
State-Space Analysis 

So far we have been describing systems in terms of equations relating certain 
output to an input (the input-output relationship). This type of description is 
an external description of a system (system viewed from the input and output 
terminals). As noted in Chapter 1, such a description may be inadequate in some 
cases, and we need a systematic way of finding system's internal description. State 
space analysis of systems meets this need. In this method, we first select a set of 
key variables, called the state variables, in the system. The state variables have 
the property that every possible signal or variable in the system at any instant t 

can be expressed in terms of the state variables and the input(s) at that instant t. 
If we know all the state variables as a function of t, we can determine every possible 
signal or variable in the system at any instant with a relatively simple relationship. 
The system description in this method consists of two parts: 

1 Finding the equation(s) relating the state variables to the input(s) (the state 
equation). 

2 Finding the output variables in terms of the state variables (the output equa­
tion). 

The analysis procedure, therefore, consists of solving the state equation first, 
and then solving the output equation. The state space description is capable of 
determining every possible system variable (or output) from the knowledge of the 
input and the initial state (conditions) of the system. For this reasoll it is an internal 
description of the system. 

By its nature, the state variable analysis is eminently suited for multiple-input, 
multiple-output (MIMO) systems. In addition, the state-space techniques are useful 
for several other reasons, including the following: 

1. Time-varying parameter systems and nonlinear systems can be characterized 
effectively with state-space descriptions. 

2. State equations lend themselves readily to accurate simulation on analog or 
digital computers. 

3. For second-order systems (n = 2), a graphical method called phase-plane 
analysis can be used on state equations, whether they are linear or nonlinear. 

784 
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4. State equations can yield a great deal of information about a system even when 
they are not solved explicitly. 
This chapter requires some understanding of matrix algebra. Section B.6 is a 

self-contained treatment of matrix algebra, which should be more than adequate 
for the purposes of this chapter. 

13.1 Introduction 

From the discussion in Chapter 1, we know that to determine a system's re­
sponse(s) at any instant t, we need to know the system's inputs during its entire 
past, from - 00 to t. If the inputs are known only for t > to, we can still determine 
the system output(s) for any t > to, provided we know certain initial conditions 
in the system at t = to. These initial conditions collectively are called the initial 
state of the system (at t = to). 

The state of a system at any instant to is the smallest set of numbers Xl (to), 
,- . -- xz0tu-),- .-; :-,·xn (-ta-)-whicb- is-sufficient-to-determine-the-bdraviur-ui-tire-systerrriar--- - ­

all time t > to when the input(s) to the system is known for t > to . The variables 
Xl, X2, . . . , Xn are known as state variables. 

The initial conditions of a system can be specified in many different ways. 
Consequently, the system state can also be specified in many different ways. This 
means that state variables are not unique. The concept of a system state is very 
important. We know that an output y(t) at any instant t > to can be determined 
from the initial state {x(to)} and a knowledge of the input f(t) during the interval 
(to, t). Therefore, the output y(to) (at t = to) is determined from the initial state 
{x(to)} and the input j(t) during the interval (to, to). The latter is f(to). Hence, the 
output at any instant is determined completely from a knowledge of the system state 
and the input at that instant. This result is also valid for multiple-input, multiple­
output (MIMO) systems, where every possible system output at any instant t is 
determined completely from a knowledge of the system state and the input(s) at 
the instant t . These ideas should become clear from the following example of an 
RLC circuit . 

• Example 13.1 
Find a state-space description of the RLC circuit shown in Fig. 13.1. Verify that 

all possible system outputs at some instant t can be determined from a knowledge of the 
system state and the input at that instant t . 

It is known that inductor currents and capacitor voltages in an RLC circuit can be 
used as one possible choice of state variables. For this reason, we shall choose Xl (the 
capacitor voltage) and X2 (the inductor· current) as our state variables. 

The node equation at the intermediate node is 

but h = O.2:h , il = 2(1 ~ xd, i2 = 3Xl . Hence 

or 
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Fig. 13.1 RLC network for Example 13.1. 

This is the first state equation. To obtain the second state equation, we sum the voltages 
in the extreme right loop formed by C, L, and the 2 n resistor so that they are equal to 
zero: 

-Xl + X2 + 2X2 = 0 
or 

X2 = Xl - 2X2 

Thus, the two state equations are 

Xl = -25xI - 5X2 + 10f 

X2 = Xl - 2X2 

(13.1a) 

(13.1b) 

Every possible output can now be expressed as a linear combination of Xl, X2, and f . 
From Fig. 13.1, we have 

VI = J - Xl 

V2 = Xl 

is = il - i2 - X2 = 2(1 - xI) - 3XI - X2 = -5Xl - X2 + 2f 

V3 = Xl - V4 = Xl - 2X2 (13.2) 

This set of equations is known as the output equation of the system. It is clear from 
this set that every possible output at some instant. t can be determined from a knowledge 
of Xl(t), X2(t), and J(t), the system state and the input at the instant t. Once we solve the 
state equations-(13.1) to obtain Xl(t) and X2(t), we can determine every possible output 
for any given input J(t) .• 

If we already have a system equation in the form of an nth-order differential 
equation, we can convert it into a state equation as follows. Consider the system 
equation 

dny dn-1y dy 
-+a -l--+···+al-+aOy=j(t) 
dtn n dtn - 1 dt 

(13.3) 
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One possible set of initial conditions is yeO), yeO), . . . , y(n-l)(o). Let us define y, 
y, ii, .. . , y(n-l) as the state variables and, for convenience, let us rename the n 

state variables as Xl, X2, ... , Xn: 

Xl = Y 

X2 = if 

X3 = Y 

Xn = y(n-l) (13.4) 

According to Eq. (13.4), we have 

Xn-l = Xn 

and, according to Eq. (13.3), 

(13.5a) 

These n simultaneous first-order differential equations are the state equations 
of the system. The output equation is 

y = Xl (13.5b) 

For continuous-time systems, the state equations are n simultaneous first-order 
differential equations in n state variables Xl, X2, .. . , Xn of the form 

i=1,2, . .. ,n 

where It, h, ... , fn are the j system inputs. For a linear system, these equations 
reduce to a simpler linear form 

k = 1,2, . . . ,n 
(13.6a) 

and the output equations are of the form 

Ym = CmlXI +Cm2X 2 + ... +cmnxn +dmllt +dm2h + ... +dmjfj m = 1,2, ... , k 
(13.6b) 

The set of Equations (13.6a) and (13.6b) is called a dynamical equation. When 
it is used to describe a system, it is called the dynamical-equation description 
or state-variable description of the system. The n simultaneous first-order state 
equations are also known as the normal-form equations. 

These equations can be written more conveniently in matrix form: 
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Xl 
all al2 aln Xl 

b ll bl2 b1j h 

X2 
a21 a22 a2n 

X2 
b21 b22 b2j h 

= + (13.7a) 
••••• • , . I ••• II • •••• II •••• • •••• II •• II. 

Xn 
anI a n 2 ann 

Xn 
bnl bn 2 bnj 

f j 
'-v-" ,'-v-" ,'-v-" 

x v x v f 
A B 

and 

YI Cll C!2 Cln Xl 
d ll d12 dlj h 

Y2 
C21 C22 C2n 

X2 
d21 d 22 d 2j h 

+ (13.7b) 
•••• • I ••••••• •• ••• ••• • . 1,.0 ••.. • • •• • 

Yk 
Ckl Ck2 Ckn 

Xn 
dkl dk2 dkj 

Ij 
'-v-" ,'-v-" ,'-v-" 

y v x v f 
C D 

or 

x= Ax+Bf (13.8a) 

y = Cx+Df (13.8b) 

Equation (13.8a) is the state equation and Eq. (13.8b) is the output equation. The 
vectors x, y, and f are the state vector, the output vector, and the input vector, 
respectively. 

For discrete-time systems, the state equations are n simultaneous first-order 
difference equations. Discrete-time systems are discussed in Sec. 13.6. 

13.2 A Systematic Procedure for Determining State Equations 

We shall discuss here a systematic procedure for determining the state-space 
description of linear time-invariant systems. In particular, we shall consider two 
types of systems: (1) RLC networks and (2) systems specified by block diagrams 
or nth-order transfer functions. 

13.2-1 Electrical Circuits 

The method used in Example 13.1 proves effective in most of the simple cases. 
The steps are as follows: 

1. Choose all indep'endent capacitor voltages and inductor currents to be the 
state variables. 

2. Choose a set of loop currents; express the state variables and their first 
derivatives in terms of these loop currents. 
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Fig. 13.2 RLC network for Example 13.2. 
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3. Write the loop equations and eliminate all variables other than state vari­
ables (and their first derivatives) from the equations derived in Steps 2 and 3 . 

• Example 13.2 
Write the state equations for the network shown in Fig. 13.2. 
Step 1. There is one inductor and one capacitor in the network. Therefore, we shall 

choose the inductor current Xl and the capacitor voltage X2 as the state variables. 
Step 2. The relationship between the loop currents and the state variables can be 

written by inspection: 

Step 3. The loop equations are 

(13.9a) 

(13.9b) 

(13.10a) 

(13.lOb) 

(13.lOc) 

Now we eliminate i l , i2, and i3 from Eqs. (13.9) and (13 .10) as follows. From Eq. (13.lOb), 
we have 

Xl = 2(il - i2) - X2 

We can eliminate il and i2 from this equation by using Eqs. (13.9a) and (13.10a) to obtain 

Xl=-XI-X2+!f 

The substitution of Eqs . (13.9a) and (13.lOc) in Eq. (13.9b) yields 

X2 = 2Xl - ~X2 

These are the desired state equations. We can express them in matrix form as 

(13.11) 

The derivation of state equations from loop equations is facilitated considerably by 
choosing loops in such a way that only one loop current passes through each of the inductors 
or capacitors .• 
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An Alternative procedure 

We can also determine the state equations by the following procedure: 

1. Choose all independent capacitor voltages and inductor currents to be the 
state variables. 

2. Replace each capacitor by a fictitious voltage source equal to the capacitor 
voltage, and replace each inductor by a fictitious current source equal to the inductor 
current. This step will transform the RLC network into a network consisting only 
of resistors, current sources, and voltage sources. 

3. Find the current through each capacitor and equate it to CXi, where Xi is 
the capacitor voltage. Similarly, find the voltage across each inductor and equate 
it to LXj, where Xj is the inductor current. 

211 111 

f 
211 211 

Fig. 13.3 Equivalent circuit of the network in Fig. 13.2 . 

• Example 13.3 

Using the above procedure, write the state equations for the network in Fig. 13.2. 
In the network in Fig. 13.2, we replace the inductor by a current source of current Xl 

and the capacitor by a voltage source of voltage X2, as shown in Fig. 13.3. The resulting 
network consists of five resistors, two voltage sources, and one current source. We can 
determine the voltage VL across the inductor and the current ic through the capacitor by 
using the principle of superposition. This step can be accomplished by inspection. For 
example, VL has three components arising from three sources. To compute the component 
due to f, we assume that Xl = 0 (open circuit) and X2 = 0 (short circuit). Under these 
conditions, all of the network to the right of the 2 n resistor is opened, and the component 
of v L due to f is the voltage across the 2 n resistor. This voltage is clearly ~ f. Similarly, 
to find the component of VL due to Xl, we short f and X2. The source Xl sees an equivalent 
resistor of In across it, and hence VL = -Xl. Continuing the process, we find that the 
component of VL due to X2 is -X2. Hence 

. If 
VL = Xl = - - Xl - X2 

2 
(13.12a) 

Using the same procedure, we find 

(13.12b) 
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These equations are identical to the state equations (13.11) obtained earlier.t • 

13.2-2 State Equations From Transfer Function 

It is relatively easy to determine the state' equations of a system specified by 
its transfer function. Consider, for example, a first-order system with the transfer 
function 

1 
H(8) =-

s+a 
(13.13) 

The system realization appears in Fig. 13.4. The integrator output serves as a 
natural state variable since, in practical realization, initial conditions are placed on 
the integrator output. From Fig. 13.4, we have 

x = -ax + f 

y=x 

f 

Fig. 13.4 

x y 

(13.14a) 

(13.14b) 

In Sec. 6.6 we saw that a given transfer function can be realized in several ways. 
Consequently, we should be able to obtain different state-space descriptions of the 
same sy-stem by using different realizations. This assertion will be clarified by the 
follOwing example . 

• Example 13.4 
Determine the state-space description of a system specified by the transfer function 

H 8 _ 28 + 10 
( ) - s3 + 8s2 + 198 + 12 

(13.15a) 

(13.15b) 

! 2 ~ =_3 ____ +_3_ 
s+l 8+3 8+4 

(13.15c) 

tThis procedure requires modificatioll if the sy!;tem contains alI-capaciLor voltage source tie sets 
or all-inductor current source cut sets. In the case of all-capacitor volta.ge source tie sets, all 
capacitor voltages cannot be lndependent. One capacitor voltage can be expressed in tel'ms of 
the remaining capacitor volt,\ges and the voltage sOlJr(;e(s) in that tie set. COllsequenlly, one of 
the capacitor voltages should not be used as a state variable, and th;tt capacitor should not be 
replaced by a voltage source. SimilflJ'"Jy, in all-Inductor current source tie 8ats, one inductor should 
not, be replaced by a current sow·ce. If there are all-capacitor tie sets or all-inductor cut sets only, 
no further complications occur. In all-capacItor-voltage source tie sets and/or aU-inductor-cw:rent 
source cut sets, we have additional difficulties in that the terms involving derivatives of the input 
may occur. This problem can be 501 v d by redefining the state variables. The final state varia.bles 
wiU nol~ be capacitor voltages and inductor Cllrrents. 
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Fig. 13.5 Canonical, cascade, and parallel realizations of the system in Example 13.4. 
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Using the procedure developed in Sec. 6.6, we shall realize H(s) in Eq. (13.15) with 
four different realizations: (i) the controller canonical form [Eq. (13.15a)], (ii) the observer 
canonical form [Eq. (13.15a)], (iii) cascade realization [Eq. (13.15b)] and (iv) parallel re­
alization [Eq. (13.15c)]. These realizations are depiated in Figs. 13.5a, 13.5b, 13.5c, and 
13.5d, respectively. As mentioned earlier, the output of each integrator serves as a natural 
state variable. 

1. Canonical Forms 

Here we shall realize the system using the first (controller) canonical form discussed 
in Sec. 6.6-1. If we choose the state variables to be the three integrator outputs Xl, X2, 

and X3, then, according to Fig. 13.5a, 

(13.16a) 

Also, the output y is given by 

(13.16b) 

Equations (13.16a) are the state equations, and Eq. (13.16b) is the output equation. In 
matrix form we have 

[:: j = l: : : j l :: j + l: j / 
X3 - 12 -19 -8 X3 1 

(13.17a) 

, v ; '-v-" 

and A B 

y = J 10 ; O! l:: j 
X3 

(13.17b) 

We can also realize H(s) by using the second (observer) canonical form (discussed in 
Appendix 6.1), as shown in Fig. 13.5b. If we label the output of the three integrators from 
left to right as the state variables VI, V2, and V3, then, according to Fig. 13.5b, 

iiI = -12v3 + 10/ 

(13.18a) 

and the output y is given by 

Hence 
y = V3 (13.18b) 

(13.19a) 
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and 

Y =~[:: l 
C 113 

(13.19b) 

Observe closely the relationship between the state-space descriptions of H(s) that use 
the controller canonical form [Eqs. (13.17)] and those using the observer canonical form 
[Eqs. (13 .19)]. The A matrices in these two cases are the transpose of one another; also, 
the B of one is the transpose of C in the other, and vice versa. Hence 

(A)T = A 

(B)T = C 

(C)T = B 

This is no coincidence. This duality relation is generally true. I 

2. Series Realization 

(13.20) 

The three integrator outputs WI, W2, and W3 in Fig. 13.5c are the state variables. 
The state equations are 

and the output equation is 
y =W3 

(13.21a) 

(13.21b) 

(13.21c) 

The elimination of W2 from Eq. (13.21c) by using Eq. (13 .21b) converts these equations 
into the desired state form 

[ 

'~ 'I ] [-1 0 0] [W I ] [ 1] 
W2 2 - 3 0 W2 + 0 f 

W3 2 2 -4 W3 0 

(13.22a) 

and 

(13.22b) 

3. Parallel Realization (Diagonal Representation) 

The three integrator outputs Zl, Z2, and Z3 in Fig. 13.5d are the state variables. The 
state equations are 

il = -z~ + f 

(13.23a) 
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and the output equation is 
y = ~Zl - 2Z2 + %Z3 

Therefore, the equations in the matrix form are , 

[:: ] = [~l ~3 :] [::] + [~] f 
%.,. 0 0 -4 Z3 1 

y~ [1 -2 I{:J 
o Computer Example C13.1 

Solve Example 13.4 using MATLAB. 

795 

(13.23b) 

(13.24a) 

(13.24b) 

• 
Caution: The convention of MATLAB for labeling state variables x I, X2, ... ,Xn in a 

block diagram, such as shown in Fig. 13.5a, is reversed. What we label Xl is X n , and X2 is 
Xn-l, and so on. 

num=[2 10]; den=[l 8 19 12]; 
[A,B,C,D]=tf2ss(num,den) 
% In order to find the transfer function from A, B, C, and D, use 
[num, den]=ss2tf(A,B,C,D) 
printsys(num;den) 0 

A General Case 

It is clear that a system has several state-space descriptions. Notable among 
these are the canonical-forrn variables and the diagonalized variables (in the parallel 
realization). State equations in these forms can be written immediately by inspec­
tion of the transfer function. Consider the general nth-order transfer function 

() 
bmsm + bm _ 1s m - 1 + ... + blS + bo 

H s = ------------~--------------
sn + a.n_lsn - l + ... + als + ao 

(13.25a) 

bms m + bm_lsm - l + ... + blS + bo 

(s - >'l)(S - >'2)'" (8 - ).1I) 

kl ~ ~ =--+--+ ... +--
s - >'1 S - >'2 S - An 

(13.25b) 

Figures 13.6a and 13.6b show the realizations of H (s), using the controller 
canonical form [Eq; (13.25a)} and the parallel form [Eq. (13.25b)]' respectively. 

'1;'he n integrator outputs Xl, X2, ... , Xn in Fig. 13.6a are the state variables. 
It is clear that 

(13.26a) 

Xn-l = Xn 

xn = -an-IXn - an-2Xn-1 - ... - alx2 - aOxI + f 
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Ca) 

!_-....... -...-i 

Fig. 13.6 Controller canonical and parallel realizations for an nth order LTIC system. 

and output y is 

(13.26b) 

or 

Xl a 1 a a a Xl a 

X2 0 0 1 0 0 X2 0 

= ... . ........... . ... . .. ... . ............. + f 

Xn-l a 0 0 0 1 Xn-l 0 

xn -aD -al -a2 -an -2 -an-l Xn 1 
(13.27a) 

and 
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y = [bo b1 bm 0 .,. 0] (13.27b) 

Xn 

Observe that these equations (state equations and output equation) can be written 
immediately by inspection of H (s ). 

The n integrator outputs ZI, Z2, .. . , Zn in Fig. 13.6b are the state variables. 
It is clear that 

(13 .28a) 

and 

(13.28b) 
or 

il Al 0 0 0 Z I 1 

i2 0 A2 0 0 Z2 1 

...... .. . . ............ . + f (13.29a) 

i n - l 0 0 An-l 0 Zn-l 1 

in 0 0 0 An Zn 1 

and 

(13.29b) 

Zn-l 

The state equation (13.29a) and the output equation (13.29b) can be written 
immediately by inspection of the transfer function H(s) in Eq. (13.25b). Observe 
that the diagonalized form of the state matrix [Eq. (13.291:1,)] has the transfer func­
tion poles as its diagonal elements. The presence of repeated poles in H (s) will 
modify the procedure slightly. The handling of these cases is discussed in Sec. 6.6. 
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J 

Fig. 13.7 Realization of a second-order system. 

It is clear from the above discussion that a state-space description is not unique. 
For any realization of H (8) using integrators, scalar multipliers, and adders, a corre­
sponding state-space description exists. Since there are many possible realizations 
of H (8), there are many possible state-space descriptions. 

Realization 

Consider a second-order system with a single input I, a single output y, and 
two state variables, Xl and X2 . The system equations are 

(13 .30a) 

and 

(13.30b) 

Figure 13.7 shows the block diagram of the realized system. The initial conditions 
Xl(O) and X2(O) should be applied at Nl and N2. This procedure can be easily 
extended to general multiple-input, multiple-output systems with n state variables. 

13.3 Solution of State Equations 

The sta te equations of a linear system are n simultaneous linear differential 
equations of the first. order. We studied the techniques of solving linear differential 
equations in Cha.pters 2 and 6. The same techniques can be applied to state equa­
tions without any modification. However, it is mot e convenient to carry out the 
solution in the framework of matrix notation. 

, 
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These equations can be solved in both the time domain and frequency domain 
(Laplace transform). The latter requires fewer new concepts and is therefore easier 
to deal with than the time-domain solution. For this reason, we shall first consider 
the Laplace transform solution. 

13.3-1 Laplace Transform Solution of State Equations 

The kth state equation [Eq. (13.6a)] is of the form 

We shall take the Laplace transform of this equation. Let 

so that 

Also, let 

Ii(t) {=} Fi(S) 

The Laplace transform of Eq. (13.31a) yields 

SXk(S) - Xk(O) = aklXl(s) + ak2X2(s) + ... + aknXn(S) + bkIFI(S) 

+ bk2F2(S) + ... + bkjFj(s) 

Taking the Laplace transforms of all n state equations, we obtain 

XI(S) Xl (0) all al2 aln XI(S) 

X2(S) X2(0) a21 a22 a2n X2(S) 
S = .. ........ . .. .. . . . . 

Xn(S) Xn(O) anI an2 " . ann Xn(S) 
"-v--" '--v-'" ,"-v--" 

Xes) x(O) 
., 

Xes) A 

+ 

bnj Fj(S) 
~~------~v~------~'~ 

B F(~ 

Defining the vectors, as indicated above, we have 

or 

and 

sX(S) - x(O) = AX(s) + BF(s) 

sX(s) - AX(s) = x(O) + BF(s) 

(13.31a) 

(13.31b) 

(13.32a) 



800 13 State-Space Analysis 

(sl - A)X(s) = x(O) + BF(s) (13.32b) 

where I is the n x n identity matrix. From Eq. 13.32b, we have 

where 

X(s) = (sl - A)-l[x(O) + BF(s)] 

= ~(s)[x(O) + BF(s)] 

~(s) = (sl - A)-l 
Thus, from Eq. (13.33b), 

X(s) = ~(s)x(O) + ~(s)BF(s) 
and 

x(t) = .c-l[~(s)]x(O) + .c-l[~(s)BF(s) 1 
'-..----" v ' 

zero-input component zero-state component 

(13;33a) 

(13.33b) 

(13.34) 

(13.35a) 

(13.35b) 

Equation (13.35b) gives the desired solution. Observe the two components of the 
solution. The first component yields x(t) when the input j(t) = O. Hence the 
first component is the zero-input component. In a similar manner, we see that the 
second component is the zero-state component . 

• Example 13.5 
Find the state vector x(t) for the system whose state equation is given by 

x = Ax+Bf 
where 

f(t) = u(t) 

and the initial conditions are Xl(O) = 2, X2(O) = 1. 
From Eq. (13.33b), we have 

X(s) = «I>(s)[x(O) + BF(s)] 

Let us first find «I>(s). We have 

and 

(8+4)(8+9) 

[ 

.+1 
1 ( .. +~)(.+9) 

«I>(s) = (sl - A)- = 
- 36 

2/3 1 
.+12 

(.+4)(8+9) 

Now, x(O) is given as 

Therefore 

x(O) = [:] 

BF(.) ~ [: 1 ~ ~ [ ~ ] 
Also, F(s) = ~, and 

(13.36a) 
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and 

[2+.1. ] [hl.! ] x(O) + BF(s) = 38 = 38 

1+. ~ ~ 

Xes) = 4l(s)[x(O) + BF(s)] 

8+12 
(~H)(.+9) 

The inverse Laplace transform of this equation yi.elds 

o Computer Example C13.2 
Solve Example 13.5 using MATLAB. 
Caution: See caution in Example C13.1. 

A=[-12 2/3;-36 -1); B=[1/3; 1); 
C=[O 0); D=O; 
xO=[2;1); 
t=O:.Ol:3; t=t'; 
f=ones(length(t) ,1); 
[y,x)=lsim(A,B,C,D,f,t,xO); 
plot(t,x) 0 

The Output 

The output equation is given by 

y = Cx+Df 
and 

Y(s) = CX(s) + DF(s) 

[¥.] 
til 

8 

The substitution of Eq. (13.33b) into this equation yields 

801 

(13.36b) 

• 
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Y(s) = C{4l(s)[x(O) + BF(s)]} + DF(s) 

C4l(s)x(O) 
'-v---'" 

zero-input response 

+ \CiJ(s)B + D]F(s) , , 
v 

zero-state response 

(13.37) 

The zero-state response (that is, the response Y(s) when x(O)=O), is given by 

Y(s) = [CiJ(s)B + D]F(s) (13.38a) 

Note that the transfer function of a system is defined under the zero-state condition 
[see Eq. (6.53)]. The matrix C4l(s)B + D is the transfer function matrix H(s) 
of the system, which relates the responses Yl, Y2, ... , Yk to the inputs il, /2, ... , 

fi: 

H(s) = CC)(s)B + D (13.38b) 

and the zero-state response is 

Y(s) = H(s)F(s) (13.39) 

The matrix H(s) is a k x j matrix (k is the number of outputs and j is the number 
of inputs). The ijth element Hij(S) of H(s) is the transfer function that relates the 

output Yi(t) to the input fj(t) . 

• Example 13.6 
Let us consider a system with a state equation 

[:h] [ 0 1] [Xl] [1 0] [ill 
X2 = -2 -3 X2 + 1 1 h 

(13.40a) 

and an output equation 

(13.40b) 

In this case, 

(13.40c) 

and 

1 ] 
(sH)(.+2) 

(3 ... &.+2) 
(13.41 ) 

Hence, the transfer function matrix H(s) is given by 
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H(s) = C~(s)B + D 

[ 

8±4 
(8+1)(8+2) 

_ .tt1 
- 8+2 

2(8-2) 
(8+1)(8+2) 

and the zero-state response is 

(8+1):(8+2) 1 
8+2 

82+58+2 
(8+1)(8+2) 

Y(s) = H(s)F(s) 
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(13.42) 

Remember that the ijth element of the transfer function matrix in Eq. (13.42) represents 
the transfer function that relates the output Yi(t) to the input f;(t). Thus, the transfer 
function that relates the output Y3 to the input h is H32(S), where 

s2 + 5s + 2 
H32(S) = (s + 1)(s + 2) 

o Computer Example C13.3 
Solve Example 13.6 using MATLAB. 

• 

Caution: The common factor (s + 1) in two of the transfer functions in Eq. (13.42) 
are canceled. The MATLAB answer gives transfer function with common factor. 

A=[O Ij-2 -3]; B=[l 0;1 1]; 
C=[1 Oj~ 1;0 2]j D =[O 0;1 OjO l]j 
[numl,denl)=ss2tf(A,B,C,D,I) 
[num2,den2)=ss2tf(A,B,C,D,2) 0 

Characteristic Roots (Eigenvalues) of a Matrix 

It is interesting to observe that the denominator of every transfer function in 
Eq. (13.42) is (8 + l)(s + 2) with the exception of J{21(S) and }[22(S), where the 
cancellation of the factor (s + 1) occurs. This fact is no coincidence. We see that the 
denominator of every element of ~(.9 ) is lsI - AI because ~(s) = (81- A) - I, and the 
inverse of a matrix has its determinant in the denominator. Since C, B, and Dare 
matrices wi.th constant element;s, we see from Eq. (13.38b) that the denominator 
of ~(s) will also be the denominator of H(). Hence, the denominator of every 
element of R(s) is lsI - AI, except for the possible cancellation of the common 
factors mentioned earlier. In other words, the poles of all transfer functions of 
the system are also the zeros of the polynomial lsI - AI. Therefore, the zeros 
of the polynomiaJ lsI - AI are tbe characteristic Ioots of tile system. Hence, the 
characteristic roots of thc system are the roots of the equation 

lsI - AI = 0 (13.43a) 
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Since lsI - AI is an nth-order polynomial in s with n zeros AI, A2, ... , An, we can 
write Eq. (13.43a) as 

lsI - AI = Sn + an_lSn+1 + ... + als + ao 

= (s - Ad(s - A2)'" (s - An) = 0 

For the system in Example 13.6, 

lsI - A I = I: : 1-1:2 ~31 

I
s -1 I 

= 2 s +3 

= s2 + 3s + 2 

= (s + 1)(s + 2) 
Hence 

Al =-1 and A2 = -2 

(13.43b) 

(13.44a) 

(13.44b) 

Equation (13.43) is known as the characteristic equation of the matrix A, 
and AlJ A2, ... , An are the characteristic roots of A. The term eigenvalue, 
meaning "characteristic value" in German, is also commonly used in the literature. 
Thus, we have shown that the characteristic roots of a system are the eigenvalues 
(characteristic values) of the matrix A. 

At this point, the reader will recall that if AI, A2, .. . , An are the poles of the 
transfer function, then the zero-input response is of the form 

yo(t) = CleA1t + C2eA2t + ... + cne Ant (13.45) 

This fact is also obvious from Eq. (13.38). The denominator of every element of 
the zero-input response matrix C~(s)x(o) is lsI -AI = (8 - Al)(S - A2)'" (s -
An). Therefore, the partial-fraction expansion and the subsequent inverse Laplace 
transform will yield a zero-input component of the form in Eq. (13.45). 

13.3-2 Time-Domain Solution of State Equations 

The state equation is 

'x = Ax+Bf (13.46) 

We now show that the solution of the vector differential Equation (13.46) is 

I' x(~)"'; eAtx:(O) + lot eA(t-T)Bf(r)dr (13.47) 

Before proceeding further, we must define' the exponential of the matrix appearing 
in Eq. (13.47). An exponential' of a matrix is defined by an infinite series identical 
to tha~ used in defining an exponential of a scalar. We shall define 

At~ ' A 2t2 A3t3 Antn 
e =I+At+ --+ --+ ... + -- + ... + 

2! 3! n! 
(13.48a) 

(13.48b) 
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Thus, if 

A ~ [: :] 

then 

A'~ [: }~ [:, :] 
(13.49) 

and 
(13.50) A 2t2 = [0 1] [0 1] t2 = [2 1] t2 = [t2 

21 2 1 2 1 2 2 3 2 t 2 

and so on. 
We can show that the infinite series in Eq. (13.48) is absolutely and uniformly 

convergent for all values of t. Consequently, it can be differentiated or integrated 
term by term. Thus, to find (d / dt) eAt, we differentiate the series on the right-hand 

side of Eq. (13.48a) term by term: 

d At 2 A 3t2 A 4 t3 
-e =A+A t+--+--+··· 
dt 2! 3! 

(13.51a) 

= A I + At + -- + -- + ... 
[ 

A2t2 A 3t3 ] 
. 2! 3! 

= AeAt (13.51b) 

Note that the infinite series on the right-hand side of Eq. (13.51a) also may be 

expressed as 

Hence 
!!:..-eAt = AeAt = eAt A 
dt 

Also note that from the definition (13.48a), it follows that 

where 

I = [~ :] 

(13.52) 

(13.53a) 

If we premultiply or postmultiply the infinite series for eAt (Eq. (13.48a)] by an 

infinite series for e -At, we find that 

(e-At)(eAt) = (eAt)(e-At ) = I 

In Sec. B.6-3, we show that 

(13.53b) 
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~(PQ) = dP Q + pdQ 
dt dt dt 

Using this relationship, we observe that 

d [ -At] (d -At) + -At. - e x = -e x e x 
dt dt 

We now premultiply both sides of Eq. (13.46) bye-At to yield 

e -At X = e -At Ax + e -AtBf 

or 

e -Atx - e -At Ax = e -AtBf 

(13.54) 

(13.55a) 

(13.55b) 

A glance at Eq. (13.54) shows that the left-hand side of Eq. (13.55b) is ft[e- At]. 
Hence 

~[e-At] = e-AtBf 
dt 

The integration of both sides of this equation from 0 to t yields 

e-Atxl t 
= t e-ATBf(T) dT 

o Jo or 

Hence 

e-Atx(t) - x(O) = It e-ATBf(T) dT 

e-Atx = x(O) + It e-ATBf(T)dT 

Premultiplying Eq. (13.56c) by eAt and using Eq. (13.53b), we have 

x(t) = eAtx(O) + rt eA(t-T)Bf(T) dT 
'-v-" Jo 

zero-input component ' .. ' 
zero-state component 

(13.56a) 

(13.56b) 

(13.56c) 

(13.57a) 

This is the desired solution. Thl;l first term on the right-hand side represents x(t) 
when the input l(t) = o. Hence it is the zero-input component. The second term, 
by a similar argument, is seen to be the zero-state component. 

The results of Eq. (13.57a) can be expressed more conveniently in terms of the 
matrix convolution. We can define the convolution of two matrices in a manner 
similar to .the multiplication of two matri~es, except that the multiplication of two 
elements is replaced by their convolution. For example, 

[
11 12] * [91 92] = [(11*91+12*93) 
fa 14 9394 (13*91+14*93) 

(11 * 92 + 12 * 94) ] 

(13 * 92 + 14 * 94) 

Using this definition of matrix convolution, we can express Eq. (13.57a) as 
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x(t) = eAtx(O) + eAt * Bf(t) (13.57b) 

Note that the limits of the convolution integral [Eq. (13.57a)] are from 0 to t. 
Hence, all the elements of eAt in the convolution term of Eq. (13.57b) are implicitly 
assumed to be multiplied by u(t). 

The result of Eq. (13.57) can be easily generalized for any initial value of t. It 
is left as an exercise for the reader to show that the solution of the state equation 
can be expressed as 

x(t) = eA(t-to)x(to) + it eA(t-r)Bf(T)dT (13.58) 
to 

Determirnng eAt 

The exponential eAt required in Eq. (13.57) can be computed from the defini­
tion in Eq. (l3.51a). Unfortunately, this is an infinite series, and its computation 
can be quite laborious. Moreover, we may not be able to recognize the closed-form 
expression for the answer. There are several efficient methods of determining eAt 
in closed form. It is shown in Sec. B.6-5 that for an n x n matrix A, 

(13.59a) 

where 

f30 1 Al A2 An - 1 -1 
eA1t 

1 1 

f31 1 A2 A2 
2 

An - 1 
2 e A2t 

= 
••• • ••••• • • •••••• • • • o. 

f3n-l 1 An A2 
n 

An - 1 
n eAnt 

and AI, A2, .. . , An are the n characteristic values (eigenvalues) of A. 
We can also determine eAt by comparing Eqs. (13.57a) and (13.35b). It is clear 

that 

eAt = .c-1[~(s)] 

= .c-1 [(sl - A)-I] 

(13.59b) 

(13.59c) 

Thus, eAt and ~(s) are a Laplace transform pair. To be consistent with Laplace 
transform notation, eAt is often denoted by I/>(t), the state transition matrix 
(STM): 

• Example 13.7 
Find the solution to the problem in Example 13.5 using the time-domain method. 
For this case, the characteristic roots are given by 

I

S+12 -~ 1 2 
lsI - AI = = s + 13s + 36 = (s + 4)(s + 9) = 0 

36 s + 1 
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The roots are '\1 = -4 and '\2 = -9, so 

and 
[

(30] [1 -4]-1 [e-
4t

] =! [ge-
4t 

- 4e-
9t

] 

(31 1 -9 e-9t 5 e-4t _ e-9t 

+ !e-4t _ !e- 9t 3 [1 0] ( ) [-12 ~ ] 
o 1 5 5 -36-1 

[ 

(
-3 -4t + 8 -9t) 2 (-4t -9t) 1 T e Se IS e - e 

¥( _e-4t + e-9t ) ( ~e-4t _ ~e-9t) 
(13.60) 

The zero-input component is given by [see Eq. (13.57a)] 

(13.61a) 

Note the presence of u(t) in Eq. (13.61a), indicating that the response begins at t = o. 
The zero-state component is eAt * Bf [see Eq. (13.57b)], where 

[
1] [1U(t) ] Bf= 3 u(t) = 3 

1 u(t) 

and 

[ 

(-3 e-4t + !!.e-9t ju(t) 
At 5 5 

e * Bf(t) = 
¥(_~-4t + e-9tu(t» 

Note again the presence of the term u(t) in every element of eAt. This is the case because 
the limits of the convolution integral run from 0 to t [Eq. (13.56)]. Thus 

eAt * Bf(t) = 
[ 

(_~e-4t + ~e-9t)u(t) * ~u(t) 

¥( _e-4t + e-9t )u(t) * ~u(t) 

[

-ise-4tu(t) * u(t) + ~e-9tu(t) * U(t)] 

_~e-4tu(t) * u(t) + te-9tu(t) * u(t) 
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Substitution for the above convolution integrals from the convolution table (Table 2.1) 

yields 

(13 .61b) 

The sum of the two components [Eq. (13.61a) and Eq. (13.61b)] now gives the desired 

solution for x(t): 

[

Xl(t) ] [ (is -¥oe-4t 
+ 1:: e_9t )U(t)] 

x(t) - - (13 .61c) 

- X2(t) - ( -:3 e -4t + ¥e-9t ) u(t) 

This result is consistent with the solution obtained by using the frequency-domain method 
[see Eq. (13.36b)]. Once the state variables Xl and X2 are found for t ~ 0, all the remaining 
variables are determined from the output equation .• 

The Output 

The output equation is given by 

y(t) = Cx(t) + Df(t) 

The substitution of the solution for x [Eq. (13.57)] in this equation yields 

y(t) = C[eAtx(O) + eAt * Bf(t)] + Df(t) 

Since the elements of B are constants, 

eAt * Bf(t) = eAtB * f(t) 

With this result, Eq. (13.62a) becomes 

y(t) = C[eAtx(O) + eAtB * f(t)] + Df(t) 

(13.62a) 

(13.62b) 

Now recall that the convolution of f(t) with the unit impulse o(t) yields f(t). Let us 
define a j x j diagonal matrix 6(t) such that all its diagonal terms are unit impulse 
functions. It is then obvious that 

6(t) * f(t) = f(t) 

and Eq. (13.62b) can be expressed as 

y(t) = C[eAtx(O) + eAtB * f(t)] + D6(t) * f(t) 
= CeAtx(O) + [CeAtB + D6(t)] * f(t) 

With the notation q,(t) for eAt, Eq. (13.63b) may be expressed as 

(13.63a) 

(13.63b) 
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yet) = cq,(t)x(O) 
'----v---' 

zero-input response 

+ [Cq,(t)B + D6(t)] * f(t) 
, J .. 

zero-state response 

The zero-state response; that is, the response when x(O) = 0, is 

where 

yet) = [Cq,(t)B + D6(t)] * f(t) 
= h(t) * f(t) 

h(t) = Cq,(t)B + D6(t) 

(13.63c) 

(13.64a) 

(13.64b) 

(13.65) 

The matrix h(t) is a k x j matrix: known as the impulse response mat rix. The 
reason for his de. ignatioll is 01 vi us. The ij th element of h(t) is hij(t), which 
represents the zero-st.ate response Vi when the input fj(t) = oCt) and when all other 
jnputs (and all the initial conditions) are zero. It can also be seen from Eq. (13.39) 
and (13.64b) that 

C[h(t)] = H(s) 

• Example 13.8 
For the system described by Eqs. (13.40a) and (13.40b), determine eAt using Eq. 

(13.59b): 

q,(t) = eAt = .c-1~(S) 
This problem was solved earlier with frequency-domain techniques. From Eq. (13.41), 

we have 

q,(t) = .c-1 (-+1)(-+2) 
[

' _+3 

-2 

[ 

2 1 
= .c-1 _+1 - _+2 

-2 + 2 
_+1 _+2 

[ 

2e-t _ e-2t e-t _ e-2t ] 

= -2e-t + 2e-2t _e-t + 2e-2t 

The same result is obtained in Sec. B.6-5 by using Eq. (13.59a) [see Eq. (B.84)]. 
Also, 6(t) is a diagonal j x j or 2 x 2 matrix: 

6(t) = [OCt) 0] 
o o(t) , 

Substituting the matrices q,(t), oCt), C, D, and B [Eq. (13.40c)] into Eq. (13.65), we have 

h(t) = 

[ 

3e-t - 2e-
2t 

e-t - e-2t J 
oCt) + 2e-2t e-2t 

-6e-t + 8e-2t oCt) _ 2e-2t + 4e-2t 
(13.66) 
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The reader can verify that the transfer-function matrix H(s) in Eq. (13.42) is the Laplace 
transform of the unit-impulse response matrix h(t) in Eq. (13.66) .• 

, 
13.4 Linear Transformation of State Vectors 

In Sec. 13.1 w saw chat the state of a system call be specified ir l several ways. 
The se ts of all possibl state variables must be related-in other words, if we are 
given one Bet of st&Le variables, we sbould be able to reLa e it to any other set. W 
are particularly int · rested in a linear type of relationshi.p. Let X I. X2 • ..• , Xn and 
'Wl , W2, • • . , w" be two different sets of state variables specifying tbe sam system. 
L L Lhese sets be related by linear equations as 

WI = PllXI + Pl2 X 2 + ... + PlnXn 

(13.67a) 

Wn = PnlXI + Pn2X2 + ... + PnnXn 

or 

WI Pn Pl2 PIn Xl 

W2 P21 P22 P2n X2 
(13.67b) 

.... , ... . . ........ . 

Wn Pnl Pn2 Pnn Xn 
'-v---' v ''--.;--/ 

W P x 

Defining the vector wand matrix P, as shown above, we can write Eq. (13.67b) as 

w=Px (13.67c) 
and 

(13.67d) 

Thus, the state vector x is transformed into another state vector w through the 
linear transformation in Eq. (13.67c). 

If we know w, we can determine x from Eq. (13.67d), provided that p-l exists. 
This is equivalent to saying that P is a nonsingular matrixt (!PI f= 0). Thus, if P 
is a nonsingular matrix, the vector w defined I;>y Eq. (13.67c) is also a state vector. 
Consider the state equation of a system 

x = Ax+Bf (13.68a) 
If 

w=Px (13.68b) 
then 

x = p-Iw 

tThis condition is equivalent to saying that all n equations in Eq. (13.67a) are linearly independent; 
that is, none of the n equations can be expressed as a linear combination of the remaining equations. 
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and 

Hence the state equation (13.68a) now becomes 

or 

where 

and 

w = PAP-1w + PBf 

=Aw+Bf 

13 State-Space Analysis 

(13.68c) 

(13.68d) 

(13.69a) 

(13.69b) 

Equation (13.68d) is a state equation for the same system, but now it is expressed 
in terms of the state vector w . 

The output equation is also modified. Let the original output equation be 

y = Cx+Df 

In terms of the new state variable w, this equation becomes 

where 

• Example 13.9 

y = C(p-1w) + Df 

= Cw+Df 

C = Cp- 1 

The state equations of a certain system are given by 

(13.69c) 

(13.70a) 

Find the state equations for this system when the new state variables WI and W2 are 

WI = Xl + X2 

or 

(13.70b) 

According to Eq. (13. 70b), the state equation for the state variable w is given by 

w=Aw+Bf 
where [see Eq. (13.69)] 
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A=PAP-1 = [1 1] [0 1] [ 1 1 ] -1 
1 -1 -2 -3 1-1 

[: -:][-: -:][: -:] 
[-2 0] 

3 - 1 

and 

Therefore 

This is the desired state equation for the state vector w. The solution of this equation 
requires a knowledge of the initial state w(O). This can be obtained from the given initial 
state x(O) by using Eq. (13.70b) .• 

o Computer Example C13.4 
Solve Example 13.9 using MATLAB. 

A=[O 1;-2 -3]; B=[I; 2]; 
P=[I 1;1 -I]; 
Ahat=P* A *inv(P) 
Bhat=P*B 0 

Invariance of Eigenvalues 

We have seen (Sec. 13.3) that the poles of all possible transfer functions of a 
system are the eigenvalues of the matrix A. If we transform a state vector from x 
to w, the variables WI, W2, ... , Wn are linear combinations of Xl, X2, ... , Xn and 
therefore may be considered as outputs. Hence, the poles of the transfer functions 
relating WI, W2, ... , Wn to the various inputs must also be the eigenvalues of matrix 
A. On the other hand, the system is also specified by Eq. (13.68d). This means 
that the poles of the transfer functions must be the eigenvalues of A. Therefore, 
the eigenvalues of matrix A remain unchanged for the linear transformation of 
variables represented by Eq. (13.67), and the eigenvalues of matrix A and matrix 
A(A = P AP-1) are identical, implying that the characteristic equations of A and 
A are also identical. This result also can be proved alternately as follows. 

Consider the matrix P(sI - A)p-l. We have ' . 

P(sI - A)P- 1 = Pslp-l - PAP- 1 = sPIP-1 
- A = sI - A 
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Taking the determinants of both sides, we obtain 

The determinants IPI and [P-11 are reciprocals of each other. Hence 

lsI - AI = lsI - AI (13.71) 

This is the desired result. We have shown that the characteristic equations of A 
and A are identical. Hence the eigenvalues of A and A are identical. 

In Example 13.9, matrix A is given as 

The characteristic equation is 

lsI - AI = I: -1 I = s2 + 3s + 2 = 0 
s+3 

Also 

A=[-2 0] 
3 -1 

and 

lsI - AI = [ s + 2 0] = s2 + 3s + 2 = 0 
-3 s + 1 

This result verifies that the characteristic equations of A and A are identical. 

13.4-1 Diagonalization of Matrix A 

For several reasons, it is desirable to make matrix A diagonal. If A is not 
diagonal, we can transform the state variables such that the resulting matrix A is 
diagonaLt One can show that for any diagonal matrix A, the diagonal elements 
of this matrix must necessarily be A1, A2, ... , An (the eigenvalues) of the matrix. 
Consider the diagonal matrix A: 

a1 0 0 0 

0 a2 0 0 
A= 

• • •• I ••• ' • •••• 

The characteristic equation is given by 

tIn this discussion we assume distinct eigenvalues. If the eigenvalues are not distinct, we can 
reduce the matrix to a modified diagonalized (Jordan) form. 
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o 

lsI - AI = 

o o 

o 

... . . . . ..... ... .. - . .. ... . . . .. .. .. . . . 

o o o 
or 

815 

=0 

Hence, the eigenvalues of A are aI, a2, . . . , an· The nonzero (diagonal) elements 
of a diagonal matrix are therefore its eigenvalues AI, A2, ... , An· We shall denote 
the diagonal matrix by a special symbol, A: 

A= (13.72) 

o o 0 

Let us now consider the transformation of the state vector A such that the resulting 
matrix A is a diagonal matrix A. 

Consider the system 
x = Ax+Bf 

We shall assume that AI, A2, ... , An, the eigenvalues of A, are distinct (no repeated 
roots). Let us transform the state vector x into the new state vector z, using the 

transformation 
z = Px (13.73a) 

Then, after the development of Eq. (13.68c), we have 

(13.73b) 

We desire the transformation to be such that P AP- l is a diagonal matrix A given 

by Eq. (13.72), or 
z = Az + Bf (13.73c) 

Hence 
A = PAP- l (13.74a) 

or 
AP=PA (13.74b) 

We know A and A. Equation (13.74b) therefore can be solved to determine P . 

• Example 13.10 
Find the diagonalized form of the state equation for the system in Example 13.9. 

In this case, 
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We found Al = -1 and A2 = -2. Hence 

A=[-1 0] 
° -2 

and Eq. (13.74b) becomes 

[-1 0] 
° -2 

[

Pll 

P2l 

P12] [Pll P12] [0 1] 

P22 - P2l P22 -2-3 

Equating the four elements on two sides, we obtain 

-Pll = -2P12 

-P12 = Pll - 3P12 

-2P2l = -2P22 

-2P22 = P2l - 3P22 

(13.75a) 

(13.75b) 

(13.75c) 

(13.75d) 

The reader will immediately recognize that Eqs. (13.75a) and (13 .75b) are identical. Sim­
ilarly, Eqs. (13.75c) and (13.75d) are identical. Hence two equations may be discarded, 
leaving us with only two equations [Eqs. (13.75a) and (13 .75c)] and four unknowns. This 
observation means there is no unique solution. There is, in fact, an infinite number of so­
lutions. We can assign any value to Pll and P2l to yield one possible solution.t If Pll = kl 
and P2l = k2 , then from Eqs. (13 .75a) and (13.75c) we have P12 = kl/2 and P22 = k2: 

We may assign any values to kl and k2. For convenience, let kl = 2 and k2 
substitution yields 

The transformed variables [Eq. (13.73a)] are 

[
Zl] [2 1] [Xl] = [2Xl +X2] 

Z2 1 1 X2 Xl + X2 

(13.75e) 

1. This 

(13.75f) 

(13.76) 

Thus, the new state variables Zl and Z2 are related to Xl and X2 by Eq. (13.76). The 
system equation with z as the state vector is given by [see Eq. (13.73c)] 

z = Az +Bf 

tIf, however, ,we want the state equations in diagonalized form, as in Eq. (13.29a) , where all 
the elements of 13 matrix are unity, there is a unique solution. The reason is that the equation 
13 = PB, where all the elements of 13 are unity, imposes additional constraints. In the present 
example, this condition will yield Pll = ~, P12 = ~, P2l = k, and P22 = ~. The relationship 
between z and x is then ' 
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(a) 

(b) 

Fig. 13.8 Two realizations of the second-order system in Example 13.10. 

where 

Hence 

or 

B = PB = [: :l [~l [:l 
[::J [-: -:l [::l + [:l f 

Zl = -Zl + 4f 

(13.77a) 

(13.77b) 

Note the distinctive nature of these state equations. Each state equation involves only one 
variable and therefore can be solved by itself. A general state equation has the derivative of 
one state variable equal to a linear combination of all state variables. Such is not the case 
with the diagonalized matrix A. Each state variable Zi is chosen so that it is uncoupled 
from the rest of the variables; hence a system with n eigenvalues is split into n decoupled 
systems, each with an equation of the form 

Zi = AiZi + (input terms) 
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This fact also can be readily seen from Fig. 13.8a, which is a realization of the system 
represented by Eq. (13.77). In contrast, consider the original state equations [see Eq. 
13.70a)] 

:h = X2 + J(t) 

A realization for these equations is shown in Fig. 13.8b. It can be seen from Fig. 13.8a 
that the states Zl and Z2 are decoupled, whereas the states Xl and X2 (Fig. 13.8b) are 
coupled. It should be remembered that Figs. 13.8a and 13.8b are simulations of the same 

system·t. 

o Computer Example C13.5 
Solve Example 13.10 using MATLAB. 
Caution: The answer for B is not unique. 

A=[O 1j-2 -3]j B=[lj 2]j 
[V, L]=eig(A); 
P=inv(V)j 
Lambda=P* A *inv(P)j 
Bhat=P*B 0 

13.5 Controllability and Obs~rvability 

Consider a diagonalized state-space description of a system 

z = Az +:EH 

and 
Y = Cz+Df 

(13.78a) 

(13. 78b) 

We shall assume that all n eigenvalues A1, A2, . .. , An are distinct. The state 
equations (13 .78a) are of the form 

m = 1, 2, ... n 

If bm1 , bm2' ... , bmj (the mth row in matrix B) are all zero, then 

and the variable Zm is uncontrollable because Zm is not connected to any of the 
inputs: Moreover, Zm is decoupled from all the remaining (n - 1) state variables 
because of the diagonalized nature of the variables. Hence, there is no direct or 
indirect coupling of Zm with any of the inputs, and the system is uncontrollable. In 
contrast, if at least one element in the m th row of B is nonzero, Zm is coupled to 
at least one input and is therefore controllable. Thus, a system with a diagonalized 

tHere we only have a simulated state equation; the outputs are not shown. The outputs are 
linear combinations of state variables (and inputs). Hence, the output equation can be easily 
incorporated into these diagrams (see Fig. 13.7). 

1 



13.5 Controllability And Observability 819 

state [Eqs. (13.78)] is completely controllable if and only if the matrix B has no row 
of zero elements. 

The outputs [Eq.(13.78b)] are of the form 
, j 

Yi = CilZl + Ci2 Z2 + ... + CinZn + L dimfm 

m=l 

If Ci r,. = D, then the state Zm will not appear in the expression forYi . Since all the 
states ar d upled because of the diagonalized natu)' of the quations, th state 
ZTl'I. cannot be observed directly or indirectly (through other sLat s) at the output 
y,. Hence the mth mode eAn,t will not be observ d at the output Vi . If elm, C2m, .. . 

, Ckm (the m th col urn n in matrix C) are all zero, the stat Zm will not be bservable 
at any of the k outputs, and the state Z m is unobservable. In contrast, if at least 
one element in the mth column of C is nonzero, Zm is observable at least aL one 
output. TI)us, 8. system with diagonalized equations of ille form in Eqs. (13.78) is 
compJeteJy observable if and only if the matrix C llas no 'ohunn of zel'O elements. 
In the above discussion, we assumed distinct eigenvalues; for repeated eigenvalues, 
the modified criteria can be found in til literature. L, 2 

If the state-space description is not i:n diagonalized form, it may be converted 
into diagonalized form using the procedure in Example 13.10. It is also possible 
to test.for controllability and observabiJity even iF the state-space description is in 
undiagonalized form. I, 2t 

• Example 13.1i 
Investigate the controllability and observability of the systems in Figs. 13.9a and 

13.9b. 

""'-.... _-......... --_/ ""---------.... "v"'--------
1 V s-l 

(a) 

s-1 s+1 

'--------.... ~--------~ ,"'------~ .... -----~ (b) 

s-l 1 
S+T s-1 

Fig. 13.9 Systems for Example 13.11. 

tWe can show that a system is completely controllable if and only if the n x nj composite matrix 
[B, AB, A 2 B, ... , An-IB] has a rank n. Similarly, a system is completely observable if and 
only if the n x nk composite matrix [C', A'C', A,2 C ', . .. , Am-Ie'] has a rank n. 
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In both cases, the state variables are identified as the two integrator outputs, Xl and 
X2. The state equations for the system in Fig. 13.9a are 

and 

Hence 

Therefore 

and 

Xl = Xl + f 

I
s - 1 

IsI- AI = 
-1 

A1 = 1 

o I = (s - 1)(s + 1) 
s+1 

and 

(13.79) 

(13.80) 

We shall now use the procedure in Sec. 13.4-1 to diagonalize this system. According to 
Eq. (13 .74b) , we have 

[1 0] [PH P12] [PH P12] [1 0] 
o -1 P21 P22 = P21 P22 1-1 

The solution of this equation yields 

P12 = 0 and - 2P21 = P22 

Choosing pu = 1 and P21 = 1, we have 

and 

P= [: ~J 

B=PB= [: ~J [:] [:] 
All the rows of 13 are nonzero. Hence the system is controllable. Also, 

and 

C = Cp-1 = [1 -2] [: 

Y=Cx 

= Cp-1z 

= Cz 

o ]_1 
= [1 

-2 
-2] [; _ :] = [0 1] 

(13.81a) 

(13.81b) 

(13.81c) 
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The first column ore is zero. Hence the mode ZI (corresponding to Al = 1) is unobservable. 
The system is therefore controllable but not observable. We come to the same conclusion 
by realizing the system with the state variables Zl and Z2, whose state equations are 

z =Az+BJ 

y= Cz 

According to Eqs. (13.80) and (13.81), we have 

and 

f 

f 
!.. .. -~ ...•.. -

f 

Zl = Zl + f 

y = Z2 

...... . --............ -."' ........ --........... -.......... ~ ...... ~ ....... "; 

1 
'""S"+L 

'i 
z. 1 

: 
_ ....... ..... ~_ ....... . ..... . .. . ... u ......... . .............. . 

.. . ..... . ,.,,_ .......................... : 
~ 
i 
i 
i 
l 
1 
! 

y 

y 

Fig. 13.10 Equivalent of the systems in Fig. 13.9. 

(a) 

(b) 

Figure 13.10a shows a realization of these equations. It is clear that each of the two modes 
is controllable, but the first mode (corresponding to A = 1) is not observable at the output. 

The state equations for the system in Fig. 13.9b are 

(13.82) 

and 
y = X2 

Hence 
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181 - AI = 

so that Al = -1, A2 = 1, and 

biagonalizing the matrix, we have 

1

8+ 1 

-1 
o I = (8 + 1)(8 - 1) 

8-1 

[1 0] [Pll PI2] [Pll PI2] [-1 0] 
o -1 P2I P22 = P2I P22 -2 1 

(13.83) 

The solution of this equation yields Pll = -PI2 and P22 = O. Choosing Pll = -1 and 
P2I = 1, we obtain 

and 

P = [ - :~] 

8=PB= [- : ~] [:] [:] (13.84a) 

(13.84b) 

The first row of 8 is zero. Hence the second mode (corresponding to Al 1) is not 
controllable. However, since none of the columns of C vanish, both modes are observable 
at the output. Hence the system is observable but not controllable. 

We reach to the same conclusion by realizing the system with the state variables ZI 

and Z2. The two state equations are 

z = Az +8/ 

y= Cz 

From Eqs. (13.83) and (13.84), we have 

and thus 

y = Zl + Z2 (13.85) 

Figure 13.lOb shows a realization of these equations. Clearly, each of the two modes is 
observable at the output, but the mode corresponding to Al = 1 is not controllable .• 

o Computer Example C13.6 
Solve Example 13.11 using MATLAB. 

A=[l 0;1 -1]; B=[l; 0]; C=[1 -2]; 
[V, L]=eig(A); 
P=inv(V); 
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Ahat=P* A *inv(P); 
Bhat=P*B 
Chat=C*inv(P) 0 

823 

13.5-1 Inadequacy of the Transfer Function Description of a System 

Example 13.11 demonstrates the inadequacy of the transfer function to describe 
an LTI system in general. The systems in Figs. 13.9a and 13.9b both have the same 
transfer function 

1 
H(s)=s+l 

Yet the two systems are very different. Their true nature is revealed in Figs. 13.lOa 
and 13.10b, respectively. Both the systems are unstable, but their transfer function 
H (s) = 8~1 does not give any hint of it. The system in Fig. 13.9a appears stable 
from the external terminals, but it is internally unstable. The system in Fig. 13.9b, 
on the other hand, will show instability at the external terminals, but its transfer 
function H(s) = S~l is silent about it. The system in Fig. 13.9a is controllable but 
not observable, whereas the system in Fig. 13.9b is observable but not controllable. 

The transfer function description of a system looks at a system only from the 
input and output terminals. Consequently, the transfer description can specify only 
the part of the system which is coupled to the input and the output terminals. 
Figures 13.lOa and 13.10b show that in both cases only a part of the system that 
has a transfer function H(s) = 8~1 is coupled to the input and the output terminals. 

This is the reason why both systems have the same transfer function H(s) = 8~1' 
The state variable description (Eqs. 13.79 and 13.82), on the other hand, con­

tains all the information about these systems to describe them completely. The 
reason is that the state variable description is an internal description, not the ex­
ternal description obtained from the system behavior at external terminals. 

Mathematically, the reason the transfer function fails to describe these systems 
completely is the fact that their transfer function has a common factor s - 1 in 
the numerator and denominator; this common factor is canceled out with a conse­
quent loss of the information about these systems. Such a situation occurs when 
a system is uncontrollable and/or unobservable. If a system is both controllable 
and observable (which is the case with most of the practical systems) the transfer 
function describes the system completely. In such a case the internal and external 
descriptions are equivalent. 

13.6 State-Space Analysis of Discrete-Time Systems 

We have shown that an nth-order differential equation can be expressed in 
terms of n first-order dillerential equations. In the following analogous procedure, 
we show that an nth-order difference equation can be expressed in terms of n first­
order difference equations. 

Consider the z-transfer function 

(13.86a) 
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Fig. 13.11 Controller canonical realization of an nth-order discrete-time system. 

The input J[k] and the output y[k] of this system are related by the difference 
equation 

(En + an_IEn- 1 + ... + alE + ao)y[k] = 

(bmEm + bm_IEm- 1 + '" + blE + bo)/[k] (13.86b) 

The controller canonical realization of this equation is illustrated in Fig. 13.11. 
Signals appearing at the outputs of n delay elements are denoted by xI[k], x2[k], 
... , xn[k]. The input of the first delay is xn[k + 1]. We can now write n equations, 
one at the input of each delay: 

and 

xdk + 1] = x2[k] 

x2[k + 1] = x3[k] 

xn-l[k + 1] = xn[k] 

xn[k + 1] = -aoxl[k]- al x2[k]- . .. - an-lxn[k] + I[k] 

(13.87) 

(13.88) 

Equations (13.87) are n first-order difference equations in n variables xI(k), x2(k), 
... , xn(k). These variables should immediately be recognized as state variables, 
since the specification of the initial values of t hese variables in Fig. 13.11 will 
uniquely determine the response y[k] for a given f [kJ. Thus, Eqs. (13.87) repre­
sent the state equations, and Eq. (13.88) is the output equation. In matrix form we 
can write these equations as 
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xl[k + 1] 0 1 0 0 0 xl[k] 0 

x2[k + 1] 0 0 1 0 0 x2[k] 0 

= + f[k] 

xn-l[k + 1] 0 0 0 0 1 xn-l[k] 0 

xn [k + 1] -aD -al - a2 -an-2 -an-l xn[k] 1 
, ... ... '''----v-''' '-v-" 

x[lc+l) A x[k) B 

(13.89a) 
and 

xl[k] 

x2[k] 
y[k]=[bo bl bm l (13.89b) 

, , ... 
c 

In general, 
xm+dk] 

x[k + I] = Ax[k] + Bf[k] (13.90a) 

y[k] = CX[k] + Df[k] (13.90b) 

Here we have represented a discrete-time system with state equations in controller 
canonical form. There are several other possible representations, as discussed in 
Sec. 13.2. We may, for example, realize the system by using a series, parallel, or 
observer canonical form. In all cases, the output of each delay element qualifies as 
a state variable. We then write the equation at the input of each delay element. 
The n equations thus obtained are the n state equations. 

13.6-1 Solution in State-Space 

Consider the state equation 

x[k + I] = Ax[k] + Bf[k] 

From this equation it follows that 

and 
x[k] = Ax[k - I] + Bf[k - I] 

x[k - I] = Ax[k - 2] + Bf[k - 2] 

x[k - 2] = Ax[k - 3] + Bf[k - 3] 

x[l] = Ax[O] + Bf[O] 

Substituting Eq. (13.92b) in Eq. (13.92a), we obtain 

(13.91) 

(13.92a) 

(13.92b) 

(13.92c) 
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x[k] = A 2x[k - 2] + ABf[k - 2] + Bf[k - 1] 

Substituting Eq. (13.92c) in this equation, we obtain 

x[k] = A3x [k - 3] + A2Bf[k - 3] + ABf[k - 2] + Bf[k - 1] 

Continuing in this way, we obtain 

k-l 

= A kx[O] + LA k-l-j Bf[j] (13.93a) 

j=O 

The upper limit on the summation in Eq. (13.93a) is nonnegative. Hence k 2: 1, 
and the summation is recognized as the convolution sum 

A k - 1U[k - 1] * Bf[k] 
Hence 

x[k] = A kx[O] + A k- 1u[k - 1] * Bf[k] 
"-v-'" ... ' 

(13.93b) 

zero-input zero-state 

and 

y[k] = Cx+Df 
k-l 

= CAkx[O] + L CA k-l-j Bf[j] + Df (13.94a) 

j=O 

= CA kx[O] + CAk-1u[k - 1] * Bf[k] + Df (13.94b) 

In Sec. B.6-5, we showed that 

(13.95a) 

where (assuming n distinct eigenvalues of A) 

(30 1 Al A~ An- 1 -1 Ak 
. 1 1 

(31 1 A2 A~ An- 1 A~ 2 

= (13.95b) 
.... . .... . . .. . . 

(3n-l 1 An A2 ... An- 1 Ak n n n 

and AI, A2, ... , An are the n eigenvalues of A. 
We can also determine Ak from the z-transform formula, which will be derived 

later in Eq. (13.102): 

(13.95c) 

, 
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• Example 13.12 
Give a state-space description of the system in Fig. 13.12. Find the output y[k] if the 

input j[k] = u[k] and the initial conditions are Xl[O] = 2 and X2[0] = 3. 

and 

The state equations are [see Eq. (13.89)] 

:] [Xdk]] + [0] j 
"6 x2[k] 1 

y[k] = [-1 5] [Xd
k
]] 

x2[k] 

(13.96a) 

(13.96b) 

To find the solution [Eq. (13.94)], we must first determine A k. The characteristic equation 

of A is 

I.U-AI=I,\ -1 1 =>.2_~>'+~=('\_~)(>'_~)=0 
1 >._.2. 6 6 3 2 
6 6 

Hence, >'1 = ~ and '\2 = ~ are the eigenvalues of A and [see Eq. (13.95)] 

where [see Eq. (B.95b)] 

[
(30] = [1 ~] _ 1 [(~)k] = [3 -2] [(3)-/e] = [3(3)-/e-2(2)-k ] 

(31 1 ~ (~)k -6 6 (2) -Ie -6(3) -Ie + 6(2)-/e 

and 

(13.97) 

We can now determine the state vector x[k] from Eq. (13.93b). Since we. are interested in 
the output y[k], we shall use Eq. (13 .94b) directly. Note that 

CA k = [-1 5] Ale = [2(3)-/e - 3(2)-k _4(3)-1e + 9(2)-/e] 

and the zero-input response is CA /extol, with 

x[O] = [:] 

Hence, the zero-input response is 

(13.98) 

(13.99a) 

The zero-state component is given by the convolution sum of CA Ie-lurk - 1] and Bf[k]. 
Using the shifting property of the convolution sum [Eq. (9.46)], we can obtain the zero­
state component by finding the convolution sum of CA /eu[k] and Bf[k] and then replacing 
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f[kJ 

l /~ 1-----' 

Fig. 13.12 System for Example 13.12. 

k with k - 1 in the result. We use this procedure because the convolution sums are listed 
in Table 9.1 for functions of the type j[k]u[k] rather than f[k]u[k - 1]. 

CA kU[k] * Bj[k] = [2(3)-k - 3(2)-k -4(3) -k + 9(2) -k] * [ 0 1 
·1.4[k] 

= _4(3)-k * u[k] + 9(2)-k * u[k] 

Using Table 9.1 (Pair 2a), we obtain 

[
1 3-Ck+ll ] [ 1 TCk+

1
l ] 

CA kU[k] * Bj[k] = -4 -1 _ ~ u[k] + 9 -1 _ ~ u[k] 

= [12 + 6(3-Ck+ll) - 18(T Ck+l))]u[k] 

Now the desired (zero-state) response is obtained by replacing k by k - 1. Hence 

(13.99b) 

It follows that 

y[k] = [_8(3)-k + 21(2)-ku[k] + [12 + 6(3)-k - 18(2)-k]u[k - 1] (13.100a) 

This is the desired answer. We can simplify this answer by observing that 12 + 6(3)-k -
18(2)-k = 0 for k = O. Hence, u[k - 1] may be replaced by u[k] in Eq. (13.99b), and 

y[k] = [12 - 2(3)-k + 3(2)-k]u[k] (13.100b) 

o Computer Example C13.7 
Solve Example 13.12 using MATLAB. 

A=[O 1;-1/6 5/6]; B=[Oj l]j C=[-1 5]j D=Oj 
xO=[2;3]j 
k=O:25j 
u=ones(I,26}j 
[y,x]=dlsim(A,B,C,D,u,xO)j 
stem(k,y) 0 

• 
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o Computer Example C13.8 
Using MATLAB find the zero-state response of the system in Example 13.12. 

A=[O 1;-1/6 5/6]; B=[O; 1]; C=[-l 5]; D=O; 
[num,denj=ss2tf(A,B,C,D); 
k=O:25; 
u=ones(l:length(k» ; 
y=filter(num,den,u) ; 
stem(k,y) 0 

13.6-2 The Z-Transform Solution 

The z-transform of Eq. (13.91) is given by 

zX[z]- zx[O] = AX[z] + BF[z) 
Therefore 

and 

Hence 

(zI - A)X[z)) = zx[O] + BF[z] 

X[z) = (zI - A)-lzx[O] + (zI - A)-lBF[z] 

= (I - z-l A)-lX[O] + (zI - A)-lBF[z] 

x[k] = Z-l[(I - z-l A)-l)X[O] + Z-l[(zl - A)-lBF[zll , ~ .... , 
v v 

zero-input component zero-state component 

A comparison of Eq. (13.101b) with Eq. (13.93b) shows that 

The output equation is given by 

where 

Y[z] = CX[z] + DF[z] 

= C[(I - z-l A)-lx[O) + (zl - A)-lBF[z]] + DF[z] 

= C(l - z-l A)-lX[O] + [C(zl - A)-lB + D]F[z] 

= C(I - z-l A)-lX[O] + H[z]F[z) 
, v ' '-v----' 

zero-input response zero-state response 

H[z] = C(zl - A -l)B + D 

(13.101a) 

(13.101b) 

(13.102) 

(13 .103a) 

(13.103b) 

Note that H[z] is the transfer function matrix of the system, and Hij[Z], the ijth 
element ofH[z]' is the transfer function relating the output Yi(k) to the input fj(k). 
If we define h[k] as 

h[k] = Z-l[H[z]] 
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then h[k] represents the unit impulse function response matrix of the system. Thus, 
hij[k], the ijth element of h(k), represents the zero-state response Yi(k) when the 
input fj(k) = O[k] and all other inputs are zero . 

• Example 13.13 
Using the z-transform, find the response y[kJ for the system in Example 13.12. 
According to Eq. (13.103a) 

Y[zJ=[-1 5] Z 

[

1 _1]-1[2] 
tz l - ~ :1 

+1- 1 

[ 
6:&6Z::~1. 6:, °;: 1.1] [2] [( .. _l)(Z'=-!='1 ~ ) ] 

=[-1 5] . + [ - 1 5] . 
• 6=' 3 :~ 

""6 ....... 2-=::~5;;-,-".1 6:>2 ~%+ L (%- I )(z~ - ~:+~) 

13z 2 
- 3z (Sz - l) z 

:= z2 - ~z+ i + (z - 1 )(z2 - ~z +~) 
-8z 21 z 12z 12z 6z 18z - --+--+--+ -- + -- ---

- z-~ z -~ z-l z-1 z -~ z-~ 

Therefore 

y[kJ = l-8(3)-k + 21(2)-k, + ,12 + 6(3)-k - 18(2) - j t1 Ik] • 
v v 

zero-input response zero -state response 

Linear Transformation, Controllability, and Observability 

The procedure for linear transformation is parallel to that in the continuous­
time case (Sec. 13.4). If w is the transformed-state vector given by 

w=Px 
then 

w[k + 1] = P AP- 1w[k] + PBf 
and 

y[k] = (Cp-l)w + Df 

Controllability and observability may be investigated by diagonalizing the matrix. 

13.7 Summary 

An nth-order system can be described in terms of n key variables- the state 
variables of the system. The state variables are not unique, but can be selected 
in a variety of ways. Every possible system output can be expressed as a linear 
combination of the state variables and the inputs. Therefore the state variables 
describe the entire system, not merely the relationship between certain input(s) and 
output(s). For this reason, the state variable description is an internal description 
of the system. Such a description is therefore the most general system description, 
and it contains the information of the external descriptions, such as the impulse 
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response and the transfer function. State-variable description can also be extended 
to time-varying parameter systems and nonlinear systems. An external system 
description may not describe a system completely. 

The state equations of a system can be written directly from the knowledge 
of the system structure, from the system equations, or from the block diagram 
representation of the system. State equations consist of a set of n first-order differ­
ential equations and can be solved by time-domain or frequency-domain (transform) 
methods. Because a set of state variables is not unique, we can have a variety of 
state-space descriptions of the same system. It is possible to transform one given 
set of state variables into another by a linear transformation. Using such a trans­
formation, we can see clearly which of the system states are controllable and which 
are observable. 
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Problems 

13.1-1 Convert each of the following second-order differential equations into a set of two 
first-order differential equations (state equations) . State which of the sets represent 
nonlinear equations. 

(a) ii + lOy + 2y = f 
(b) ii + 2eY y + logy = f 
(c) ii + IPl(Y)Y + IP2(Y)Y = f 

f 

112 F 

30 

Fig. P13.2-1 

13.2-1 Write the state equations for the RLC network in Fig. P13.2-1. 

13.2-2 Write the state and output equations for the network in Fig. P13.2-2 . 

13.2-3 Write the state and output equations for the network in Fig. P13.2-3. 

13.2-4 Write the state and output equations for the electrical network in Fig. P13.2-4. 

13 .2-5 Write the state and output equations for the network in Fig. P13.2-5. 


