
Discrete-Time 
Signals and Systems 

In this chapter we introduce the basic concepts of discrete-time signals and 
systems. 

8.1 Introduction 

Signals specified over a continuous range of t are continuous-time signals , 
denoted by the symbols J(t) , y(t), etc. Systems whose inputs and outputs are 
continuous-time signals are continuous-t ime systems. In contrast, signals defined 
only at discrete instants of time are discrete-time signals. Systems whose inputs 
and outputs are discrete-time signals are called discre te-time systems. A digital 
computer is a familiar example of this type of system. We consider here uniformly 
spaced discrete insta nts such as ... , -2T, - T, 0, T, 2T, 3T, ... , kT, .... Discrete­
time signals can therefore be specified as J(kT), y(kT ), and so on (k, integer). 
We further simplify this notation to J[k]' y[k]' etc., where it is understood that 
J[k] = J(kT) and that k is an integer. A typical discrete-time signal, depicted in 
Fig. 8. 1, is therefore a sequence of numbers. This signal may be denoted by J(kT) 
and viewed as a function of time t where signal values are specified at t = kT. 
It may also be denoted by J[k] and viewed as a function of k (k , integer). For 
instance, a continuous-time exponential J(t) = e- t , when sampled every T = 0.1 
second, results in a discrete-time signal J(kT) given by 

J(kT) = e- kT = e- O.1k 

Clearly, this signal is a function of k and may be expressed as J[k]. We can plot this 
signal as a function of t or as a function of k (k, integer). The representation J[k] is 
more convenient and will be followed throughout this book. A discrete-time signal 
therefore may be viewed as a sequence of numbers, and a discrete-time system may 
be seen as processing a sequence of numbers J[k] and yielding as output another 
sequence of numbers y[k]. 
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Fig. 8 .1 A discrete-time signal. 

Discrete-time signals arise naturally in situations which are inherently discrete­
time, such as population studies, amortization problems, national income models , 
and radar tracking. They may also arise as a result of sampling continuous-time 
signals in sampled data systems, digita l filtering, and so on. Digital filtering is a 
particularly interesting application in which continuous-time signals a re processed 
by discrete-time systems, using appropriate interfaces at the input and output, as 
illustra ted in Fig . 8.2. A continuous-time signal f(t) is first sampled to convert it 
into a discrete-time signal f [k ], which is then processed by a discrete-t ime system 
to yield the output y[k]. A continuous-time signal y(t) is finally constructed from 
y[k]. We shall use the nota tions C/D and D/C for continuous-to-discrete-t ime and 
discrete-to-continuous-time conversion. Using the interfaces in this manner, we can 
process a continuous-time signal with an appropria te discrete-time system. As we 
shall see later in our discussion, discrete-time systems have several advantages over 
continuous-time systems. For this reason, t here is an accelerating trend towa rd 
processing continuous-time signals with discrete-time systems. 
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Fig. 8.2 Processing a continuous-time signal by a discrete- time system. 

8.2 Some Useful Discrete-Time Signal Models 

We now discuss some important discrete-time signal models which are encoun­
tered frequently in the study of discrete-time signals and systems. 
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Fig. 8.3 Discrete-time impulse function. 

l. Discrete-Time Impulse Function 5[k] 

The discrete-time counterpart of the cont inuous-time impulse function 5(t) is 
5[k ], defined by 

5[k] = {~ k = O 

k#O 
(S.l) 

This function , also called the unit impulse sequence, is shown in Fig. S.3a. The time­
shifted impulse sequence 5[k - m] is depicted in Fig. S.3b. Unlike its continuous-time 
counterpart 5(t), this is a very simple function without any mystery. 

Later, we shall express an arbitrary input I[k] in terms of impulse components. 
The (zero-st ate) system response to input I[k] can then be obtained as the sum of 
system responses to impulse components of I[k]. 

2. Discrete-Time Unit Step Function u[k] 

The discrete-time counterpart of the unit step function u(t) is u[k] (Fig. S.4), 
defined by 

u[k] = {~ for k 2: 0 

for k < 0 
(S.2) 

If we want a signal to start at k = 0 (so that it has a zero value for all k < 0), 
we need only multiply the signal with u[k]. 

u [k] 

- 2 o 2 3 4 5 6 k---

Fig. 8A A discrete-time unit step function u[k]. 
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Fig. 8.5 The A-plane, the 1'-pla ne and their ma pping. 

3. Discrete-Time Exponential ,k 

543 

A continuous-time exponential eAt can be expressed in an alternate form as 

h = e
A or A = In 1') (8.3a) 

For example, e-O.
3t = (0.7408)t because e-O.3 = 0.7408. Conversely, 4t = e1. 386t 

because In 4 = 1.386, that is , e1. 386 = 4. In the study of continuous-time signals 
and sys tems we prefer the form eAt rather than ,t. The discrete-time exponential 
can also be expressed in two forms as 

Ak k e =, (8.3b) 

For example, e
3k = ( e3 )k = (20.086)k. Similarly, 5k = e 1.609k because 5 = e 1.609 . 

In the study of discrete-time signals and systems, unlike the continuous- time case, 
the form ,k proves more convenient than the form e Ak . Because of unfamiliarity 
with exponentials with bases other than e, exponentials of the form ,k may seem 
inconvenient and confusing at first. The reader is urged to plot some exponentia ls 
to acquire a sense of these functions. 

Nature of ,k; The signal e Ak grows exponentially with k if Re A > 0 (,\ in 
RHP) , and decays exponentially if Re ,\ < 0 (,\ in LHP). It is constant or oscillates 
with constant amplitude if Re ,\ = 0 (,\ on the imaginary axis). Clearly, the location 
of A in the complex plane indicates whether the signal e Ak grows exponentially, 
decays exponentially, or oscillates with constant frequency (Fig. 8.5a). A constant 
signal (,\ = 0) is also an oscillation with zero frequency. We now find a similar 
criterion for determining the nature of ,k from the location of , in the complex 
plane. 

Figure 8.5a shows a complex plane eX-plane). Consider a signal ejo'k . In this 
case, ,\ = jn lies on the imaginary axis (Fig. 8.5a), and therefore is a constant­
amplitude oscillating signal. This signal e jo'k can be expressed as ,k, where, = ejO,. 
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Because the magnitude of e jD. is unity, hi = 1. Hence, when A lies on the imaginary 
axis, the corresponding "( lies on a circle of unit radius, centered at the origin (the 
unit circle illustrated in Fig. 8.5b). T herefore, a signal "(k oscillates with constant 
ampli tude if "( lies on the unit circle. Remember, a lso, that a constant signal 
(A = 0, "( = 1) is an oscillating signal with zero frequency. Thus, the imaginary axis 
in the A-plane maps into the unit circle in the ,,(-plane. 

Next consider the signal eAk
, where A lies in the left-half plane in Fig. 8.5a. 

This means A = a + jb, where a is negative (a < 0) . In this case, the signal decays 
exponentially. This signal can be expressed as "(k, where 

and 

Also, a is negative (a < 0). Hence, hi = ea < 1. This result means that the cor­
responding "( lies inside the unit circle. Therefore, a signal "(k decays exponentia lly 
if "( lies within the unit circle (Fig. 8.5b). If, in the above case we had selected a 
to be positive, (A in the right-half plane), then hi > 1, and "( lies outside the unit 
circle. Therefore, a signal "(k grows exponent ially if "( lies outside the unit circle 
(Fig. 8.5b). 

To summarize, the imaginary axis in the A-plane maps into the unit circle in the 
,,(-plane. The left-half plane in the A-plane maps into the inside of the unit circle and 
the right-half of the A-plane maps into the outside of the unit circle in the ,,(- plane, 
as depicted in Fig. 8.5. This fact means that t he signal "(k grows exponentially with 
k if "( is outside the unit circle (hi > 1), and decays exponentia lly if "( is inside the 
unit circle (1,1 < 1). The signal is constant or oscillates with constant amplitude if 
"( is on the unit circle (hi = 1). 

Observe that 

- k 
"( (8.4) 

Figures 8.6a and 8.6b show plots of (0.8)k, and (- 0.8)k , respectively. F igures 
8.6c and 8.6d show plots of (0.5)k, and (1.1)k, respectively. T hese plots verify our 
earlier conclusions about the location of "( and the nature of signal growth. Observe 
that a signal (_,,( )k alternates sign successively (is posit ive for even values of k and 
negative for odd values of k, as depicted in Fig. 8.6b). Also, the exponential (O.5)k 
decays faster than (0. 8)k. The exponential (0 .5)k can also be expressed as 2- k 

because (0.5) - 1 = 2 [see Eq. (8.4)]. 

6 Exercise EB.l 
Sketch signals (a) (lJk (b) ( _ l)k (c) (O.5)k (d) (-O.5)k (e) (O .5)-k (f) 2-k (g) (_2)k. 

Express these exponentials as -yk, and plot -y in the complex plane for each case. Verify that -yk 
decays exponentially with k if -y lies inside the unit circle, and that -yk grows with k if -y is outside 
the unit circle. If -y is on the unit circle, -yk is constant or osci llates with a constant amplitude. 

Hint : (l)k = 1 for a ll k. However, ( _ l)k = 1 for even values of k and is - 1 for odd values of 

k . Therefore, ( _ l)k switches back and forth from 1 to - 1 (oscillates with a constant amplitude). 

Note a lso that Eq. (8.4) yields (O.5) -k = 2k \7 



8.2 Some Useful Discrete-time Signal models 545 

(-0 .8l 

(08/ 

r 1 
0 '13 .. 4 156

]7 . 
8 

k-
0 2 3 4 5 6 k-

(a) (b) 

- 1 

(0.5)k (l.l)k 

o 2 3 4 5 6 k- 0 1 2 3 4 5 6 k-

(e) (d) 

F ig . B.6 discrete-time exponentials '/' 

t::, Exercise EB.2 
(a ) Show that (i) (0.25) - k = 4k (i i) 4 - k = (0.25 )k (iii) e2t = (7.389}1 (iv) e-2t 

(0 .1353)t = (7 .389) - t (v) e3k = (20.086)k (vi) e - l5k = (0 .223 1) k = (4.4817) -k 

(b) Show tha t (i) 2k = eO.693k (ii) (0.5) k = e-O.693k (iii) (0 .8) - k = eO.2231k \l 

o Compu ter Example CB. 1 
Sketch the discrete-t ime signals (a) (-0.5)k (b) (2) - k (c) (_2)k 

( a ) k = 0 :5j k = k'j fk1 = (-0 .5 ). - kj stem(k,fk) 
(b) k = 0: 5j k = k'j fk = 2 . - (-k)j stem(k,fk) 
(c) k = 0:5 j k = k' jfk= (-2). - kj s t em(k,fk3) 0 

4. Discrete-Time Exponential ejDk 

A general discret e- t ime exponential ejDk (also called phasor) is a complex 
valued function of k and therefore its graphical description requires two plots (real 
part and imaginary part or magnitude and angle). To avoid two plots, we shall 
plot the values of e j

0.k in the complex ,plane for various values of k, as illustrated 
in Fig. 8.7. The function j[k] = ej 0.k t akes on values ejO , e j 0., e j20., e j30., .. . at 
k = 0, 1, 2, 3, .. . , respectively. For the sake of simplicity we shall ignore the 
negative values of k for the time being. Note that 
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Fig. 8 .7 Locus of (a) e j r1k (b) e- jr1k 

r = 1, and e = H2 

This fact shows that the magnitude and angle of e jllk are 1 and kD , resp ectively. 
Therefore, the points e jO , ejll , ej211 , ej311 , .. . , e jkll , ... lie on a circle of uni t ra-
dius (unit circle) at angles 0, D, 2D, 3D, ... , kD, ... respect ively, as shown in Fig. 
8.7a. For each uni t increase in k, the funct ion i[k] = e jllk moves along the 
unit circle counterclockwise by an angle D. Therefore, the locus of e jllk may be 
viewed as a phasor rotating counterclockwise at a uniform speed of D radians per 
unit sample interval. The exponential e- jll k , on the other hand, takes on values 
e j O = 1, e-jll , e- j211k , e- j311 , . . . at k = 0, 1, 2, 3, . . . , as depicted in F ig. 8.7b. 
Therefore, e- jllk may be viewed as a phasor rotating clockwise at a uniform speed 
of D radians per unit sample interval. 

Using Euler's formula, we can express an exponent ial ejllk in terms of sinusoids 
of t he form cos (Dk + e) , and vice versa 

e jllk = (cos Dk + j sin Dk) 

e- jllk = (cos Dk - j sin Dk) 

(8.5a) 

(8.5b) 

These equations show that the frequency of both e jllk and e - jllk is D (ra­
dians/sample). Therefore, the frequency of e jllk is IDI. Because of Eqs. (8.5), 
exponentials and sinusoids have similar properties and peculiarit ies. The discrete­
time sinusoids will be considered next. 

5. Discrete-Time Sinusoid cos (Dk + e) 

A general discrete- time sinusoid can be expressed as C cos (Dk + e) , where C 
is the amplitude, D is the frequency (in radians per sample), and e is the phase (in 
radians) . Figure 8.8 shows a discrete-time sinusoid COS(;2 k + i). 

Here we make one basic observation. Because cos(-x) = cos (x ), 

cos (- Dk + e) = cos(Dk - e) (8.6) 

This shows that both cos (Dk + e) and cos (- Dk + e) have t he same frequency (D). 
Therefore, the frequency of cos (Dk + e) is IDI. 
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Fig. 8.8 A discrete-time sinusoid cos(-&k + %). 

o Computer Example C8.2 

Sketch the discrete- time sinusoid cos (-& k + %) 
k=-36:30; k = k'; 
fk::::cos(k*pi/12+pi/4); 
stem(k,fk) 0 

Sampled Continuous-Time Sinusoid Yields a Discrete-Time Sinusoid 

A continuous-time sinusoid cos wt sampled every T seconds yields a discrete­
time sequence whose kth element (at t = kT) is cos wkT. Thus, the sampled signal 
I[k] is given by 

I[k] = cos wkT 

= cos Dk where D = wT (8.7) 

Clearly, a continuous-time sinusoid cos wt sampled every T seconds yields a discrete­
time sinusoid cos Dk, where D = wT. Superficially, it may appear that a discrete­
time sinusoid is a continuous-time sinusoid's cousin in a striped suit. As we shall 
see, however, some of the properties of discrete-time sinusoids are very different 
from those of continuous-time sinusoids. In the continuous-time case, the period 
of a sinusoid can take on any value; integral, fractional, or even irrational. The 
discrete-time signal, in contrast, is specified only at integral values of k. Therefore, 
the period must be an integer (in terms of k) or an integral multiple of T (in terms 
of variable t). 

Some Peculiarities of Discrete-Time Sinusoids 

There are two unexpected properties of discrete-time sinusoids which distin­
guish them from their continuous-time relatives. 

1. A continuous-time sinusoid is always periodic regardless of the value of its 
frequency w. But a discrete-time sinusoid cos Dk is periodic only if D is 21f 
times some rational number ( :f!- is a rational number). 

2. A continuous-time sinusoid cos wt has a unique waveform for each value of w. 
In contrast, a sinusoid cos Dk does not have a unique waveform for each value 
of D. In fact , discrete-time sinusoids with frequencies separated by multiples of 
21f are identical. Thus, a sinusoid cos Dk = cos (D+21f)k = cos (D+41f)k = .. ' . 
We 'now examine each of these peculiarities. 

1 Not All Discrete-Time Sinusoids Are Periodic 

A discrete-time signal I[k] is said to be No-periodic if 

I[k] = f[k + No] (8 .8) 
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for some positive integer No. T he smallest value of No that satisfies Eq. (8.8) is 
t he period of f [k]. Figure 8.9 shows an example of a periodic s ignal of period 6. 
Observe that each period contains 6 samples (or values). If we consider the first 
cycle to start at k = 0, the last sample (or value) in this cycle is at k = No - 1 = 5 
(not at k = No = 6). Not e also that , by definition, a periodic signal must begin at 
k = - 00 (everlast ing signal) for the reasons discussed in Sec. 1.2-4. 

J[ k J 

- 12 -6 o 6 

Fig. 8.9 Discrete-time periodic signal. 

If a signal cos Dk is No-periodic, t hen 

cos Dk = cos D(k + No) 

= cos (Dk + DNo) 

12 

This result is possible only if DNo is an integral multiple of 27r; that is, 

m integer 
or 

m 

No 

k-

(8.9a) 

Because both m and No are integers, Eq. (8.9a) implies that the sinusoid cos Dk is 
periodic only if :f!- is a rational number. In this case the period No is given by [Eq. 
(8.9a)] 

(8.9b) 

To compute No, we must choose the smallest value of m that will make m(2~) 
an integer. For example, if D = ~;, t hen the smallest value of m that will make 
m ~ = m ¥- an integer is 2. Therefore 

27r 17 
No = m-n = 22" = 17 

Using a similar argument, we can show that this discussion also applies to a 
discrete-time exponential ej!!k. Thus, a discrete-time exponential ej!!k is periodic 
only if :f!- is a rational number. t 
Physical Explanation of the Periodicity Relationship 

Qualitatively, this result can be explained by recognizing that a discrete-time 
sinusoid cos Dk can be obtained by sampling a continuous-time sinusoid cos Dt at 
unit time interval T = 1; that is, cos Dt sampled at t = 0, 1, 2, 3, .... This fact 

tWe can also demonstrate this point by observing that if ejOk is No-periodic, then 

ejo.k = ejo.(k+No) = ejo.kejo.No 

This result is possible only if nNo = 27rm (m, an integer) . This conclusion leads to Eq. (8.9b). 
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. J cos (O.8k) 

Fig. 8.10 Physical explanation of the periodicity relationship. 

means cos nt is the envelope of cos nk. Since the period of cos nt is 2-rr /0" there 
are 2-rr /0, number of samples (elements) of cos nk in one cycle of its envelope. This 
number mayor may not be an integer. 

Figure 8.10 shows three sinusoids cosCik), cos(i; k) , and cos (0.8k). Figure 
8.10a shows cos (ik), for which there are exactly 8 samples in each cycle of its 
envelope (n:;r = 8). Thus, cos (ik) repeats every cycle of its envelope. Clearly, 
cos (4k/-rr) is periodic with period 8. On the other hand, Fig. 8.10b, which shows 
cos (i; k), has an average of ~ = 8.5 samples (not an integral number) in one cycle 
of its envelope. Therefore, the second cycle of the envelope will not be identical 
to the first cycle. But there are 17 samples (an iritegral number) in 2 cycles of 
its envelope. Hence, the pattern becomes repetitive every 2 cycles of its envelope. 
Therefore, cos (i; k) is also repetitive but its period is 17 samples (two cycles of its 
envelope). This observation indicates that a signal cos nk is periodic only if we can 
fit an integral number (No) of samples in m integral number of cycles of its envelope 
so that the pattern becomes repetitive every m cycles of its envelope. Because the 
period of the envelope is 2;, we conclude that 

No=m(~) 
which is precisely the condition of periodicity in Eq. (8.9b). If :f!. is irrational, it is 
impossible to fit an integral number (No) of samples in an integral number (m) of 
cycles of its envelope, and the pattern can never become repetitive. For instance, 
the sinusoid cos (0.8k) in Figure 8.lOc has an average of 2.5-rr samples (an irrational 
number) per envelope cycle, and the pattern can never be made repetitive over any 
integral number (m) of cycles of its envelope; so cos (0.8k) is not periodic. 
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;:-. EXel'cise E8.3 
State with reasons if the following sinusoids are periodic. If periodic, find the period. 
(i) cos e; k) (ii) cos (.1f-k) (iii) cos (y1i'k) 

Ans: (i) Periodic: period No = 14. (ii) and (iii) Aperiodic: D/ 21f irrational. \l 

o Computer Example CB .3 
Sketch and verify if cos (3; k) is periodic. 

According to Eq. (8.9b), the smallest value of m that wi ll make No = m (2; ) = 
m (¥) an integer is 3. Therefore , No = 14. This result means cos (3; k) is periodic and 
its period is 14 samples in three cycles of its envelop. This assertion can be verified by the 
fo llowing MATLAB commands: 

t=-5*pi:pi/lOO:5*pi; t=t'; 
ft=cos(3*pi*t/7) ; 
plot(t,ft,':'), hold on 
k =-15:15; k=k'; 
fk=cos(k*3*pi/7); 
stem(k,fk), hold off 0 

2 Nonuniqueness of Discrete-Time Sinusoid Waveforms 

A continuous-time sinusoid cos wt has a unique waveform for every value of w 

in the range 0 to 00. Increasing w results in a sinusoid of ever increasing frequency. 
Such is not the case for the discrete-time sinusoid cos Dk because 

cos (0. ± 27rm)k = cos (Dk ± 27rmk) 

Now , if m is an integer, mk is also an integer , and the above equation reduces to 

cos (0. ± 27rm)k = cos Dk m integer (8.10) 

This result shows that a discrete-time sinusoid of frequency 0. is indistinguishable 
from a sinusoid of frequency 0. plus or minus an integral multiple of 27r. This 
statement certainly does not apply to continuous-time sinusoids. 

This result means t hat discrete-time sinusoids of frequencies separated by in­
tegral multiples of 27r are identical. The most dramatic consequence of this fact is 
that a discrete-time sinusoid cos (Dk + B) has a unique waveform only for the values 
of 0. over a range of 27r. We may select this range to be 0 to 27r, or 7r to 37r, or even 
- 7r to 7r. The important thing is that the range must be of width 27r . A sinusoid 
of any frequency outside this interval is identical to a sinusoid of frequency within 
this range of width 27r. We shall select this range - 7r to 7r and call it the funda­
mental range of frequencies. Thus, a sinusoid of any frequency 0. is identical 
to some sinusoid of frequency Df in the fundamental range - 7r to 7r. Consider, for 
example, sinusoids of frequencies 0. = 8.77r and 9.67r. We can add or subtract any 
integral multiple of 27r from these frequencies and the sinusoids will still remain 
unchanged. To reduce these frequencies to the fundamental range (- 7r to 7r) , we 
need to subtract 4 x 27r = 87r from 8.77r and subtract 5 x 27r = 107r from 9.67r, to 
y ield frequencies 0.77r and - 0.47r, respectively. Thus 

cos (8.77rk + B) = cos (0.77rk + B) 

cos (9.67rk + B) = cos ( - 0.47rk + B) (8.11 ) 
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This result shows that a sinusoid cos (nk + (J) can always be expressed as 
cos (nfk + (J) , where -7r :::; nf < 7r (the fundam ental freq uency range). The reader 
should get used to the fact that the range of discrete-t ime frequencies is only 27r. 
We may select this range to be from - 7r to 7r or from 0 to 27r, or any other interval of 
width 27r. It is most convenient to use the range from - 7r to 7r. At times, however, 
we shall find it convenient to use the range from 0 to 27r . T hus, in t he discrete-time 
world , frequencies can be considered to lie only in the fundamental frequency range 
(from -7r to 7r, for instance) . Sinusoids of frequencies outside t he fu ndamental 
frequencies do exist technically. But physically, t hey cannot be d ist inguished from 
the sinusoids of frequencies within t he fundamental range. Thus , a discrete- time 
sinusoid of any frequency, no matter how high , is identical to a sinusoid of some 
frequency within the fundamental range (-7r to 7r) . 

The above results , derived for discrete-time sinusoids, are also applicable to 
discretectime exponentials of the form e jrlk . For example 

1n, integer (8. 12) 

Here we have used the fact t hat e±j2'n-n = 1 for all integral values of n . T his result 
means that discrete-time exponentials of frequencies separated by integral multiples 
of 27r are identical. 

Further Reduction in the Frequency Range of Distinguishable Discrete-Time 
Sinusoids 

We shall now show that the range of frequencies that can be d istinguished can 
be further reduced from (- 7r, 7r) to (0, 7r) . According to Eq. (8.6) , cos(- nk +e) = 

cos (nk - (J). In other words, the frequencies in the ra nge (0 to - 7r) can be expressed 
as frequencies in the range (0 to 7r) with opposite phase. For example, the second 
sinusoid in Eq. (8.ll) can be expressed as 

cos (9 .67rk + (J) = cos (- O.4d + (J) = cos (O.47rk - (J) (8.13) 

T his result shows t hat a sinusoid of any frequency 0. can a lways be expressed as a 
sinusoid of a frequency Infl, where Inf llies in the range 0 to 7r . Note, however, a 
possible sign change in the phases of the two sinusoids. In other words, a discrete­
time sinusoid of any frequency, no matter how high , is ident ical in every respect to 
a sinusoid within the fundamental freq uency range, such as - 7r to 7r. In contrast, a 
discrete-time sinusoid of any frequency, no matter how high, can be expressed, with 
a possible sign change in phase, as a sinusoid of frequency in the range (0, 7r); that 
is, within half the fundamental frequency range . 

A systematic procedure to reduce the frequency of a sinusoid cos (nk + (J) is to 
express 0. as t 

Inf l :::; 7r , and 1n an integer (8.14) 

This procedure is always possible. The reduced frequency of the sinusoid cos (nk+(J) 
is then Infl. 

t Equation (8. 14) can also be expressed as IJj = IJlmodulo 2.". 
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• Example S. l 
Cons ider sinusoids of frequencies n equal to (a) O.5'1f (b) 1.6'1f (c) 2.5'1f (d) 5.6'1f (e) 

34. 116. Each of t hese sinusoids is equivalent to a sinusoid of some frequency In J I in the 
range 0 to 'If . We shall now determine these frequencies. This goal is readily accomplished 
by expressing t he frequency n as in Eq. (8.14). 

(a) The frequency 0.5'1f is in the range (0 to 'If) so that it cannot be reduced further. 
(b) The frequency 1.6'1f = 2'1f - O.4'1f, and nJ = - O.4'1f. Therefore, a sinusoid of 

frequency 1.6'1f can be expressed as a sinusoid of frequency InJI = O.4'1f. 
(c) 2.5'1f = 27f + 0.5'1f , and nJ = 0. 5'1f . Therefore, a sinusoid of frequency 2.5'1f can be 

expressed as a sinusoid of frequency InJI = 0.5'1f. 
(d) 5.6'1f = 3(2'1f) - O.4'1f, and nJ = - O.4'1f. Therefore, a sinusoid of frequency 5.6'1f 

can be expressed as a sinusoid of frequency In f I = O.4'1f. 
(e) 34.116 = 5(2'1f) + 2.7, and nJ = 2.7. Therefore, a sinusoid of frequency 34.116 

can be expressed as a sinusoid of frequency InJI = 2.7 .• 

T he fundamental range frequencies can b e determined by using a simple graphi­
cal artifice as follows: mark a ll t he frequencies on a tape using a linear scale, starting 
with zero frequency. Now wind this tape continuously a round the two poles, one 
at In!1 = 0 and the other at In!1 = 'If, as illustrated in Fig. 8. 11 . The reduced 
value of any frequency marked on the tape is its projection on the horizontal (In!1l 
axis . For instance, the reduced frequency corresponding to n = 1.6'1f is O.4'1f (the 
projection of 1.6'1f on the horizontal n I axis). Similarly, frequencies 2.5'1f, 5.6'1f, and 
34.116 correspond to frequencies O.5'1f, O.4'1f, and 2.7 on the Inl l axis. 

/::, Exe rc ise E8A 

Show that the s inusoids of frequenc ies n = (a) 2'1f (b) 3'1f (c) 5'1f (d) 3.2'1f (e) 22.1327 (f) 'If + 2 
can be expressed as sinuso ids of frequencies (a) 0 (b) 'If (c) 'If (d) 0.8'1f (e) 3 (f) 'If - 2, respectively. 

\7 . 

/::, Exercise E8.5 

Show t hat a discrete- time sinusoid of frequency 'If + X can be expressed as a sinusoid with 

frequency 'If - X (0 :::; x :::; 'If) . This fact shows that a sinusoid with frequency above 'If by amount 

x has the frequency identical to a s inusoid of frequency below 'If by the same amount x, and the 

maximum rate of osci llation occurs at n = 'If. As n increases beyond 'If, the rate of oscillation 

actually decreases. \7 . 

o Computer Example CS.4 
In the fundamental range of frequencies from -'If to 'If find a sinusoid that is indis­

t inguishable from the sinusoid cos (3; k) . Verify by plotting these two sinusoids that they 
are indeed identical. 

The sinusoid cos (3; k) is identical to the sinusoid cos (3; - 2'1f) k = cos ( - 1~1T k) = 

cos ( 1 ~ 1T k). We may verify that these two sinusoids are identical. 

k=- 15:l5; k=k'; 
fkl =cos (3*pi*k/7); 
fk2=cos(1l *pi*k/7); 
stem(k,fkl,'x'),hold on, 
stem(k,fk2),hold off 0 

Physical Explanation of Nonuniqueness of Discrete-Time Sinusoids 

Nonuniqueness of discrete-time sinusoids is easy to prove mathematically. But 
why does it h appen physically? We now give here two different physical explanations 
of this intr iguing phenomenon. 
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Fig. 8.11 A graphical artifice to determine the reduced freq uency of a discrete-time 
sinusoid. 

The First Explanation 

Recall that sampling a continuous-time sinusoid cos nt at unit time intervals 
(T = 1) generates a discrete-time sinusoid cos nk. Thus, by sampling at unit 
intervals, we generate a discrete-time sinusoid of frequency n (rad/sample) from 
a continuous-time sinusoid of frequency n (rad /s). Superficially, it appears that 
since a continuous-time sinusoid waveform is unique for each value of n, the result­
ing discrete-time sinusoid must also have a unique waveform for each n. Recall , 
however, that there . is a unit time interval between samples. If a continuous-time 
sinusoid executes several cycles during unit time (between successive samples), it 
will not be visible in its samples. The sinusoid may just as well not have executed 
those cycles. Another low frequency continuous-time sinusoid could also give the 
same samples. Figure 8.12 shows how the samples of two very different continuous­
time sinusoids of different frequencies generate identical discrete-t ime sinusoid. This 
illustration explains why two discrete-time sinusoids whose frequencies n are nom­
inally different have the same waveform. 
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Fig. 8.12 Physical explanation of nonuniqueness of Discrete-time sinusoid waveforms. 
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Human Eye is a Lowpass Filter 

Figure 8.1 2 also brings out one interesting fact; that a human eye is a lowpass 
fil ter. Both the cont inuous-time sinusoids in Fig. 8. 12 have the same set of sam­
ples. Yet, when we see the samples, we interpret them as the samples of the lower 
frequency sinusoid . The eye does not see (or cannot reconstruct) the wiggles of the 
higher frequency sinusoid between samples because the eye is basically a lowpass 
filter. 

~~----.-~--------t~k=O 

k=l 

1t-X 

Fig.8.13 Another physical explanation of nonuniqueness of discrete-t ime sinusoid wave­
forms. 

The Second Explanation 

Here we shall present a quantitative argument using a discrete-time exponential 
rather than a discrete-time sinusoid. As explained earlier, a discrete-time exponen­
tial ejD.k can be viewed as a phasor rotating counterclockwise at a uniform angular 
velocity of D rad/sample, as shown in Fig. 8.7a. A similar argument shows that the 
exponential e - jD.k is a phasor rotating clockwise at a uniform angular velocity of 
D radians per sample, as depicted in Fig. 8.7b. The angular velocity of both these 
rotating phasors is D rad. Therefore, as the frequency D increases, the angular ve­
locity also increases. This, however , is true only for values of D in the range ° to 1r. 

Something very interesting happens when the frequency D increases beyond 7r . Let 
D = 7r + x where x < 7r . Figure 8.13a shows the phasor progressing from k = ° to 
k = 1, and Fig. 8.13b shows the same phasor progressing from k = 1 to k = 2. Be­
cause the phasor rotates at a speed of D = 7r + x radians/sample, the phasor angles 
at k = 0, 1, and 2 are 0, 7r + x and 27r + 2x = 2x, respectively. In both the figures, 
the phasor is progressing counterclockwise at a velocity of (7r + x) rad/sample. But 
we may also interpret this motion as the phasor moving clockwise (shown in gray) 
at a lower speed of (7r - x) rad/ sample. Either of these interpretations describes 
the phasor motion correctly. If this motion could be seen by a human eye, which 
is a lowpass filter, it will automatically interpret the speed as 7r - x, the lower of 
the two speeds. This is the stroboscopic effect observed in movies, where at certain 
speeds, carriage wheels appear to move backwards.t 

t A stroboscope is a source of light that flashes periodically on an object, thus generating a sampled 
image of that object. When a stroboscope flashes on a rotating object, such as a wheel, the wheel 
appears to rotate at a certain speed. Now increase the actual speed of rotation (while maintaining 
the same flashing rate) . If the speed is increased beyond some critical value, the wheels appear 
to rotate backwards because of the low pass filtering effect described above in the text. As we 
continue to increase the speed further, the backward rotation appears to slow down continuously 
to zero speed (where the wheels appear stationary), and reverse the direction again. This effect is 
often observed in movies in scenes with running carriages. A movie reel consists of a sequence of 
photographs shot at discrete instants, and is basically a sampled signa l. 
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Thus, in a signal ejrlk , the frequency n = 7r + X appears as frequency 7r - :r . 
Therefore, as n increases beyond 7r, the actual frequency decreases, until at n = 27r 
(x = 7r ), the actual frequency is zero (7r - X = 0). As we increase n beyond 27r , the 
same cycle of events repeats. For instance, n'= 2.57r is the same as n = 0.57r. 

111111111111111 1111111111 rrrnrrr (a) 

- 1 2 - 8 - 4 0 4 8 12 
k---

(b) 

(e) 

(d) 

Fig. 8.14 Highest Oscillation Rate in a Discrete-Time sinusoid occurs at n = 7r. 

Highest Oscillation Rate in a Discrete-Time Sinusoid Occurs at n = 7r 

This discussion shows that the highest rate of oscillation occurs for the fre­
quency n = 7r. The rate of oscillation increases continuously as n increases from 
o to 7r, then decreases as n increases from 7r to 27r. Recall that a frequency 7r + X 

appears as the frequency 7r - x. The frequency n = 27r (x = 7r) is the same as the 
frequency n = 0 (constant signal) . These conclusions can be verified from Fig. 8. 14, 
which shows sinusoids of frequencies n = (a) 0 or 27r (b) i or 1~7r (c) ~ or 3; (d) 7r . 

6. Exponentially Varying Discrete-Time Sinusoid ,k cos (nk + 8) 

This is a sinusoid cos (nk + 8) with an exponentially varying amplitude ,k. It is 
obtained by multiplying the sinusoid cos (nk + 8) by an exponential,k. Figure 8.15 
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(a) 

... / 

(b) 

Fig. 8.15 Examples of exponentially varying discrete-time sinusoids. 

shows signals (O . 9)kcos(~k - i) , and (l.1)kcos(~k - i). Observe that if hi < 1, 
the amplitude decays, and if hi > 1, the amplitude grows exponentially. 

8.2-1 Size of a Discrete-Time Signal 

Arguing along the lines similar to those used in continuous-time signals, the 
size of a discrete-time signal I[k] will be measured by its energy EI defined by 

00 

EI = L I/[kW (8.15) 
k=-oo 

This definition is valid for real or complex I [k]. For this measure to be meaningful, 
the energy of a signal must be finite. A necessary condition for the energy to be 
finite is that the signal amplitude must ----+ 0 as Ikl ----+ 00. Otherwise the sum in Eq. 
(8.15) will not converge. If E I is finite, the signal is called an energy signal. 

In some cases, for instance, when the amplitude of I[k] does not ----+ 0 as Ikl ----+ 

00, then the signal energy is infinite, and a more meaningful measure of the signal 
in such a case would be the time average of the energy (if it exists), which is the 
signal power PI defined by 

1 N 
PI = lim -- L lJ[k]12 (8.16) 

N~oo 2N + 1 - N 

For periodic signals, the time averaging need be performed only over one period in 
view of the periodic repetition of the signal. If PI is finite and nonzero, the signal is 
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called a power signal. As in the continuous-time case, a discrete- time signal can 
either be an energy signal or a power signal, but cannot be both at the same time. 
Some signals a re neither energy nor power signals. 

, 
!:::. Exercise E8 .7 

(a) Show that the signal aku[k] is an energy signal of energy 1 - ~aI2 if lal < 1. It is a power 

signa l of power Pf = 0.5 if lal = 1. It is neither an energy signa l nor a power signal if lal > 1. \l 

8.3 Sampling Continuous-Time Sinusoid and Aliasing 

On the surface, the fact that discrete-time sinusoids of frequencies differing by 
27rm are identical may appear innocuous. But in reality it creates a serious problem 
for processing continuous-time signals by digital filters. A continuous-time sinusoid 
f(t) = cos wt sampled every T seconds (t = kT) results in a discrete-time sinusoid 
f[k] = cos wkT. Thus, the sampled signal f[k] is given by 

f[k] = cos wkT 

= cos nk where n = wT 

Recall that the discrete-time sinusoids cos nk have unique waveforms only for the 
values of frequencies in the range n :::; 7r or wT :::; 7r (fundamental frequency range). 
We know that a sinusoid of frequency n > 7r appears as a sinusoid of a lower 
frequency n :::; 7r. For a sampled continuous-time sinusoid, this fact means that 
samples of a sinusoid of frequency w > 7r IT appear as samples of a sinusoid of 
lower frequency w :::; 7r IT . The mechanism of how the samples of continuous-time 
sinusoids of two (or more) different frequencies can generate the same discrete­
time signal is shown in Fig. 8.12. This phenomenon is known as aliasing because, 
through sampling, two entirely different analog sinusoids take on the same "discrete­
time" identity. 

Aliasing causes ambiguity in digital signal processing, which makes it impos­
sible to determine the true frequency of the sampled signal. Therefore, aliasing 
is highly undesirable and should be avoided . To avoid aliasing, the frequencies 
of the continuous-time sinusoids to be processed should be kept within the range 
wT :::; 7r or w :::; 7r IT. Under this condition, the question of ambiguity or aliasing 
does not arise because any continuous-time sinusoid of frequency in this range has 
a unique waveform when it is sampled. Therefore, if Wh is the highest frequency to 
be processed , then, to avoid aliasing, 

wh :::; 
T 

'(8.17a) 

If Fh is the highest frequency in Hertz, Fh = wh/27r, and, according to Eq. (8.17a ), 
1 

Fh :::; 2T (8.17b) 
or 

1 
T< - ­

- 2Fh 
(8.17c) 

This result shows that discrete-time signal processing places the limit on the highest 
frequency Fh that can be processed for a given value of the sampling interval T 
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according to Eq. (8.17b). But we can process a signal of any frequency (without 
aliasing) by choosing a sufficiently low value of T according to Eq. (8. 17c) . The 
sampling rate or sampling frequency F 8 is the reciprocal of the sampling interval 
T, and, according to Eq. (8.17c),t 

1 
F8 = - > 2F" T - (8.18) 

This result, which is a special case of the sampling theorem (proved in Cha pter 
5), states that to process a continuous- time sinusoid by a discrete-time sys tem, the 
sampling rate must not be less t han twice t he frequency (in Hz) of the sinusoid. In 
short, a sampled s inusoid must have a minimum of two samples per cycle . 
For a sampling rate below this minimum value, the output signal wi ll be aliased, 
which means the signal will be mistaken for a sinusoid of lower frequency. 

Equation 8.18 indicates that F", the highest frequency that can be processed, 
is half the sampling frequency F 8 • This means the range of frequencies that can be 
processed without aliasing is from 0 to F8/2 

0 < F < F 8 
- - 2 (8.19) 

Frequencies greater than F8/2 (half the sampling frequency) will be aliased and 
appear as frequencies lower than F8/2 . The aliasing appears as a folding back 
of frequencies about F8/2 . Hence, this frequency is also known as the folding 
frequency. The details of this folding are expla ined more fully in Fig. 5. 6. 

The folding process is multilayered , as depicted in Fig. 8. 11. The spectrum 
first folds back at the folding frequency, and then again folds forward at the origin, 
then back again at the folding frequency, and so on . We can find the aliased 
frequency (the reduced frequency) using an equation similar to Eq. (8.14) applicable 
to sampled continuous- time sinusoids. 

We saw that a continuous-time sinusoid of frequency w appears as a discrete­
time sinusoid of frequency n = wT. Hence, if w f is the reduced (aliased) frequency 
corresponding to a sinusoid of frequency w, then, according to Eq. (8.14) 

wT = w fT + 27fm Iw fiT::; 7f , and m an integer (8.20) 

When we express the radian frequencies in Hertz (w = 27fF, etc.), and use the fact 
that the sampling frequency F8 = ~, Eq. (8 .20) becomes 

F = Ff + mF8 
F8 

IFfl ::; 2' and m an integer (8.21 ) 

Thus, if a continuous-time sinusoid of frequency F Hz is sampled at a rate of F8 
Hz (samples/second), the resulting samples would appear as if they had come from 
a continuous-time sinusoid of a lower (aliased) frequency IFf l. For instance, if 
a continuous-time sinusoid of frequency 10 kHz were sampled at a rate of 3 kHz 
(3000 samples/second), the resulting samples will appear as if they had come from 
a continuous-time sinusoid of frequency 1 kHz because 10, 000 = 1,000 + 3(3000). 
Note, however, if the frequency of a sinusoid is less than the folding frequency F8/2 
(half the sampling frequency), there is no aliasing. Thus, the condition for the 
absence of aliasing is that the frequency of a sinusoid must be less than half t he 
sampling frequency (the folding frequency). 

tIn some specia l cases, where the signal spectrum contains an impulse at Fh, the sampling rate 
Fs must be greater than 2Fh (see footnote on p. 321) 
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• Example 8.2 
Determine the maximum sampling interval T that can be used in a discrete-time 

oscillator which generates a s inusoid of 50 kHz. 
Here the highest frequency Th = 50 kHz. Therefore, according to Eq. (8.17c) 

1 
T < - = lOfl-s 

- 2Th 

The sampling interval must not be greater than 10 fl-S . The minimum sampling frequency 

is T s = ~ = 100 kHz. If we use T = 10 fl-s, the oscillator output will exhibit two samples 
per cycle. If we require the oscillator output to have 20 samples per cycle, then we must 

use T = 1 fl-s (sampling frequency T s = 1 MHz). • 

• Example 8.3 
A discrete-time amplifier uses a sampling interval T = 25 fl-S. What is the highest 

frequency of a signal tha t can be processed with this amplifier without a liasing? 
According to Eq. (8 .17b) 

1 
T h = 2T = 20 kHz • 

• Example 8.4 
A sampler with sampling interval T = 0.001 second (1 ms.) samples continuous-time 

sinusoids of the following frequencies: (a) 400 Hz (b) 1 kHz (c) 1.4 kHz (d) 1.6kHz (e) 
3.522 kHz . Determine the aliased frequencies of the resulting sampled signals. 

The sampling frequency is Ts = l/T = 1,000. The folding frequency T./2 = 500. 
Hence, sinusoids below 500 Hz will not be aliased and sinusoids of frequency above 500 Hz 
will be a liased. Using Eq. (8.21) , we find: 

(a) 400 Hz is less than 500 Hz (the folding frequency, which is half the sampling 
frequency T s). Hence, there is no a liasing. 

(b) 1000 = 0 + 1000 so that Tf = 0 and the aliased frequency (ITfl) is zero. The 
sampled signal appears as samples of a de signal. 

(c)1400 = 400 + 1000 so that Tf = 400 and the a liased frequency (ITfl) is 400 Hz. 
The sampled signal appears as samples of a signal of frequency 400 Hz. 

(d) 1600 = - 400+2(1000) so that TJ = - 400 and the aliased frequency (ITfll is 400 
Hz. The sampled signa l appears as samples of a signal of frequency 400 Hz .. 

(e) 3522 = - 478+4(1000) so that Tf = - 478 and the aliased frequency (ITfl) is 478 
Hz. The sampled signal appears as samples of a signal of frequency 478 Hz. 

Graphically, we can solve this problem using the artifice in Fig. 8.11. The folding 
frequency is 500 Hz instead of 7f. In case (a), the frequency 400 Hz is below the folding 
frequency 500 Hz. Hence, the samples of this sinusoid will not be aliased. For case (b), the 

frequency 1000 Hz, when folded back at 500 Hz terminates at the origin T = O. Hence, 
the aliased frequency is O. For case (c) , the frequency 1400 Hz folds back at 500 Hz , then 
folds forward at 0, and terminates at 400 Hz. Similarly, for case (d), the frequency 1600 
Hz folds back at 500, then folds forward at 0, and folds back again at 500 Hz to terminate 
at 400 Hz , and so on. • 

8.4 Useful Signal Operations 

Signal operations discussed for continuous-time systems also apply to discrete­
time systems with some modification in time scaling. Since the independent variable 
in our signal description is time, the operations are called time shifting, time in­
version (or time reversal) , and time scaling. However, this discussion is valid for 
functions having independent variables other than time (e.g., frequency or distance). 
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Fig. 8 .16 Time-shifting and time inversion of a signal. 

8.4-1 Time Shifting 

Following the argument used for continuous-t ime signals, we can show that 
to time shift a signal f[kJ by m units , we replace k with k - m. Thus, f [k - mJ 
represents f [k J time shifted by m units. If m is positive, the shift is to the right 
(delay). If m is negative, the shift is to the left (advance). Thus, f[k - 2J is f[k J 
delayed (right-shifted) by 2 units, and f[k + 2J is f[ kJ advanced (left-shifted) by 
2 units. The signal f dk J in Fig. 8.16b, being the signal in Fig. 8.16a delayed by 
5 units, is the same as f[kJ with k replaced by k - 5. Now, f[kJ = (0.9)k for 
3 ~ k ~ 10. Therefore, fd[kJ = (0.9)k - 5 for 3 ~ k - 5 ~ 10 or 8 ~ k ~ 15, as 
illustrated in Fig. 8.16b. 

8.4-2 Time Inversion (or Reversal) 

Following the argument used for continuous-time signals, we can show that 
to time invert a signal f[k]' we replace k with -k. This operation rotates the 
signal about the vertical axis . Figure 8. 16c shows f r [k], which is the time-inverted 
signal f[kJ in Fig. 8.16a. The expression for fr[kJ is the same as that for f[kJ with 
k replaced by - k. Because f[kJ = (0.9)k for 3 ~ k ~ 10, f r [kJ = (0.9) - k for 
3 ~ -k ~ 10; that is, -3:2: k :2: - 10 , as shown in Fig. 8.16c. 
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8.4-3 Time Scaling 

Following the argument used for continuous-time signals , we can show that to 
time scale a signal f[k] by a factor a, we replace k with ak. However , because 
the discrete- time argument k can take only integral values, certain restrictions and 
changes in the procedure are necessary. 

Time Compression: Decimation or Downsampling 

Consider a signal 
fe[k] = f[2k] (8.22) 

The signal fe[k] is the signal f[k] compressed by a factor 2. Observe that fe[O] = 
1[0], fe[l] = f[2], fcl2] = f[4], and so on. This fact shows that fclk] is made 
up of even numbered samples of f[k]. T he odd numbered samples of f[k ] are 
missing (Fig. 8.l7b). t This operation loses part of the data, and that is why such 
time compression is called decimation or downsampling. In the continuous-time 
case, time compression merely speeds up the signal without loss of data. In general, 
f[mk] (m integer) consists of only every mth sample of f[k]. 

Time Expansion 

Consider a signal 

fe[k] = f[~] (8.23) 

The signal fe[k] is the signal f[k] expanded by a factor 2. According to Eq. (8.23), 
fe[O] = frO]' f el l] = f[1/2], fe[2] = f[l], fe[3] = f[3/2], f e[4] = f[2], fe[5] = 
f[5/2], fe[6] = f[3], and so on. Now, f[k] is defined only for integral values of 
k, and is zero (or undefined) for all fractional values of k. Therefore, for f e[k], its 
odd numbered samples f ell]' f e[3], fe[5], ... are all zero (or undefined), as depicted 
in Fig. 8.l7c. In general, a function f e[k ] = f[k/m] (m integer) is defined for 
k = 0, ±m, ±2m, ±3m, ... , and is zero (or undefined) for all remaining values of 
k. 

Interpolation 

In the time-expanded signal in fig. 8.l7c, the missing odd numbered samples can 
be reconstructed from the nonzero valued samples using some suitable interpolation 
formula. Figure 8.l7d shows such an interpolated function fdk], where the missing 
samples are constructed using an ideallowpass filter interpolation formula (5 .l0b). 
In practice, we may use a realizable interpolation, such as a linear interpolation, 
where fdl] is taken as the mean of fdO] and Ji[2]. Similarly, Ji[3] is taken as the 
mean of fd2] and fd4], and so on. This process of time expansion and inserting the 
missing samples using an interpolation is called interpolation or ups amp ling. In 
this operation, we increase the number of samples. 

t::, Exercise E8.6 

Show that for a linearly interpolated function fdk] = J[k/2J, the odd numbered samples 

interpolated values are !i[k] = ! {J[ k;- l] + J[~]} . \l 

tOdd numbered samples of f[k] can be retained (and even numbered samples omitted) by using 
the transform 

fc[k] = f[2k + I] 
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Fig. 8.17 Time compression (decimation) and time expansion (interpolation) of a signal. 

8.5 Examples of Discrete-Time Systems 

We shall give here three examples of discrete-time systems. In the first two ex­
amples, the signals are inherently discrete-time. In the third example, a continuous­
time signal is processed by a discrete-time system, as illustrated in Fig. 8.2, by 
discretizing the signal through sampling . 

• Example 8.5 
A person makes a deposit (the input) in a bank regularly at an interval of T (say, 1 

month). The bank pays a certain interest on the account balance during the period T and 
mails out a periodic statement of the account balance (the output) to the depositor. Find 
the equation relating the output y[k] (the balance) to the input i[k] (the deposit). 
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In this case, the signals are inherently discrete-time. Let 

f[k] = the deposit made at the kth discrete instant 

y[k] = the account balance at the ' kth instant computed 

immediately after the kth deposit f[k) is received 

r = interest per dollar per period T 
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The balance y[k] is the sum of (i) the previous balance y[k - 1), (ii) the interest on y[k - 1] 
during the period T, and (iii) the deposit f[k] 

or 

y[k) = y[k - 1] + 7'y[k - 1] + f[k) 

= (1 + r)y[k - 1) + J[k) 

y[k) - ay[k - 1) = f[k] 

(S.24) 

(S.25a) 

In this example the deposit f[k] is the input (cause) and the balance y[k) is the output 
(effect). 

We can express Eq. (S .25a) in an alternate form. The choice of index k in Eq. (S.25a) 
is completely arbitrary, so we can substitute k + 1 for k to obtain 

y[k + 1] - ay[k] = f[k + 1] (S.25b) 

We also could have obtained Eq. (S.25b) directly by realizing that y[k + 1), the balance at 
the (k + l)st instant, is the sum of y[k] plus ry[k] (the interest on y[k]) plus the deposit 
(input) f[k + 1] at the (k + l)st instant . 

For a hardware realization of such a system, we rewrite Eq. (S .25a) as 

y[k] = ay[k - 1] + f[k) (S.25c) 

Figure S.lS shows the hardware realization of this equation using a single time delay of T 
units.t To understand this realization, assume that y[k] is available. Delaying it by T, we 
generate y[k - 1]. Next, we generate y[k] from f[k] and y[k - 1] according to Eq. (S.25c) . 

y [kJ 

yy [k-1J 

Fig. 8.18 Realization of the savings account system. 

A withdrawal is a negative deposit. Therefore, this formulation can handle deposits 
as well as withdrawals. It a lso applies to a loan payment problem with the initial value 
y[O] = -M, where M is the amount of the loan. A loan is an initial deposit with a negative 
value. Alternately, we may treat a loan of M dollars taken at k = 0 as an input of -M at 
k = 0 [see Prob. 9.4-9]. • 

tThe time delay in Fig. 8.18 need not be T. The use of any other value will result in a time-scaled 
output. 
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r-__ -Y[k] 

J[k] Y [k -2 ] 

Fig. 8.19 Realization of a second-order discret e-time system in Example S.6 . 

• Example 8.6 

In the kth semester, J[k] number of students enroll in a course requiring a certain 
textbook. The publisher sells y[k] new copies of the book in the kth semester. On the 
average , one quarter of students with books in saleable condition resell their books at the 
end of the semester , and the book life is three semesters. Write the equa tion relating y[k]' 
t he new books sold by the publisher, to ilk], the number of students enrolled in the kth 
semester , assuming tha t every student buys a book. 

In the kth semester , the total books i[k] sold to students must be equal to y[k] (new 
books from the publisher) plus used books from students enrolled in the two previous 
semesters (because the book life is only three semesters). There are y[k - 1] new books 
sold in the (k - 1)st semester, and one quarter of these books; tha t is, h [k - 1] will be 
resold in the kth semester. Also , y[k - 2] new books are sold in the (k - 2)nd semester , 
and one quarter of these; tha t is, i y[k - 2] will b e resold in the (k - 1)st semester. Again 
a qua rter of these; that is, f6y[k - 2] will be resold in the kth semester. Therefore, J[k] 
must be equal to the sum of y[k], h[k - 1], and f6y[k - 2]. 

y[k] + h[k - 1] + f6y[k - 2] = J[k] (S.26a) 

Equation (S.26a) can also be expressed in an alternative form by realizing tha t t his equation 
is va lid for any value of k. Therefore, replacing k by k + 2, we obtain 

y[k + 2] + h[k + 1] + f6y[k] = i[k + 2] (S.26b) 

T his is t he alternative form of Eq. (S.26a ) . 

For a realization of a syst em with this input-output equation, we rewrite Eq. (S.26a) 
as 

y[k] = - h[k - 1] - f6y[k - 2] + J[k] (S.26c) 

Figure S.19 shows a ha rdware realization of Eq. (S .26c) using two time delays (here the 
t ime delay T is a semester). To understand this realization, assume tha t y[k] is available. 
Then , by delaying it successively, we generate y[k - 1] and y[k - 2] . Next we generate y[k] 
from i lk], y [k - 1], and y[k - 2] according to Eq. (S. 26c). • 

Equa tions (8.25) and (8.26) are examples of difference equations; the former is a 
first-order and the latter is a second-order difference equation. Difference equations 
also arise in numerical solution of differential equations. 
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J(t) 

1 u (I) 

o 1-

(c) 

f[kT] 

f[(k-l)T] 

J(t) 

(k - l)T kT 1-

... ............ 0. .. ... 
f[k] f[k) 

i f(HJ 

Lo_ ... .... ................ .... .... .... ... ........... .. _. __ _ 
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1- T lOT 1-

(d) (e) 

Fig. 8.20 Digital differentiator and its realization . 

• Example 8 .7: Digital Differentiator 
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(a) 

(b) 

y (t) 

T 1-

(f) 

Design a discrete-time system, like the one in Fig. 8.2, to d ifferentiate continuous-time 
signals. Determine the sampling interval if this differentiator is used in an audio syst em 
where the input signal bandwidth is below 20 kHz. 

In this case, the output y(t) is required to be the derivative of the input f(t). The 
discrete-time processor (system) G processes the samples of f(t) to produce the discrete- , 
time output y[k] . Let J[k] and y[k] represent the samples T seconds apart of the signals 
f(t) and y(t) , respectively; that is, 

J[k] = f(kT) and y[k] = y(kT) (8.27) 

The signals J[k] and y[k] are the input and the output for the discrete-time system G. 
Now, we require that 

y(t) = dt (8.28) 

Therefore , at t = kT (see Fig. 8.20a) 

y(kT) = ddlf I 
t t= kT 

= lim !.. [J(kT) - f[(k - l)T]] 
T-oT 

I, 
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By using the nota tion in Eq. (8.27) , the above equation can be expressed as 

1 
y[k ] = lim - {I[k] - f[k - I]} 

T- oT 
This is the input-output relationship for G required to achieve our objective. In practice, 
the sampling interval T cannot be zero. Assuming T to be sufficiently small, the above 
equa tion can be expressed as 

1 
y[k] ~ T {I[k] - f[k - I]} (8.29) 

The approximation improves as T approaches O. A discrete- time processor G to realize 
Eq. (8.29) is shown inside the shaded box in Fig . 8.20b. The system in Fig . 8.20b acts as 
a differentiator. This example shows how a continuous-time signal can be processed by a 
discrete- time system. 

To determine the sampling interval T, we note t hat the highest frequency that will 
appear at the input is 20 kHz; that is, Fh = 20,000. Hence, according to Eq. (8.17c) 

T < _1_ - 25 
- 40 000 - /-is , 

To gain some insight into this method of signal processing, let us consider the differ­
entiator in Fig. 8.20b with a ramp input f(t) = t, depicted in F ig. 8.20c. If the system 
were to act as a differentia tor , then the output y(t) of the system should be the unit step 
function u( t). Let us inves tigate how the system performs this particular operation and 
how well it achieves the objective. 

The samples of the input f(t) = t at the interval of T seconds act as the input to 
the discrete-time system G. These samples, denoted by a compact notation f[k]' are, 
therefore , 

f[k] = f(t)lt=kT = tlt=kT t ~ 0 

= kT k ~ O 

Figure 8.20d shows the sampled signal f[k]. This signal acts as an input to the discrete­
time system G . Figure 8 .20b shows that the operation of G consists of subtracting a 
sample from the previous (delayed) sample and then multiplying the difference with liT. 
From Fig. 8.20d, it is clear that the difference between the successive samples is a constant 
kT - (k - l)T = T for all samples, except fo r the sample at k = 0 (because there is no 
prev ious sample at k = 0). The output of G is liT times the difference T , which is unity 

for all values of k, except k = 0, where it is zero. Therefore, the output y[k] of G consists 
of samples of unit values for k ~ 1, as illustrated in Fig. 8.20e. The Die (discrete-time 
to continuous-time) converter converts these samples into a continuous-time signal y(t), 
as shown in Fig. 8.20f. Ideally, the output should have been y(t) = u(t). This deviation 
from the ideal is caused by the fact that we have used a nonzero sampling interval T. As 

T approaches zero, the output y(t) approaches the desired output u(t). • 

[:, Exercise E8.8 
Design a discrete-time system, such as in Fig. 8.2, to integrate continuous-time signals. 
Hint: If f(t) and y(t) are the input and the output of an integrator, then 5f1t = f(t). Approx­

imation (simi lar to that in Example 8.7) of this equation at t = kT yields y[kJ - y[k - lJ = T.J [kJ. 
Show a realization of this system. 'V 

Practical Realization of Discrete-Time Systems 

These examples show that the basic elements required in the realization of 
discrete- time system s are time delays , scalar multipliers, and adders (summers). 
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We show in Chapter 11 that this is generally true of discrete- time systems. The 
discrete- time systems can be realized in two ways: 

1. By using digital computers which readily perform the operations of adding, 
multiplying, and delaying. Minicomputers and microprocessors are well suited 
for this purpose, especially for signals with frequencies below 100 kHz. 

2. By using special-purpose time-delay devices that have been developed in the 
last two decades . T hese include monolithic MOS charge- transfer devices (CTD) 
such as charge-coupled devices (CCD) and bucket brigade devices (BBD), 
which are implemented on silicon substrate as integrated circuit elements. In 
addition, there are surface acoustic wave (SAW) devices built on piezoelectric 
substrates. Syst ems using these devices are less expensive but are not as reli­
able or as accurate as the digital systems. Digital systems are preferable for 
signals below 100 kHz. Systems using CTD are suitable and competitive with 
those using SAW devices in the frequency ra nge 1 kHz to 20 MHz. At frequen­
cies higher than 20 MHz, SAW devices are preferred and are the only realistic 
choice for frequencies higher than 50 MHz. Systems using SAW devices with 
frequencies in the range of 10 MHz to 1 GHz are implemented rout inely. l 

There is a basic difference between continuous-time systems and analog sys­
tems. The same is true of discrete-time and digita l systems. This is fully explained 
in Secs. 1.7-6 and 1. 7-7. t For historical reasons, digital computers (rather than time­
delay elements, such as CCD or SAW devices) were used in the realizat ion of early 
discrete-time systems. Because of this fact, the terms digital filt ers and discrete­
time systems are used synonymously in the literature. This distinction is irrelevant 
in the analysis of discrete- time systems. For this reason, in this book, the term dig­
ital fi lters implies discrete- time systems, and analog filt ers means continuous-time 
systems. Moreover, the terms C/D (continuous- to-discrete-time ) and D/C will be 
used interchangeably with terms AID (analog-to-digital) and D I A, respectively. 

Advantages of Digital Signal Processing 

1. Digital filters have a greater degree of precision and stability. They can be 
perfectly duplicated without having to worry about component value tolerances 
as in analog case. 

2. Digital filters are more flexible. Their characteristics can be easily altered 
simply by changing t he program. 

3. A greater variety of fi lters can be realized by digital systems. 
4. Very low frequency filters , if realized by continuous-time systems , require pro­

hibitively bulky component s. Such is not the case with digital filters. 
5. Digital signals can be stored easily on magnetic tapes or disks without deteri­

oration of signal quality. 
6. More sophisticated signal processing algorit hms can be used to process digital 

signals. 
7. Digital fil ters can be time shared, and therefore can serve a number of inputs 

simultaneously. 

tThe terms discrete-time and continuous-time qualify the nature of a signa l a long the time axis 
(horizontal axis). The terms analog and digita l, in contrast, qualify the nature of the signa l 
amplitude (vertical axis). 
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8. Using integrated circuit t echnology, they can be fabricated in small packages 
requiring low power consumption. 
Some more advantages of using digital signals are listed in Sec. 5.1-3. 

8.6 Summary 

Signals specified only at discrete instants such as t = 0, T , 2T , 3T, . . . , kT are 
discrete- time signals. Basically, it is a sequence of numbers. Such a signal may be 
viewed as a function of time t , where the signal is defined or specified only a t t = kT 
with k any p ositive or negative integer. The signal t herefore may be denoted as 
f(kT). Alternately, such a signal may be viewed as a function of k, where k is any 
positive or negative integer. The latter approach results in a more compact notation 
such as f[k], which is convenient and easier to manipulat e. A system whose inputs 
and outputs a re discrete-time signals is a discrete-time syst em. 

In the study of continuous- time systems, exponentials with the natural base; 
that is, exponentials of the form e At, where A is complex in general, are more natural 
and convenient . In contrast , in the study of discrete-time systems, exponentials with 
a general base; t hat is, exponent ials of the form 'Y k , where "1 is complex in general, 
are more convenient. One form of exponential can be readily converted to the other 
form by noting that eAk = 'Y k , where "1 = eA, or A = In "1, and A as well as "1 
are complex in general. The exponential 'Y k grows exponentially with k if 1"1 1 > 1 
b outside the unit circle), and decays exponentially if 1"1 1 < 1 b within t he unit 
circle). If b l = 1; that is , if "1 lies on the unit circle , the exponential is either a 
const ant or oscillates with a const ant amplitude. 

Discrete- t ime sinusoids have two properties not shared by their continuous­
time cousins. First , a discrete-time sinusoid cos Dk is periodic only if D j 27r is 
a rational number. Second , discret e- time sinusoids whose frequencies D differ by 
an integral mult iple of 27r are identical. Consequently, a discret e-time sinusoid of 
any frequency D is identical t o some discrete-time sinusoid whose frequency lies in 
the interval - 7r to 7r (called the fundamental frequency range). Further, because 
cos (- Dk +8) = cos (Dk - 8) , a sinusoid of a frequency in the range from -7r t o 0 can 
be expressed as a sinusoid of frequency in the range 0 to 7r . Thus, a discrete-time 
sinusoid of any frequency can be expressed as a sinusoid of frequency in the range 0 
to 7r. Thus, in practice, a discrete- time sinusoid frequency is at most 7r . The highest 
ra t e of oscilla tion in a discrete- time sinusoid occurs when its frequency is 7r . In a 
given time, a sinusoid of frequency other than 7r will have a fewer number of cycles 
(or oscillations) than the sinusoid of frequency 7r . This peculiarity of non uniqueness 
of waveforms in discrete-time sinusoids of different frequencies has a far reaching 
consequences in signal processing by discrete-t ime systems. 

One useful measure of the size of a discrete-t ime signal is its energy defined by 
the sum Lk If[kW , if it is finite. If the signal energy is infinite, the proper measure 
is its power, if it exists. The signal power is the time average of its energy (averaged 
over t he entire time interval from k = - 00 to 00 ). For periodic signals, t he time 
averaging need be performed only over one period in view of the periodic repetit ion 
of the signal. Signal power is also equal to the mean squared value of the signal 
(averaged over the entire time interval from k = -00 to 00 ). 

Sampling a continllolls-time sinusoid cos (wt + 8) at uniform intervals of T 
seconds result s in a discret e-time sinusoid cos (Dk +8), where D = wT. A continuous 
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time sinusoid of frequency F Hz must be sampled at a rate no less than 2F Hz. 
Otherwise, the resulting sinusoid is aliased; that is, it appears as a sampled version 
of a sinusoid of lower frequency. 

Discrete-time signals classification is identical to that of continuous- time sig­
nals, discussed in chapter l. 

A signal I[k] delayed by m time units (right-shifted) is given by I[k - m]. On 
the other hand, I[k] advanced (left-shifted) by m time units is given by I[k +m]. A 
signal I[k], when time inverted, is given by I[-k]. These operations are the same as 
those for the continuous-time case. The case of time scaling, however, is somewhat 
different because of the discrete nature of variable k. Unlike the continuous-time 
case, where time compression results in the same data at a higher speed, time 
compression in the discrete-time case eliminates part of the data. Consequently, 
this operation is called decimation or downsampling. Time expansion operation of 
discrete-time signals results in time expanding the signal, thus creating zero-valued 
samples in between. We can reconstruct the zero-valued samples using interpolation 
from the nonzero samples. The interpolation , thus, creates additional samples in 
between using the interpolation process. For this reason, this operation is called 
interpolation or upsampling. 

Discrete-time systems may be used to process discrete-time signals, or to pro­
cess continuous-time signals using appropriate interfaces at the input and output. 
At the input, the continuous-time input signal is converted into a discrete-time sig­
nal through sampling. The resulting discrete-time signal is now processed by the 
discrete-time system yielding a discrete-time output. The output interface now con­
verts the discrete-time output into a continuous-time output. Discrete-time systems 
are characterized by difference equations. 

Discrete-time systems can be realized by using scalar multipliers, summers, 
and time delays . These operations can be readily performed by digital comput­
ers. Time delays also can be obtained from charge coupled devices (CCD), bucket 
brigade devices (BBD), and surface acoustic wave devices (SAW). Several advan­
tages of discrete-time systems over continuous-time systems are discussed in Sec. 
8.5. Because of these advantages, discrete-time systems are replacing continuous­
time systems in several applications. 
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Problems 

8.2-1 The following signals are in the form e
Ak

. Express them in the form 'l: (a) e-O.
Sk 

(b) eO.
Sk (c) e-

j7rk (d) ej7rk In each case show the locations of A and "( in the 
complex plane. Verify that an exponential is growing if "( lies outside the unit circle 
(or if A lies in the RHP), is decaying if"( lies within the unit circle (or if A lies in the 


