+§/Tl-—4H
S S e 4 g
A =5 i»/l 4(H - 2.5) = 5 = -2-»*11 - 4H

2

1f we assume that X1, A2 are real we get the following range of H
2.5 ¢ H g 2.75
for which the system is stable. If the roots are complex we have

2,75 < H < 3D

wWwe conclude that the system is stable when 2.5 < H < 3.5

e PROBLEM 13-99

The discrete-time system is shown in Fig. (1).

The open-loop transfer function of the system is

- 5
G(s) = s(s + 1)

Examine the stability of the system.

=1 s(s +1) :u%

Fig. 1 ., ,:";

Solution: We find the z - transformation of G(s). Iﬂ;

‘ I
and E
g(t) = S(u(t) - e o). '-‘*'%

|

Substituting t = kT, where T = 1 we obtain

5(u(k) - e_kL

I

g(kT) = g(k)
Then | i

oo 3 o0 _k -k z
G(z) = ) gklz k - EOS(u(k} -e Nz = 5(2 e _—:1_)

k=0 k




5(1 - e_l)z

(z - 1)(z - e~

The characteristic equation of the system is

1 +G(z) =0

or

5(1L —e Yz + (z - 1) (2 - e ]y

1]
=

el - 0.368

"

2z - 0.368z - z + 0.368 + 5z - 1.84z = 0
|
z? 4+ 1.792z + 0.368 = 0 |
z; = -0.236 i
zZ; = =-1.555 |

We see that root z, of the characteristic equation has a '
magnitude greater than unity, thus the system is unstable,
It can be easily shown that

for the system shown in Fj i
the transfer function B

K

Sitel = s(s + I)
the condition of stability is
i 0 < K < 4.32.

In case of a characteristic equation of higherldegree, where the
exact solution is difficult or impossible to find, we use the
following transformation of z

= r 1 -
R

-l
To check the stability of resulting equation one applies =0
the Routh criterion. In the above example we obtain

r+ 112 +
(ETI) + 1.792(; g i) + 0.368 = 0

3.16r? + 1.264r - 1.16 = 0

All the coefficients of the equation must be non-zero and have |
the same sign for the system to be stable, this is the necessary
but not sufficient condition. We conclude that the system is 1O
stable. This corresponds to the result obtained previously-
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® PROBLEM 13-100 |

petermine the stability of a closed-loop discrete-time system

shown below ’

X
sins+1)

Solution: The gain of the system is

G(s) =sTls+l

To find the z - transform of G(s) note that

. 1
G(s) = T - % Tll
s(s + ﬁ)T1 s(s + 'IT)
The z transform of !
a o~ R e T
508 ¥ &) ™t < 3l tm = w2
thus . il
KLI Tl}
G(z) = == -
2y

(z-1) (z-e"Y)
The characteristic equation is
1 +G(z) =0

or

(z - 1)lz - e

After some calculations we get

_E‘_\ =3 | -T
2.2+E((l-eT1}-1+eT1)z+eT1=0
In order to use the Routh criterion we transform z,

r E

z=r--l

The characteristic equation becomes
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- K|l -el)=0

The Routh tabulation is

! _T g
rzk(l"@Tl 2(:I.+eT1 -K(l—eT‘l)

Note that 1 - e 1 » 0 and the system is stable if and only if
K >0
i,
1+e M S K
I 72
L %@ T
Since T
T
l +e oot -
T coth 5T

We conclude that the system is stable when

0<K<2coth(?$—l

PHASE PLANE

e PROBLEM 13-101

Determine the stability for the system described by the
equation

x(k+1l) = Ax (k) (1)




golution: Using the z-transform of both sides of Eq. 1 and |
solving for X(z) we obtain

X(z) = (zI-a)~1 zx(0)
or
X1 (2) el %, (0)
= —1— (2)
Xz (2) 2"+ 1 z z? %, (0)
The functions x; (k) and x; (k) can be found by taking the

inverse z-transform of Eg. 2. We obtain

x1 (k) cos - ~ sin S %1 (0)
%, (k) sin %? cos %} x, (0)

We will find the state trajectories of x, (k) and lek]
for two arbitrary initial states x(0). b ik

xl{k) = Ccos %? x. (0) - sin kn x._(0)
1 2 2
(3)
x, (k) = sin EL x (0) + cos &L x, (0)
X2,
x(2)
A
VRN
7 N
N
4 %
¥ A \
// ” *® ~
X(3) 7 7/ \\ N
o« » AN > X
< < 3 1 .
N \‘ j'/ 7z x(1)
N L ’
% rx(0) A
/
N /7
N | s
\r;(O}

STATE-PLANE TRAJECTORIES

From Eg. (3) we conclude that trajectories form limit cycle;
%3 (k) and x, (k) are periodic functions which neither grow nor
decay in amplitude. Therefore the system is stable but not
asymptotically stable.

We can determine the stability of the system without finding 1:}
the trajectories. :
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The characteristic eguation of the system is

|zI-A| = 22 + 1 =0
The characteristic equation has two roots z; = j Z, = —-j
which are inside the unit circle |z| = 1 in the z-plane.

Therefore the system is stable.

® PROBLEM 13-103

Given the system

x(k+1) = Ax(k)

where k is a discrete independent variable and matrix A is
given

=0.5 0

0 0.5

determine the stability of the system.

Solution: Using the z-transform we obtain

z

z+0.5 0
X(z) = x(0)
z
0 z-0.5
where
X(z) = (zI—AJ_l zx (0)

The inverse z-transform of X(z) gives

(-0.5)k 0
x(k) = x(0)
0 (0.5}k

For any initial state x(0) the state trajectories of x(k)
will converge to the equilibrium state x = 0 as k tends to
infinity.

Therefore the system is asymptotically stable in the large.

Let x(0) = [1 1]' and [-1 -1]' be initial states. The state
trajectories of x(k) are shown below.
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X2

_ -~ XO=01,1

-1
-

x(1)
<

-
T los
“l~ se x(2)
x(3) | >
. " “"XM,
-1 -05 x(4)%t»e
o | x(3)

<
x(2) ==

-

+ ,x,'

—

e
Lz x(n

L T -1
x(0)=(-1, -1)

State-plane trajectorles of the system

The characteristic equation of the system is

|zI-A| = (2-0.5) (z+0.5) = 0
The equation has two real roots z; = -0.5 2z, = 0.5 |
They both are inside the unit circle |z| =1 , 4

e PROBLEM 13-103

The system is described by the equation

x(k+1) = Ax(k)

where k is a discrete independent variable and A is a
diagonal matrix

Examine the stability of the system.

1

Solution: From X(z) = (zI-A) — zx(0)

which is the solution in the z domain we obtain

Z
z+2.5 4
X(z) = x(0)
4
0 %=0.5

We note that the characteristic equation of the system has a
root at z = -2.5 which is outside the unit circle.

Therefore the system is unstable.

The inverse z-transform of X(z) gives
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x(k) = x(0)

0 {o.s)k

It is easy to show that |x1{k]| + o« as k approaches
infinity.

X9
»

1 _4§(0)=(l,1)

T

— - e
= —_——

State-plane trajectories of the system

Let the initial state (k=0) be

x(0) = [1,1]. We have

1 -2.5 6.25 -15.6 |
—> - —
1 0.5 0.25 0.125
k=0 k=1 k=2

k=3

® PROBLEM 13-104 1

Describe the motion of a pendulum and determine its stability

characteristics. Assume that the whole mass is concentrated
at the end of the pendulum.

Solution: The motion of a pendulum is described by the
following differential state eqguation

$ = - % siné¢

At We can choose the system of physical units where % =1.

We have

Let us set



Fig:. 1

Simple pendulum,

and obtain

X2 =-sin x) (1)
The equilibrium states are

0 t

0 0
as shown in Fig(1) .
The Jacobian matrix of (1) is
0 1
=C0s5 X3 0

and for the equilibrium states is

[ﬁO 1 0 2
= Ay

I

A,

=L 0 1 0

]

From the equation |A - AI| 0 we calculate the eigenvalues
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= 1
det =0 which gives for
-1 -A
X1 A = 1] A a vortex,
=2 i ) )
and det = 0 which gives for
1 -2
X2 4 A= *1 a saddle.

To determine the stability in the finite phase plane we
have to find the phase trajectories, that is the relation-
ship x; = x,(x.1)

From (1) we get

Xzdx,; = = sin x, dx;

and integrating
x} = 2 cos x3 +C

where C is a constant.

X2 |

M ATI m
i
it
i
i

LI

Fig. 2
phase trajectories xg =2 cos x1 + ¢

Different values of C give different trajectories. To find

the trajectory that passes through the saddle points at
X1 = %7
m

substitute bie We have

0 =2cos 7+ C thus l
|
X% = 2 cos X, + 2 ‘

The trajectories that pass through x = 71 are called separatrices;, '
they separate the stable regions from the unstable ones. The
shaded area represents the stable region.
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® PROBLEM 13-105

Examine the stability of the second order regqulator with
nonlinear damping shown in Fig. (1).

Cod)

The transfer function of the nonlinear plant i

1

52

Controller

= B »—1 [(e)

fle)é

Fig. 1

T
'\':;\l

Proportional-plus-nonlinear derivative control. -

=

= J-:al.u =

Solution: From the diagram we have
u = Ke + f(e)e

where u is the control force. The amount of the derivative
control depends upon f(e) - the magnitude of the error.

e 2 R .

The following equation describes the dynamic of the system i

u=e

ST T i

To obtain the set of state equations let e = x; and e = X,

vs

X1 = X2

X; =-Kx; - f(X]_) X2

Let us assume for simplicity that K = 1. The equilibrium
points are determined from the eguation

0 = x)

0 = -x{ - £(x3)x? i

Thus x§ = x? = 0 is the only point.
The Jacobian matrix is
0 1
-1 -£(0)

The linear behavior of the system in the close neighborhood
of the origin is described by
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X1 = X»
X, =-x1 - £(0)x;
and the characteristic equation is

sls + £(0)]+ 1 =0

with the eigenvalues

P | l:l 2(p)-

Ay = > £(0) + g7 £°(0)-1 \
= 1 l .,

A2 = - 3 £(0) - ,E £2(0) -1

From the table below ‘

Stable Unstable \

Trafectory type Eigenvalues Trajectory type| Eigenvalues
8] Jw juw o
v L s
o (8]
Unstoble focus
jw Jw
—D—D‘I‘ L % .’-O—O— L
Unsiable node
S o |
© | L[ F-
N7
Yortex

Saddle

Stable focus

Stable node

VARIOUS TYPES OF SINGULARITIES
we obtain the following possible responses:

1. E(0) = 2 stable node

2. 0 < £(0) < 2 stable focus

. 3. £(0) =0 vortex
4. =2 < £(0) <0 unstable focus
118 5. £(0) < =2 unstable node

| The first two cases ensure asymptotic stability, and the
i third case local stability around the origin.

il Next we shall investigate the response of the system subjected

[ to large input steps, i.e., the problem of the finite and 1
! global stability of the system.
|

Using the phase plane we shall demonstrate that it is possible
to control and shape the behavior of a nonlinear system. For

| this purpose let us assume the following types of derivative
i control:
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I. f(e) 2

1

II. f(e)

I1I. f(e) =0
0.1

Iv. £f(e) = -I—r

rhe first three cases are linear, thus

X1 = X2

Xy ==Xy = f{O)xz
holds throughout the entire phase plane. We get the following
slope equations using the isocline method:

1. g Xt Xy o X
Xz Ha
II. § = -1 - =
X3
III. S = - 3
X2

In all three cases the slope is constant for constant ratio

therefore the isoclines are straight lines through origin.

Fig. 2 shows the phase trajectories and Fig. 3 the correspond-

ing time responses.
L3

_-h““mIM

%)

Note that in Fig. 3 the time responses range from undamped to
overdamped. By increasing the damping we sacrifice the

response of the system.
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Fig. 3

To find the right combination of time response and damping
let us investigate case IV:

0.1

Fe) = TeT

We obtain the isocline egquation

Xy + 0.1 X2
Pas=- ] % _g,q 2
X1 %2 X2 el
The phase trajectory and the corresponding time response
are shown in Fig(2) and (3).

ROOT LOCUS

e PROBLEM 13-106

For the system of Fig. 1, where K > 0

a) Sketch the root locus for the system, giving starting and

a1 ending points, asymptote intersects and angles.

b) Using Hurwitz test, find the values of K > 0 for which the
system becomes unstable in the Lyapunov sense.

c) Calculate the overall transfer function H(s). Using it,
analyze results of a) and b).

- 2
5+ 3 Fig. 1

Solution: We have

1
HMHe = 15372 + 28 + 8)
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-1 + 3Y/7, -1 - jY7. The locus starts at the

rhe poles are -3,
e zeros, all of which are at infinity. The

oles and ends at th
asymptote angles are

—%(2k + 1) oor -%, -m, -%«

The asymptote intersection on the real axis is

o =t

3 =1 4 T =L =F/7T _ 8
a 3 T3

The results are shown in Fig. 2

w
i

—1 + 147 »/&¢;
—_5/
- s 3
-3 “\\\\
=1 =T K
§\§ Fig. 2

7
There is a K for which the system becomes unstable.

b)
the polynomial
2K
1 + 2KH Hg = 1+ (s ¥ 3)(sZ + 2s + 8)
or p(s) = s? + 5s% + 14s + 24 + 2K

The test function

R(s) = s34+ 14s _s (s + 14)
5sZ + 24 + 2K 5 (.2 4 24 + ZK)
(¢* + =5

the poles and zeros must alternate on the

Using the fact that
e function, we have

imaginary axis for a reactanc

K < 37

as a condition for stability.

c) The overall transfer function is

2K/ (s + 3) (s2+2s + 8)
H(s) = 75 2K/(s + 3) (s + 25 *+ B)

\ 2K
= 59 7 584 ¥ 1ds + 24 + 2K
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The system is bibo and output-Lyapunov asymptotically stable j
K <37. If K = 37 there are simple poles on the jw axis ang the
system is output-Lyapunov but not bibo or asymptotically Stable

® PROBLEM 13.1,

Fig. 1 shows a block diagram of a simplified minesweeper, K is
a variable non-negative constant. T

(a) Plot a root locus for the system;

(b) Can the system ever be stable?

(c) Give an analogue computer realization for the complete
(compensated minesweeper) system; how many state variableg

are there? Discuss implementation of your analogue realj-
zation where L is variable.

1ahel important points,

minesweeper

0.02(s + 0.1)
u Km -
- s(s + 0.3) (s — 0.01)

Fig. 1
Solution: We have,

-, _ s + 0.1
K= 0.02K, and B By = o9 01 1s = 0,017 "

The asymptotes are at angles

and intersect at the real axis point

_ [0 + (-0.3) + 0.01] - (-0.1) _ -0.19 _ _
gg = 1 = 5 = =-0.095.

We then have for (a) the root locus of Fig. 2

] \é
2

0.01

Kn=0.229
g
/ 3

Fig. 2
(b) From the curve, it is clear that there are K

m > 0 for which
the system can be stable. The "characteristic polynomial"
is
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s(s + 0.3)(s - 0.01) + K(s + 0.1)

P(s)
s3 + 0.29s2 + (K - 0.003)s + 0.1K,

from which the "stable" K can be determined by the Hurwitz
test applied to

s? 4+ (K - 0.003)s

R(s) = =573957 7 0.1K

1 |

e

0.29

2 3y = {
0.29s“ + U.lKls + (K 0.003)s 0.29 " _,
s3 + 33Ks L%K— 0.003] f
:
@—g-x- 0.003)5 0.29s2 + 0.1K !

19
0.29s2 (ﬁK—0.00B) s/0.1K

&K—Q—gx-o.ooa) s

The factors have to be positive, therefore

1'21( - 0.003 > 0 where K = 0.02K
29 m
is required for stability, or

29 x 3 _ 87 _
Km)l9x20m380.'.'9"0'229'

(c) We desire the transfer function

K 0.02(s+0.1)
M 5{s+0.3) (s-0.01) Ks+0.1K

H(S) = ;% (0.02) (s#0.1)  ~ §3+0.2952+(K-0.003)s+0.1K
M5 {s+0.3) (s-0.01)

Setting |

_Y(8)
H(s) U(s)
we obtain
Y(s) _ Ks + 0.lK

U(s) = g3 4 0.2982 + (K-0.003)s + 0.1K

3
1)

cross multiplying and dividing by s o gl
I..i.;

(1 + 0.529 & K-0.003 " 0.1K Y(s) = K & 0.1K u(s) -::I._,' _.

Sz 53 52 53 |1I

-0.29 _ K-0.003 0.1K K 0.1K
Y(s) = - - ]Y[s} + | — + ——| U(s)
[ S 52 53 52 53
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The above formula can be arranged

Y(s) =

0|

{} 0.29Y + % [KU - (K=0.003)Y + é (0.1KU - O.IKY}ﬂ

which gives the analogue computer realization as shown in
Fig. 3.

[o1k]|  [k—o003] [o2e|

- — ” -y Pl 3
Note that there are three state variables and that if Ko
varies, then so must four of the gain blocks, making this

realization somewhat unwieldy as far as variation in Km=K/0.02
is concerned.

® PROBLEM 13-108

The characteristic equation of a feedback control system is

K(s+1)
1+ F(s) * S(s+2) (s+4)2

Determine the

effect of the gain K from the root locus.

s-plane

B

-4 -2 I

Solution: First we plot the poles

and zeros of the character-
istic equation.

0,~-2 are poles of the first ordexr; -4 is a pole of the second
order.

The root loci on the real axis are shown as heavy lines;

must be located to the left of an odd number of poles and
Zeros.

they
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From

Gy B = (TP, = TZ.
A nP = n, Py JJ

we find the intersection of the asymptotes

_ =B b DAY - 1] .
op = Z =3 = =3

and the angles of the asymptotes are

= +60° qg=20

I

= +180° q 1

i
3%)

¢, = 300° q

Since np - nz = 3 , we have three asymptotes. The root loci

must begin at the poles and therefore two loci leave the second
or@er pole at s = -4. Having the asymptotes and the breakaway
point we draw the root locus.

"y
!
/

(4

From the root locus we conclude that if K is sufficiently
increased the system becomes unstable.

® PROBLEM 13-109

We desire to plot the root locus for the characteristic
equation of a system when

K _
+s(s+4}(5+4+j4){s+4-j4)”0

1

as K varies from zero to infinity.




+ ji t f
0~ Jw
:-\-— L
A i
(N Crossover point ,
' 1713
,
’
Ny Pg i
~ ”
. ¢
. %
b s’
\\ e ]
" B
et P - el L2
Boa¥ T | . i) A
e + + .
R e Y 0

¥ *. Breakaway
y 04 *.  paint =
s N

’ N -—f2

by
.
.

Departiure
\( vectar o4

A Fig. 1 Fig. 2

A Solution: The poles are located on the s-plane as shown in
Ny Fig. 1. Let s be a point on the complex plane. Let 6 be

i
the angle that pole p; makes with s, and let Gz_ be the angle

that zero z. makes with s. Then, if s is a poi%t on the root

locus this frelationship must hold, for K > 0 :
Y6 .- 16, = (2n+ 1)180°) (2)
i Pi ] J

On the real axis, this condition can be met only if the
total number of poles and zeros to the right is odd. (Poles
and zeros on the left contribute 0°, while those on the
right contribute #180°.) In our case, this condition exists
only between s = 0 and s = =4, Thus, a segment of the root
locus exists on the real axis between s = 0 and s = -4.

Since the number of poles np is equal to four and there are

no zeros, we have np =, - 4 separate loci. The angles of
the asymptotes are

o, = 29t 1) 1500

q=20,1,2,3, (3)
P Z

]

¢A +45°, 135°, 225%, 315°
The center of the asymptotes is

1

% TR e (E Re{p;} - ] Re{z.}) (4)
p z \i 3 J

Q
]

g =4 4 g

s e e ———— - —



Then the asymptotes are drawn as shown in Fig. 1.
The breakaway point is estimated by evaluating

K =p(s) =-s(s + 4)(s + 4 + j4) (s + 4 - 34) (5)
between s = -4 and s = 0.

Breakaway points exist between two adjacent poles or two ad-
jacent zeros (including zeros at infinity) on the real axis,
and sometimes at other points not on the real axis. At a ¥
breakaway point, the value of K in terms of s is an extreme i
point. We expect the breakaway point to lie between s = -3 Fi
and s = -1 and, therefore, we search for a maximum value of

p(s) in that region. The resulting values of p(s) for several

values of s are given in the table. The maximum of p(s) is

found to lie at approximately s = -1.5 as indicated in the

table. A more accurate estimate of the breakaway point is )

\

p(s) 0 bl 68.?) 80 85 75 0

normally not necessary or worthwhile. The breakaway point is
then indicated on Fig. 1.

The characteristic equation is rewritten as

s(s + 4) (s? + 8s + 32) + K = s"* + 12s? + 6452 + 128s + K =0 (6)

Therefore, the Routh-Hurwitz array is

s* 1 64 K
s? 12 128
i b K
st c1
s? K
where
By = 12{6412- 128 _ ¢3.33 and Ci= 53.33{;%8;3— 12K (7)

For a certain value of K, the system becomes marginally

stable. At that point, a row in the Routh-Hurwitz array
becomes all zero. The auxiliary equation of the row above R
then gives the points at which the locus crosses the §

imaginary axis. Here, we can only set c; = 0 . f

Hence the limiting value of gain for stability is K = 570 1.4
and the roots of the auxiliary equation are .G

764



53.33s% + 570 = 53.33(s? + 10.6) = 53.33(s + 33.25) (s - j3.25),

?he points where the locus crosses the imaginary axis is showgn
in Fig. 1.

The apg;e_of departure at the complex pole p, can be estimateq
by utilizing the angle criterion as follows:

8y + 90° + 90° + 0, = 180° , (2)

where 6; is the angle subtended by the vector from pole Pi-
The angles from the pole at s = -4 and s = -4 - j4 are each
equal to 90°. Since 8; = 135°, we find that

8, = -135° = +225°
as shown in Fig. 1.

Utilizing all the information obtained from the steps of
thg root locus method, the complete root locus is plotted by
using a protractor or Spirule to locate points that satisfy
the angle criterion. The root locus for this system is shown
in Fig. 2. When complex roots near the origin have a damping
ratio of ¢ = 0.707, the gain K can be determined graphically

as shown in Fig. 2. The vector lengths to the root location
s, from the open-loop poles are evaluated and result in a gain
at s; of

K

|si||s1 + 4||s1 = pa|s1 - Ba] (10)
(1.3) (3.2) (4.4) (6.2) = 114 .

The remaining pair of complex roots occurs at s, and §, when

K = 114. The effect of the complex roots at s, and §, on the
transient response will be negligible compared to the roots

s; and 8,. This fact can be ascertained by considering the
damping of the response due to each pair of roots. The damping
due to s; and 8§, is

-Timt _ _-ogt ' (11)

’

and the damping factor due to s, and §2 is

e-ggwnzt - e-czt {12)

where o0, is approximately five times as large as 0; .
Therefore, the transient response term due to s, will
decay much more rapidly than the transient response term
due to s, . Thus the response to a unit step input may
be written as

c(t) =1 + cle_olt sin(w,t + 6;) + cze-czt sin(wzt + 03)

e

1 + cie 9% gin (w,t + 64) . (13)
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|
The complex conjugate roots neaq the origin of the s-plane
relative to the other roots of the closed-loop system are
labeled the dominant roots of the system since they represent 4
or dominate the transient response. The relative dominance i ©
of the roots is determined by the ratio of the real parts of
the complex roots and will result in reasonable dominance for

ratios exceeding five.

Of course, the dominance of the second term of Eq. 13
also depends upon the relative magnitudes of the coefficients
ci1 and ¢ . These coefficients, which are the residues
evaluated at the complex roots, in turn depend upon the loca-
tion of the zeros in the s-plane. Therefore, the concept of !
dominant roots is useful for estimating the response of a '
system but must be used with caution and with a comprehension

of the underlying assumptions. f
e PROBLEM 13-110 :

In some control systems a positive feedback inner loop may
appear. This loop is usually stabilized by the outer loop.
For the system shown in Fig. 1, with the positive feedback,

sketch the root locus plot. g

Assume that H(s) Al

G(s) kis + 3) F L
(s + 4) (s? + 25 + 2) hrey

Cls)

Figs

The procedure for plotting positive feedback con- >

Solution: : |

trol system is similar to that for the negative feedback con- e

trol system with slight modifications. :wfﬂ
1

We write the transfer function of the inner loop

Cls) _ G (s)
R(s) 1 - G(s) H(s)

and the characteristic equation

1 - G(s) H(s) = 0
or G(s) H(s) = 1.

This is equivalent to two equations:

/G(s) H(s) = 0° t k360° (k=0, 1, 2, ...)
|G(s) H(s)| =1
The total sum of all angles from the open-loop poles and zeros 4

is equal to 0° # k360°. We use the following rules for con-
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structing root loci of the positive feedback system.

1. If the total number of real zeros and real poles to the
right of a test point on the real axis is even, then thig
test point lies on the root locus.

o
2. Angles of asymptotes = E%Qg—ﬁ
where
n = number of finite poles of G(s) H(s)
m =

number of finite zeros of G(s) H{(s)

3. To calculate the angle of departure (or angle of arrival)
from a complex open-loop pole (or at a complex zero) we
subtract from 0° the sum of all the angles of the complex
quantities from all the other poles and zeros to the
complex pole (or complex zero) in question, including
the appropriate signs.

For the positive feedback system the closed-loop transfer
function is

Ci(s). . G(s) u k(s + 3)
R(s) 1 - G(s) H(s) (s + 4)(s? + 2s + 2) - k(s + 3)

1. We find the open-loop poles

s ==-1+3j, s==-1=-3j, s==4 and zero s = =3.
We note that when k increases from 0 to « , the closed-

loop poles start at the open-loop poles and terminate
at the open-loop zeros.

2. The root loci on the real axis exist between -3 and +o
and between -4 and -« .,

3. The asymptotes of the root loci.
We have

[+]
Angle of asymptote = 55%%%— = £180°
That means that root loci branches are located on the real

axis.

4, Breakaway points and break-in points.
The characteristic equation is

(s + 4)(s? + 2s + 2) - k(s +3) =0

we calculate k and gE
s

K = s+ 4) (s?2 + 25 + 2)
(s + 3)

dk _ 2s® + 15s® + 36s + 22

ds (s + 3)2

Solving the equation we obtain
28 + 158% + 36s + 22 = 2(s + 0.9) (s? + 6.6 + 12.2) =

2(s + 0.9) (s + 3.3 - jl.15) (s + 3.3 + jl.15)
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points s = -3.3 + Jl.15 and s = -3.3 - jl.15

do not satisfy the angle condition. At s = -0.9 the
value of k is positive. Thus the break-in point 1is
s = -0.9.

of the root locus from a complex |

5., The angle of departure
pole s = -1 + jJ, the angle of de-

pole. For the complex
parture ¢ 1is
45° - 29° - 90° - ¢ = 0°
¢ - 74°
and for s = - 1 - 3, ¢ = 74°.

d neighborhood of the

6. The test point should be in the broa
ly the angle condition.

imaginary axis and the origin; we app
fwi
2

* 1
L}
X 1
SR B B
L}

® =1

-2 it
::\_ ""'II

Root-locus plot for the positive
feedback system with
Gis)= K +13
6)=KG +3 K>0 4
(s+4)r+2s+2) 4
H(s) =1

For the positive feedback system we obtain the following _
- 6 !
' ;

root-locus plot using results 1
i

NYQUIST-BODE

e PROBLEM 13-111

m is shown in Fig. (L )is !

ritical value of

The closed-loop syste

he Nyguist criterion determine the c
kx for stability of the system.

Using t

Ris} K Cis)

5 —9

Fig. 1

The gain function of the system is

G (s} = s % 1

Solution:
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Let us draw the polar plot of G(jw)

G(jw) = —% ;= X —duk
v w2 + 1
1
™4 G Plane
w=0 we -0
Vs
—-Kz- — Re

Fig. 2

The direction is counterclockwise. There is one pole of G(s)
in the right-half s plane, thus P = 1. The condition for
stability of a closed-loop system is Z = 0. Therefore N must
be equal to -1, since N = Z - P or there must be one counter-
clockwise encirclement of the -1 + jO point for stability.

™y 6 Puone ™A 6 Plone
1 » B Ve N " S, i
IRy -1\ - Re -1 Lo Re
ﬁzgﬁ (Unstable) 5211 (Stable)
Z=1 Fig. 3 G '.

B | Fig. 4
i
It For stability of the system we have k>1

k = 1 is the stability limit.

The two figures 3, 4, illustrate the results. l

e PROBLEM 13-112

For the system whose open-loop transfer function is

t D(L +7) (1 +

D
e’ |
determine the stability.

.T. Solution: Using the Nyquist Criterion we have:
|

:_!T D = jw ﬁ
, then

%on 10 _ 640

@ jw(l + -j-'gj (1 + .J'J;.‘.g., T Jw(jw + 4) (Jw + 16)
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640
-20w? + j(64w - w?)

w=070 o~

~
/ ™~
/ \
']
i \
\ w=2wm |
_11 == J
To o o1 90° for o
w=0"
\w=-4md!sec /
\ w=0 ol —

\ =10 |20 .
Y _w=wm* Generol shope of Nyquist plot |

w = 4 rod/sec

; Fram o,— 90" for
i w=0%

Accurote plot in the region of (=1, 0) ¢ L]

We can draw the Nyguist plot as shown in the figure.

We see that the point (-1,0) is not encircled and the system

is stable.
e PROBLEM 13-113 i

Determine for what values of k the system with the following

open-loop transfer function is stable

Kk
G(s) B(s) = oo T 1) (Zs + 1)

]

Solution: Let s jw we have : |
, o k _ '
Clw BHOW = g w17 - e

k i
-3w? + jw(l - 2w?) 3

We see that the open-loop transfer function has no poles in
the right half s-plane. For the system to be stable is thus
enough that the Nyquist plot does not encircle the -1 + 0j

point. To find the point where the Nyquist plot crosses the

negative real axis let Im G(jw) H(jw) = 0 thus




Y TR PR
G(J—=) H(j—) = =L
%) V2 2

To get the critical value of k let

- 2k
3

=3
ke

= -1

We have

3
0<k<§

for stability of the system.

® PROBLEM 13-114

A closed-loo

P system has the following open-
function

loop transfer

G(s) H(s) = g—%—j_i"jl

Investigate the stability of the system.

. |

ig. 1

Polar plot of the system

Solution: It is clear that the open-loop transfer function

has one pole for s = 1 in the right-half s plane, therefore the
open-loop system is unstable. From the Nyquist plot see

Fig. (1), we see that the point - 1 + j0 is encircled by the
G(s) H(s) locus once in the counterclockwise direction. Thus,
N =-l. Since P =1 from %2 = N + P we find Z to be zero,

that indicates that there is no zero of 1 + G(s) H(s) in the
right-half s plane and the closed-loop system is stable.

It is worthwhile to note th

at in the above example an unstable
open-loop system becomes st

able when the loop is closed.
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® PROBLEM 13-115

The loop transfer function of a single-loop feedback control
system 1is

G(s) H(s) = ETE—%—ET

where k and o are positive constants. Investigate the stability
of the system.

Solution: We start with construction of the Nyquist path for
the system. Since >0, G(s) H(s) does not have any poles

in the right-half s-plane, thus Py, = P_; = 0.

G(s) H(s) has a pole at the origin, the Nygquist path must not
pass through any singularity of G(s) H(s) thus we draw a

small semicircle around s = 0.
Ao

s-plane

a¥

(3)

K
THE NYQUIST PATH FOR G(s)H(s)=s(s+a)

We divided the Nyquist path into four sections.

s of section (1) may be represented by

i¢

S = ce

" oo the phasor
The poin

¢ denote the magnitude and phase.

where e+0 and €, i .
ersed from +j0° to -30

We see that as the Nygquist path is trav
o
along section (1) ¢ changes from +90° to =90°.

since ed® = cos¢p + j sin¢
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for¢ = +90° & = JEa

The Nyquist plot for section (1) is

_ K . K_ S = we
G(s)H(s) = s(s + a)| cad? (sa9® & a) 0

ka ImGH

# ReGH

/ Ny

-0

E

* ReGl

E

THE NYQUIST PLOT OF SECTION (1)

THE NYQUIST PLOT OF SECTION (3)

The points corresponding to section (1) have an inf

inite magni-
tude and the phas

e is opposite to that of the s-plane locus.

For section (3) we have
s = ReJ¢

where R+», and ¢ changes from -90° to +90°.

Gls)H(s) = K k 5

=23¢
=— : = —E___ - g
Rejd’{ReJ¢ + o) B R2g2J¢

s = Re3¢

We see that the magnitude is infinitesim

ally small, and the
phasor rotates 2 x 180° = 360° r

in the clockwise direction.

We are left with sections (2) and (4). For section (4) we
substitute s = jw
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2

. . SIS < jow)
G(s)H(s) = G(jw)H(Jw) = Jw (Jw + o) ¥ + af Wl

7o f£ind the intersect of G(jw)H(jw) on the real axis we egquate

ImG(jw)H(jw) = 0
B kow = = R 3
w' + wia? wiw? + o?) 3|

which gives w = *®.

Wwe can draw the complete Nyquist

_ |
plot of G(s)H(s). ! _l
A J ImGH i :
!
|

G(s) H(s)-plane

(1)

M (3)

1 i 5 20 j * ReGH
(4)
THE NYQUIST PLOT OF G(s) H(s)
We see that
Ng = N.; = 0 where Ny is the number of encirclements of

the origin made by G(s)H(s).
; I S
Since G(s)H(s) = =6 7 o) ! k>0, >0
we have Zg = 0 and Pp = 0.
Since P-j = Py = 0
we have %Z-1] = N-1 + P_3 =0

We conclude that the closed-loop system 18 stable.

e PROBLEM 13-116

The open loop transfer function of a system is

-on 80
D _D
D(L + ) (1 + 35)

Determine the stability of the system.
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_A N
T | \\
\-—"-—.-_
\ \
\
w=00t o
w=0"%
ot o
ACCURATE PLOT
Solution: Let us substitute jw = D. We have
( Dn) _ 80 _ 80
€] e S g 1w jw, 3
. D=jw  jw(l + ¥) 1 + ¥, __6 2 . - W
l b 25 FEWS + J(w 125}
For amplitude and phase we get:
Il 80
. Y S
w(l + 35)2(1 + 25! 2
A '. - _
ki I ¢o = -90° - tan~! T - tan 1-2-‘—;
For some values of w we shall calculate Go and ¢4.
wo= 0+ 1| 2| 4' 6, 10,20'50,«-
PP 78 37 15 8 ’ 3.32 10.75 ’0.07 ] 0
¢o = =-90° 1 -103° [|-116° [-137° |-153° =175° | -204° | -237°]|-27¢0




For_the negative values of w, we plot the mirror images of the
positive values. The point (-1, Oj} is encircled, hence the

system with the open loop transfer function

80

) ) is unstable.
D(1 + 3)[1 + ?31

® PROBLEM 13-117

The open-loop transfer function of a closed-loop system is
given by

k
(Tis + 1) (Tzs + 1)

G(s)H(s)

Determine the stability of the system.

Llm

GH plane

K
(Tyjw +1) (Tojw +1)

POLAR PLOT OF G(jw) H(jw)=

Solution: We shall plot G(jw)H(jw).
Substituting s = jw one gets

. ] k
GOWIEQGW) = G 5e T 1) (T,jw + 1)

We transform the above equation to get the real and imaginary
parts

' . k(1 - Tyjw) (1 = Tpjw)
GUWIH(IW) = (= Ty (T, 3w = 1) (To3w + 1) (T23w = 1)

B k(L - Tyjw) (1 - Tpjw) _ k(1 = T3T,w?) - jw(Ti + T2)k

Sl 2.2
(Tiw*+ :L) (Tswe + 1) [T%wz + 1) (T%Wz + 1j

The angle is given by

1
tan~ [}maginary par%] _ tan_l ~w(T1 + TZ}k—]
real part k(1L - T,T,w?)
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Then

w + 0+=>+1 -j0 angle = - %
so /=90°
X
w + o=> = —j0 angle = - Gz

so ,-180°

W - o=> -0 +3j0 angle

it

==

w=+ 0 =>+ 1 +30 angle = 1

We have all the information to plot G(jw)H(jw).
Since G(s)H(s) does not have any poles in the right-half s

plane and the point (-1, 0j) is not encircled by the G(jw)H(jw)
locus, the system is stable for

K >0
T, > 0

T, > 0.

e PROBLEM 13-118

The open-loop transfer function of the system is

B k
G(s)H(s) = S(T1s + 1) (Tos + 1)

Investigate the stability of the system in two cases

a) the value of the gain k is small
b) the value of the gain k is large.

Solution:

W? shall draw the Nyquist plot for the small and large values
of k.

The number of poles of G(s)H(s) in the right-half s plane is
zero. Thus for stability of the system it is necessary that

Z =N=20

or that the G(s)H(s) plot does not encircle (-1,0j). From the
plot we conclude that for small values of K there is no en-

circlement of the (-1, j0) point and the system is stable.
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Ima GH Plane Im GH Plane
w=0-¢ ..,:0-;-
w=o ! w=m
E \u--cn e w =—-D Re
(Stable) (Unstable) J I
w=04+ u=0+l‘- ."
Smoll K Large K A f
For small k we have .
P=0,N=0, 2 =0.
For large K there are two encirclements of the point (-1, 03)

in the clockwise direction indicating two closed-loop poles in
the right-half s plane and the system is unstable.

For large K we have
P=0, N=2 = 2.

In the case of the above system, large K increases accuracy |7
but decreases stability. [

e PROBLEM 13-119

The loop transfer function of a control system with a single
feedback loop is

_K(s - 1)

T ¢

Using the Nyquist criterion determine for which values of K
the system is stable.




Solution:

We shall start with drawing the Nyquist path of the system,

To obtain the Nyquist plot let us inv
sections of the path,

estigate the separate
Section (1).
Let s = ¢ )¢ where e + 0

we have

G(s)H(s) =

wl|x

cwe I+
S=Eej¢

For this section the magnitude is infinite a

nd the angle
changes from + 90° to -ggo counterclockwise.

Section (3).

4 s = R eJ?
lim G(s)H(s) = lim g =0 e J%
g+ S+co

The magnitude is zero and
wise direction.

the angle changes 180° in the clock-
Section (4).
Let s = jw

= -
G(jw)H(jw) = -K0w = 1) _ Kk 2% + 3(1 - w?)

jw(jw + 1) w (w® + 1)

From the equation

Im G(jw)H(jw) = 0
We obtain

W =+ 1 rad/sec.
Then G(j1)H(j1) = K.
Gathering the

results we can draw the Nyquist plot of

G(s)H(s) = g—g:_;-%

We see that
Zg =1, Pop=P.3 =0

Ny




/1m GH

w=+0*

(4)

thenz_l=N_1+P_1—~

Thus the closed-loop
we conclude that the

THE NYQUIST PLOT

the value of parameter K.

a)

b)

no poles and one zero

d)

functions.

c) one pole and no zeros

system is unstable,
system can not be stabilized by changing

Below is shown the Nyquist diagram for a system whose open-loop

transfer function may be one of the following

no poles and zeros in the right-half s plane
in the right-half s plane
in the right-half s plane
two poles and no zeros in the right-half s plane

e) two poles and two zeros in the right-half s plane.

Re GH

From the Nyquist plot

® PROBLEM 13-120

Decide on stability for each case if the point -1 + j0 is

located first in region I and then in II.
feedback loop is closed on each one of the above transfer

Assume that the




Solution:

First of all let us note that for all the t;ansfer fupctions
point in region I is not encircled and.a point in region IT -
encircled twice. The general formula is

Mg =0 -5y
where P 1 is the number of poles of 1 + G, and P_1 = Pyg.

i + must be zero.
For stability the number Z_4 of zeros of 1 G mu

Thus, for stability N, = P_j or py

a) Pp = 0 so l\I_1 must be 0, therefore
I - stable, 1T unstable
b) Py =0, N—l = 0 Bo I ~ stable, 1T - unstable
c) Po =1 N_; =1 thus I and 171 unstable
d) Pp =2 N, =2 I unstable II stable
e) Po =2 N, =2 I unstable II stable

® PROBLEM 13-121

For the function shown in Fig.

(1) determine the
Stability margin.

;t Asymptote (slope=-6 db/octave)
Nal
3 r_/
é Exact cﬁrve
0
b L } 9 Wl —
o o l
s 0 "
o \:
@ -is :
© ’\\\\uu______ wT—
o =90 : —
2 1
£
°—-135J

6(jw) = —— Fig. 1



solution:

at WT = 4 the magnitude plot crosses the 0dB line. On the phase

curve the point corresponding to wTl = 4 is {=tan“‘4l about 75°.
rhe phase margin is then 180° - 75° = 105° and there is no gain
margin since the phase never reaches 180°.

_J e PROBLEM 13-122

petermine the range of parameter K for which the system shown
on the block diagram is stable.

Ris)
Kis+2) w4 10 o
s1(s+3)

Solution: ,ﬂ.'ué
i &

3 _ 10K(s + 2) Y (LN
The transfer function G(s) = (s ¥ 3) 51149

and the open-looo transfer function is |
i

10/s% (s + 3)
1 + 10/52{5 + 3)

K(s + 2)

| |
| Since this function does not have any zeros or poles on juw i
axis the Nyquist path is I

Jw !
i
b s-plane ey |
| i
(2) -ﬁa”
,f H r’:
& m o |
ek
o i1
5 Hak
B
| (3)
|
]
] _Iw

' THE NYQUIST PATH

A8
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We shall construct the Nyguist plot for the (1), (2) and (3)
sections.

Section (1):

Let 5 = R e]e where R + o

j26

lim G(s) = = Oe
S+x s

We see that the magnitude is zero and the angle changes fronm
+180° to -180° clockwise, since @ changes from -90° to +90°
counterclockwise.

Section (2): s = juw
G () 10K (jw+2)
(10-30w?%) - jw?

To rationalize the above fraction we multiply by

(10-3w?) + jw?

I’

thus

G(ju) = LOK[2(10-3w?) - w" + jw(10-3w?) + j2u?]
(10-3w?)? + w®

From Im{Gc(jw)} = o we get

w =0 or w = /10

which are the values of the intersects of the real axis of the
G(s) plane.

To determine the intersection of the G(s) plot on the imagina:
axis we set

Re{G(s)} = 0

and obtain
w" + 6w? - 20

0
w = /2

Thus the intersects of the real axis are

G(j0) = 2K
G(3Y10) = -K

and the imaginary axis

G(3v2) = j10\Z %
We have all the information to draw the Nyguist plot.
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jImG G(s)plane

/
w=/1
— Joo
w=—+/10 Y w=0
- k\w=V10 L/ Re G
From the plot we see that Ny = =2 and since Z, = 0 we get

Py, = 2. Thus P_, = 2
From the Nyquist criterion we have

N, =2_;-P =24 "2

For the closed-loop system to be stable Z_, = 0 and we get
N = -2
-1 .

Thus the point (-1,j0) must be encircled twice in the clock-
wise direction.

We have this when point (-1, j0) is inside the circle, thus the
condition for stability is

e PROBLEM 13-123

The block diagram of a system is

Rty

Find the stability condition of the system.

Solution: The open loop transfer function of the system is

-@j—:——lﬂ-—‘
0 D (D+1)

Let us substitute D = Jw

OS¢ = 1 .
® Jp=jw Jo(3eFL) - Jo-w’
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We shall compute the magnitude ratio and phase of the o]
loop transfer function

Gi % A
0 w(l+w)s
and
by = —tan-l w = - tan-'l -
= =90 = tan_lw .
w =0-—_-“"""‘--.
I S~
/ S
w=-=0,2" | N
- I
l’ \
£:u=-0.5 ’/\ \
| S ® \
l e
\ \
= \
- \l\'\ w=-m \
Y "“\mam EeEes ]ﬁl-o
075
w=05 /

\ | /
\~. 1
"'\\l /
w=0’| == /
THE NYQUIST DIAGRAM FOR THE SYSTEM WITH OPEN
LOOP TRANSFER FUNCTION 1/[D(D + 1)].
The plot for negative w is a mirror image of the positiv

plot. Point (-1,0) is not encircled, thus the closed lo
system is stable.
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GHAPTEH14

PHASE PLANE ANALYSIS

INITIAL CONDITIONS
® PROBLEM 14-1

the first-order systems described by

consider

¥ = -x (1)
and

X = -x + x° (2)

praw the phase trajectories and show where the systems
are stable and unstable.

Solution: In the phase plane, or x - % plane, the phase-
plane plot of eq. (1) is a straight line. For any initial con-
dition, x(0), the system returns to its singular point,the

origin,after an infinite time.

The starting point of the trajectory is determined by the initial
condition x(0). For the system % =-x + x%, the trajectory is
shown below.
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The trajectory is divided into three parts, two unstable and
One stable part.

If x(0) > 1, then x(») + =,




