
Frequency Response and 
Analog Filters 

Filtering is an important area of signal processing. We have already discussed 
ideal filters in Chapter 4. In this chapter, we shall discuss the practical filter char­
acteristics and their design. Filtering characteristics of a filter are indicated by its 
response to sinusoids of various frequencies varying from 0 to 00. Such character­
istics are called the frequency response of the filter. Let us start with determining 
the frequency response of an LTIC system. 

Recall that for h(t), we use the notation H(w) for its Fourier transform and 
H(s) for its Laplace transform. Also, when the system is causal and asymptotically 
stable, all the poles of H(s) lie in the LHP. Hence, the region of convergence for H(s) 
includes the jw axis, and we can obtain the Fourier transform H(w) by substituting 
s = jw in the corresponding Laplace transform H(s) (see P. 370). Therefore, H(jw) 
and H(w) represent the same entity when the system is asymptotically stable. In 
this and later chapters, we shall often find it convenient to use the notation H(jw) 
instead of H(w). 

7.1 Frequency Response of an LTIC System 

In this section we find the system response to sinusoidal inputs. In Sec. 2.4-3 we 
showed that an LTIC system response to an everlasting exponential input f(t) = est 
is also an everlasting exponential H(s)e st . As before, we represent an input-output 
pair using an arrow directed from the input to the output as 

est =}- H(s)e st (7.1) 
Setting s = ±jw in this relationship yields 

ejwt 
=}- H(jw)e jwt 

e-jwt =}- H( _jw)e-jwt 

Addition of these two relationships yields 

2 cos wt =}- H(jw)e jwt + H(-jw)e- jwt = 2Re [H(jw)ejwt ] 
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(7.2a) 

(7.2b) 

(7.3) 
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We can express H (jw) in the polar form as 

H(jw) = IH(jw)1 ejL.H(jw) (7.4) 

With this result, the relationship (7.3) becomes 

cos wt =? IH(jw)1 cos [wt + L.H(jw)] 

In other words, the system response y(t) to a sinusoidal input cos wt is given by 

y(t) = IH(jw)1 cos [wt + L. H(jw)] (7.5a) 

Using a similar argument, we can show that the system response to a sinusoid 
cos (wt + 0) is 

y(t) = IH(jw)1 cos [wt + 0 + L.H(jw)] (7.5b) 

This result, where we have let 8 = jw, is valid only for asymptotically stable systems 
because the relationship (7.1) applies only for the values of 8 lying in the region of 
convergence for H(8). For the case of unstable and marginally stable systems, this 
region does not include the imaginary axis 8 = jw (see also the footnote on p. 243). 

Equation (7.5) shows that for a sinusoidal input of radian frequency w, the 
system response is also a sinusoid of the same frequency w. The amplitude of the 
output sinusoid is IH (jw)1 times the input amplitude, and the phase of the output 
sinusoid is shifted by L.H(jw) with respect to the input phase (see Fig. 7.1). For 
instance, if a certain system has IH (j 10)1 = 3 and L.H (j 10) = -30°, then the system 
amplifies a sinusoid of frequency w = 10 by a factor of 3 and delays its phase by 30°. 
The system response to an input 5 cos (lOt + 50°) is 3 x 5 cos (lOt + 50° - 30°) = 
l5cos(10t + 20°). 

Clearly IH(jw)1 is the system gain, and a plot of IH(jw)1 versus w shows the 
system gain as a function of frequency w. This function is more commonly known as 
the amplitude response. Similarly, L.H (jw) is the phase response and a plot of 
L.H (jw) versus w shows how the system modifies or changes the phase of the input 
sinusoid. These two plots together, as functions of w, are called the frequency 
response of the system. Observe that H (jw) has the information of IH (jw) 1 and 
L.H (jw). For this reason, H (jw) is also called the frequency response of the 
system. The frequency response plots show at a glance how a system responds to 
sinusoids of various frequencies. Thus, the frequency response of a system relpresents 
its filtering characteristic . 

• Example 7.1 
Find the frequency response (amplitude and phase response) of a system whose trans­

fer function is 
H(8) = 8 + 0.1 

8+5 

Also, find the system response y(t) if the input f(t) is (a) cos 2t (b) cos (lOt - 50°) . 

In this case 
H( ·w) = jw + 0.1 

J jw + 5 
Recall that the magnitude of a complex number is equal to the square root of the sum of 
the squares of its real and imaginary parts. Hence 

IH( ·w)1 = v'w
2 + 0.01 

J v'w2 + 25 
and LH(jw) = tan-

1 (0~1) - tan-
1 (~) 
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y (I) = 0.372 cos (21 + 65.3') 

(b) 

Fig. 7.1 Frequency response of an LTIC system in Example 7.1. 

Both the amplitude and the phase response are depicted in Fig. 7.1a as functions of w. 
These plots furnish the complete information about the frequency response of the system 
to sinusoidal inputs. 

(a) For the input J(t) = cos 2t, w = 2, and 

[H(j2)[ = ';(2)2 + om = 0.372 
\1'(2)2 + 25 

LH(j2) = tan-
1 (0~1) - tan-

1 G) = 87.1° - 21.8 0 = 65.3 0 

We also could have read these values directly from the frequency response plots in 
Fig. 7.1a corresponding to w = 2. This result means that for a sinusoidal input with 
frequency w = 2, the amplitude gain of the system is 0.372, and the phase shift is 65.3°. 
In other words, the output amplitude is 0.372 times the input amplitude, and the phase 
of the output is shifted with respect to that of the input by 65.3 0

• Therefore, the system 
response to an input cos 2t is 

yet) = 0.372cos (2t + 65.3°) 

The input cos 2t and the corresponding system response 0.372 cos (2t + 65.34°) are illus­
trated in Fig. 7.1b. 
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(b) For the input cos (lOt-50°), instead of computing the values IH(jw)1 and LH(jw) 
as in part (a), we shall read them directly from the frequency response plots in Fig. 7.1a 
corresponding to w = 10. These are: 

IH(jlO)1 = 0.894 and LH(jlO) = 26° 

Therefore, for a sinusoidal input of frequency w = 10, the output sinusoid amplitude is 
0.894 times the input amplitude and the output sinusoid is shifted with respect to the 
input sinusoid by 26°. Therefore, y( t), the system response to an input cos (lOt - 50°), is 

yet) = 0.894 cos (lOt - 50° + 26°) = 0.894 cos (lOt - 24°) 

If the input were sin (lOt - 50°), the response would be 0.894 sin (lOt - 50° + 26°) = 
0.894sin(lOt - 24°). 

The frequency response plots in Fig. 7.la show that the system has highpass filtering 
characteristics; it responds well to sinusoids of higher frequencies (w well above 5), and 
suppresses sinusoids of lower frequencies (w well below 5). • 

o Computer Example C7.1 
Plot the frequency response of the transfer functions H (s) = s2~!:+2 ' 

num=[15]; 
den=[l 3 2]; 
w=.1:.01:100; 
axis([loglO(.l) loglO(100) -50 50]) 
[mag,phase,w]=bode(num,den,w); 
subplot(211),semilogx(w ,20*loglO(mag» 
subplot(212),semilogx(w,phase) 0 

• Example 7.2 
Find and sketch the frequency response (amplitude and phase response) for 

(a) an ideal delay of T seconds; 

(b) an ideal differentiator; 

(c) an ideal integrator. 

(a) Ideal delay of T seconds: The transfer function of an ideal delay is [see Eq. 
(6.54)] 

H(s) = e-sT 

Therefore 

H(jw) = e-jwT 

Consequently 
IH(jw)1 = 1 and LH(jw) = -wT (7.6) 

This amplitude and phase response is shown in Fig. 7.2a. The amplitude response is 
constant (unity) for all frequencies. The phase shift increases linearly with frequency with 
a slope of -T. This result can be explained physically by recognizing that if a sinusoid 
cos wt is passed through an ideal delay of T seconds, the output is cos wet - T). The 
output sinusoid amplitude is the same as that of the input for all values of w. Therefore, the 
amplitude response (gain) is unity for all frequencies. Moreover, the output cos w(t-T) = 
cos (wt-wT) has a phase shift -wT with respect to the input cos wt. Therefore, the phase 
response is linearly proportional to the frequency w with a slope -T. 

(b) An ideal differentiator: The transfer function of an ideal differentiator is [see 
Eq. (6.55)] 

H(s) = s 
Therefore 

H(jw) = jw = wej7r
/

2 

., 
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Fig. 7.2 Frequency response of an ideal (a) delay (b) differentiator (c) integrator. 

Consequently 

IH(jw)1 = w and !.H(jw) = ~ (7.7) 

This amplitude and phase response is depicted in Fig. 7.2b. The amplitude response 
increases linearly with frequency, and phase response is constant (11)2) for all frequencies. 
This result can be explained physically by recognizing that if a sinusoid cos wt is passed 
through an ideal differentiator, the output is -w sin wt = w cos (wt + ~). Therefore, the 
output sinusoid amplitude is w times the input amplitude; that is, the amplitude response 
(gain) increases linearly with frequency w. Moreover, the output sinusoid undergoes a 
phase shift ~ with respect to the input cos wt. Therefore, the phase response is constant 
(11)2) with frequency. 

In an ideal differentiator, the amplitude response (gain) is proportional to frequency 
[IH(jw)1 = wI, so that the higher-frequency components are enhanced (see Fig. 7.2b). 
All practical signals are contaminated with noise, which, by its nature, is a broad-band 
(rapidly varying) signal containing components of very high frequencies. A differentiator 
can increase the noise disproportionately to the point of drowning out the desired signal. 
This is the reason why ideal differentiators are avoided in practice. " 

(e) An ideal integrator: The transfer function of an ideal integrator is [see Eq. 
(6.56)] 

Therefore 

Consequently 

1 
H(s) = -

s 

H( .) 1 -j 1 -j7r / 2 
JW = -:- = - = -e 

JW w w 

IH(jw)1 = .!. and 
w 

11 
!'H(jw) = - -

2 
(7.8) 

This amplitude and phase response is illustrated in Fig. 7.2c. The amplitude response is 
inversely proportional to frequency, and the phase shift is constant (-11/2) with frequency. 
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This result can be explained physically by recognizing that if a sinusoid cos wt is passed 
through an ideal integrator, the output is ~ sin wt = ~ cos (wt - ~). Therefore, the 
amplitude response is inversely proportional to w, and the phase response is constant 
(-71" /2) with frequency. 

Because its gain is l/w, the ideal integrator suppresses higher-frequency components 
but enhances lower-frequency components with w < 1. Consequently, noise signals (if they 

do not contain an appreciable amount of very low frequency components) are suppressed 

(smoothed out) by an integrator. • 

[:, Exercise E7.1 
Find the response of an LTIC system specified by 

d2 d df ~2 + 3.J!. + 2y(t) = - + 5f(t) 
dt dt dt 

if the input is a sinusoid 20 sin (3t + 35°) 

Answer: 10.23 sin (3t - 61.91°) \l 

7.1-1 Steady-State Response to Causal Sinusoidal Inputs 
So far we discussed the LTIC system response to everlasting sinusoidal inputs 

(starting at t = -00). In practice, we are more interested in causal sinusoidal inputs 
(sinusoids starting at t = 0). Consider the input ejwt u(t), which starts at t = 0 
rather than at t = - 00. In this case F (s) = 1/ (s + j w ). Moreover, according to 
Eq. (6.51) H(s) = p(s)/Q(s), where Q(s) is the characteristic polynomial given by 
Q(s) = (s - >'1)(S - >'2)'" (s - >'n) . Hence, 

p(s) 
Y(s) = F(s)H(s) = (s _ >'1)(S - >'2)'" (s - An)(S - jw) 

In the partial fraction expansion of the right-hand side, let the coefficients cor­
responding to the n terms (s - AI), (s - >'2)' . , (s - >'n) be k1, k2, ... kn. The 
coefficient corresponding to the last term (s - jw) is P(s)/Q(s)ls=jw = H(jw) . 
Hence, 

and 

y(t) = 

() 
~ ki H(jw) 

Ys =6--+---
i=1 s - Ai s - jw 

n 

LkieAitu(t) 
i=1 
'--v--" 

transient component Ytr (t) 

+ H(jw)e jwtu(t) 
'---v---' 

steady-state component y ss(t) 

(7.9) 

For an asymptotically stable system, the characteristic mode terms e Ait decay with 
time, and, therefore, constitute the so-called transient component of the response . 
The last term H (jw )ejwt persists forever, and is the steady-state component of 
the response given by 

yss(t) = H (jw )e jwt u( t) 

From the argument that led to Eq. (7.5a), it follows that for a causal sinusoidal 
input cos wt, the steady-state response Yss(t) is given by 

yss(t) = IH(jw)1 cos [wt + LH(jw)]u(t) (7.10) 

In summary, IH (jw)1 cos [wt + LH (jw)] is the total response to everlasting sinusoid 
cos wt, and is also the steady-state response to the same input applied at t = O. 
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7.2 Bode Plots 

Sketching frequency response plots is csmsiderably facilitated by the use of 
logarithmic scales. The amplitude and phase response plots as a function of w on a 
logarithmic scale are known as the Bode plots. By using the asymptotic behavior 
of the amplitude and the phase response, we can sketch these plots with remarkable 
ease, even for higher-order transfer functions. 

Let us consider a system with the transfer function 

H(s) = K(s + ad(s + a2) 
s(s + bd(s2 + b2S + b3) 

(7. 11 a) 

where the second-order factor (82 + b2 8 + b3) is assumed to have complex conjugate 
roots. We shall rearrange Eq. (7.11a) in the form 

(7.11b) 

and 

. K ala2 (
1 + ~) ( 1 + ~) 

H(Jw)=-bb ( .)[ b C· )2] 
1 3 jw 1 + JW 1 + j ~ + ~ 

bi b3 b3 

(7.11c) 

This equation shows that H (jw) is a complex function of w. The amplitude response 
IH(jw)1 and the phase response LH(jw) are given by 

and 

1

1+jWI11+jWI 
IH( ·w)1 = Kala2 al a2 

J b b I . II b (. )21 1 3 Uwl1 + JW 1 + j ~ + ~ 
bi b3 b3 

(7.12a) 

From Eq. (7.12b) we see that the phase function consists of the addition of only 
three kinds of terms: (i) the phase of jw, which is 90° for all values of w, (ii) 

the phase for the first-order term of the form 1 + jw, and (iii) the phase of the 

second-order term 
a 

[
1 + j b2w + (jw)2] 

b3 b3 

We can plot these three basic phase functions for w in the range 0 to ex:> and then, 
using these plots, we can construct the phase function of any transfer by properly 
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Consequently 
MejQ(w) = x + jy 

1 + x + jy 

Straightforward manipulation of this equation yields 

( 
M2)2 2 i\112 

X + M2 _ 1 + y = (M2 _ 1)2 

This is an equation of a circle centered at [- MAf~l 0] and of radius M¥-l in 
the KG(jw) plane. Figure 7.12a shows circles for various values of M. Because 
M is the closed-loop system amplitude response, these circles are the contours of 
constant amplitude response of the closed-loop system. For example, the point 
A = -2 - j1.85 lies on the circle M = 1.3. This means, at a frequency where the 
open-loop transfer function is G(jw) = -2 - j1.85, the corresponding closed-loop 
transfer function amplitude response is 1.3.t 

To obtain the closed-loop frequency response, we superimpose on these contours 
the Nyquist plot of the open-loop transfer function KG(jw). For each point of 
KG(jw), we can determine the corresponding value of M, the closed-loop amplitude 
response. From similar contours for constant 0: (the closed-loop phase response), 
we can determine the closed loop phase response. Thus, the complete closed-loop 
frequency response can be obtained from this plot. We are primarily interested 
in finding Mp, the peak value of M and wp , the frequency where it occurs. Figure 
7.12b indicates how these values may be determined. The circle to which the Nyquist 
plot is tangent corresponds to Mp, and the frequency at which the Nyquist plot is 
tangential to this circle is wp. For the system, whose Nyquist plot appears in Fig. 
7.12b, Mp = 1.6 and wp = 2. From these values, we can estimate ( and wn , and 
determine the transient parameters PO, tr and ts. 

In designing systems, we first determine Mp and wp required to meet the given 
transient specifications from Eqs. (7.27). The Nyquist plot in conjunction with M 
circles suggests how these values of Mp and wp may be realized. In many cases, a 
mere change in gain K of the open-loop transfer function will suffice. Increasing K 
expands the Nyquist plot and changes the values Mp and wp correspondingly. If this 
is not enough, we should consider some form of compensation such as lag and/or 
lead networks. Using a computer, one can quickly observe the effect of particular 
form of compensation on Mp and wp. 

7.4 Filter Design by Placement of Poles and Zeros OF H(s) 

In this section we explore the strong dependence of frequency response on the 
location of poles and zeros of H(s). This dependence points to a simple intuitive 
procedure to filter design. A systematic filter design procedure to meet given spec­
ifications is discussed later in Sees. 7.5, 7.6, and 7.7. 

7.4-1 Dependence of Frequency Response on poles and Zeros of H(s) 

Frequency response of a system is basically the information about the filtering 
capability of the system. We now examine the close connection that exists between 

tWe can find similar contours for constant 0< (the closed-loop phase response) . 
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p 

rm 

Re -. 

(a) 

Fig. 7.13 (a) vector representation of complex numbers (b) vector representation of factors 
of H(s). 

the pole-zero locations of a system transfer function and its frequency response (or 
filtering characteristics). A system transfer function can be expressed as 

H (s) = _P_( 8_) = bn-f(-S _-_Z-,1 ):....;(_8 _-_Z-,2 ):.--._. -c' (:.--8 _- _Z_n.:..,.) 
Q(8) (s - )'1)(S - A2)' " (s - An) 

(7.28a) 

where ZI, Z2, ... , Zn are the zeros of H(s) and the characteristic roots AI, A2, ... , 
An are the poles of H(s). Now the value of the transfer function H(s) at some 
frequency s = p is 

(7.28b) 

This equation consists of factors of the form p - Zi and p - Ai. The factor p - Z is a 
complex number represented by a vector drawn from point Z to the point p in the 
complex plane, as illustrated in Fig. 7.13a. The length of this line segment is ip - zi, 
the magnitude of p - z. The angle of this directed line segment (with horizontal 
axis) is L(p - z). To compute H(s) at s = p, we draw line segments from all poles 
and zeros of H(s) to the point p, as shown in Fig. 7.13b. The vector connecting 
a zero Zi to the point p is p - Zi. Let the length of this vector be Ti, and let its 
angle with the horizontal axis be (Pi- Then p - Zi = Tiej¢;. Similarly, the vector 
connecting a pole Ai to the point p is p - Ai = diejlJ;, where di and (Ji are the length 
and the angle (with the horizontal axis), respectively, of the vector p - Ai. Now 
from Eq. (7.28b) it follows that 

Therefore 

(7'1 j</>1 )(1·2eNI~) ... (7'"e j ¢o,,) 
H(s)i - = bn (jOl ' 02 ( '01) s-p die )(d2eJ ) . . . dneJ 

_ b 7"11"2'" Tn j[(<I>1 +<1>2+ ' +¢n)-(Ol +02+··+0n)] - n e 
dld2 ... d n 

1'11'2'" Tn 
iH(s)is=p = bn - -­

d 1d2' .. dn 

product of the distances of zeros to p 
= bn~~----~--~------~~----~ 

product of the distances of poles to p 
(7.29a) 
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,md 

LH(s)I,,=l' = ((1>1 + (h + ... + <!-)n) - (e1 + O2 -1- ... -I- en) 

= SUIIl of zero angles to p - sum of pole angles to p (7.29b) 

Using this procedure, wc) can determine H(s) for any value of s. To compute the 
frequency response H(Jw), we use 5 = jw (a point on the imaginary axis), connect 
all poles and zeros to the point )w, and determine IH(jw)1 and LH(.jw) from Eqs. 
(7.29). We repeat Litis procedure for all values of w from 0 to 00 to obtain the 
frequency response. 

1m 

t 
LH (jill) 

Fig. 7.14 The role of poles and zeros in determining the frequency response of an LTIC 
system. 

Gain Enhancement by a Pole 

To understand the effect of poles and zeros on the frequency response, consider 
a hypothetical case of a single pole - 0' + )wo, as depicted in Fig. 7.14a. To find 
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the amplitude response IH (jw) I for a certain value of w, we connect the pole to the 
point jw (Fig. 7.l4a). If the length of this line is d, then IH(jw)1 is proportional to 
lid. 

K 
IH(jw)1 = d (7.30) 

where the exact value of constant K is not important at this point. As w increases 
from zero up, d decreases progressively until w reaches the value woo As w in­
creases beyond wo, d increases progressively. Therefore, according to Eq. (7.30), 
the amplitude response IH(jw)1 increases from w = 0 until w = wo, and it decreases 
continuously as w increases beyond wo, as illustrated in Fig. 7.14b. Therefore, a 
pole at -a + jwo results in a frequency-selective behavior that enhances the gain at 
the frequency Wo (resonance). Moreover, as the pole moves closer to the imaginary 
axis (as a is reduced), this enhancement (resonance) becomes more pronounced. 
This is because a, the distance between the pole and jwo (d corresponding to jwo), 
becomes smaller, which increases the gain Kid. In the extreme case, when a = 0 
(pole on the imaginary axis), the gain at wo goes to infinity. Repeated poles further 
enhance the frequency-selective effect. To summarize, we can enhance a gain at a 
frequency Wo by placing a pole opposite the point jwo. The closer the pole is to jwo , 
the higher is the gain at wo, and the gain variation is more rapid (more frequency­
selective) in the vicinity of frequency woo Note that a pole must be placed in the 
LHP for stability. 

Here we have considered the effect of a single complex pole on the system gain. 
For a real system, a complex pole -a + jwo must accompany its conjugate -a - jwo. 
We can readily show that the presence of the conjugate pole does not appreciably 
change the frequency-selective behavior in the vicinity of woo This is because the 
gain in this case is K I dd', where d' is the distance of a point jw from the conjugate 
pole -a - jwo. Because the conjugate pole is far from jwo, there is no dramatic 
change in the length d' as w varies in the vicinity of woo There is a gradual increase 
in the value of d' as w increases, which leaves the frequency-selective behavior as it 
was originally, with only minor changes. 

Gain Suppression by a Zero 

Using the same argument, we observe that zeros at -a ± jwo (Fig. 7.l4d) will 
have exactly the opposite effect of suppressing the gain in the vicinity ofwo, as shown 
in Fig. 7.14e). A zero on the imaginary axis at jwo will totally suppress the gain 
(zero gain) at frequency woo Repeated zeros will further enhance the effect. Also, 
a closely-placed pair of a pole and a zero (dipole) tend to cancel out each other's 
influence on the frequency response. Clearly, a proper placement of poles and zeros 
can yield a variety of frequency-selective behavior. Using these observations, we 
can design lowpass, highpass, bandpass, and bandstop (or notch) filters. 

Phase response can also be computed graphically. In Fig. 7.14a, angles formed 
by the complex conjugate poles -a ± jwo at w = 0 (the origin) are equal and 
opposite. As w increases from 0 up, the angle 81 because of the pole -a + jwo, 
which has a negative value at w = 0, is reduced in magnitude; the angle (h because 
of the pole -a - jwo, which has a positive value at w = 0, increases in magnitude. 
As a result, (h +82, the sum of the two angles, increases continuously, approaching a 
value 7r as w -> 00. The resulting phase response L.H(jw) = - (8 1 +82) is illustrated 
in Fig. 7.14c. Similar arguments apply to zeros at - a ± jwo. The resulting phase 
response L.H(jw) = (<PI + <P2) is depicted in Fig. 7.14f. 
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We now focus on simple filt ers, using the intuitive insights gained in this dis­
cussion. The discussion is essentially qualitative. 

7.4-2 Lowpass Filters 

A typical lowpass filter has a maximum gain at W = O. Therefore, we need to 
place a pole (or poles) on the real axis opposite the origin Uw = 0), as shown in 
Fig. 7.1Sa. The transfer function of this system is 

We 
H(8) =--

8 + We 

We have chosen the numerator of H (8) to be We in order to normalize the dc gain 
H(O) to unity. If d is the distance from the pole - W e to a point jw (Fig. 7.1Sa), 
then 

We 
IHUw)1 = d 

with H(O) = 1. As W increases , d increases and IHUw)1 decreases monotonically 
with w, as illustrated in Fig. 7.1Sd by label n = 1. This is clearly a lowpass filter 
with gain enhanced in the vicinity of w = O. 

o 

Cd) 

Fig. 7.15 Pole-zero configuration and the amplitude response of a lowpass (Butterworth) 
filter. 
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Wall-to-wall Poles 

An ideal lowpass filter characteristic (shaded) in Fig. 7.15d, has a constant 
gain of unity up to frequency Wc. Then tpe gain drops suddenly to 0 for W > W c ' 

To achieve the ideal lowpass characteristic, we need enhanced gain over the entire 
frequency band from 0 to We. We know that to enhance a gain at any frequency w, 

we need to place a pole opposite w. To achieve an enhanced gain for all frequencies 
over the band (0 to we), we need to place a pole opposite every frequency in this 
band. In other words, we need a continuous wall of poles facing the imaginary 
axis opposite the frequency band 0 to We (and from 0 to -We for conjugate poles), 
as depicted in Fig. 7.15b. At this point, the optimum shape of this wall is not 
obvious because our arguments are qualitative and intuitive. Yet, it is certain that 
to have enhanced gain (constant gain) at every frequency over this range, we need 
an infinite number of poles on this wall. We can show that for a maximally fiatt 
response over the frequency range (0 to we), the wall is a semicircle with an infinite 
number of poles uniformly distributed along the wal1. 1 In practice, we compromise 
by using a finite number (n) of poles with less-than-ideal characteristics. Figure 
7.15c shows the pole configuration for a fifth-order (n = 5) filter. The amplitude 
response for various values of n are illustrated in Fig. 7.15d. As n -t 00, the filter 
response approaches the ideal. This family of filters is known as the Butterworth 
filters. There are also other families. In Chebyshev filters, the wall shape is a 
semiellipse rather than a semicircle. The characteristics of a Chebyshev filter are 
inferior to those of Butterworth over the passband (0, we), where the characteristics 
show a rippling effect instead of the maximally fiat response of Butterworth. But in 
the stopband (w > we), Chebyshev behavior is superior in the sense that Chebyshev 
filter gain drops faster than that of the Butterworth. 

Im 

o Re~ 

(a) (b) 

Fig. 7.16 Pole-zero configuration and the amplitude response of a bandpass filter. 

7.4-3 Bandpass Filters 

The shaded characteristic in Fig. 7.16b shows the ideal bandpass filter gain. 
In the bandpass filter, the gain is enhanced over the entire passband. Our earlier 

tMaximally fiat amplitude response means the first 2n-l derivatives of IH(jw)1 are zero at w '= O. 
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Fig. 7.17 Pole-zero configuration and the amplitude response of a bandstop (notch) filter . 

discussion indicates that this can be realized by a wall of poles opposite the imagi­
nary axis in front of the passband centered at Woo (There is also a wall of conjugate 
poles opposite -wo.) Ideally, an infinite number of poles is required. In prac­
tice, we compromise by using a finite number of poles and accepting less-than-ideal 
characteristics (Fig. 7.16). 

7.4-4 Notch (Bandstop) Filters 

An ideal notch filter amplitude response (shown shaded in Fig. 7.17b) is a 
complement of the amplitude response of an ideal bandpass filter. Its gain is zero 
ov r a smaU band cen ered f,tIJ SOOI fr quelley WI) and is uuity over the remaining 
frequencies. Realization r s u 'b a. hnra terisl;i r quir san iurinitnumb f' of poles 
und zerOR. Let us consider 11. pract ical s · 'Oll 1- rder Ilo('~h fiLter t I tuin zero gain at 
a [reqllen y w = woo F r Ulis p1l1'P )se we mllS hay > zel'C)S < t _ ,iwo. The requirement 
of lJllity gain. aL w = r ql1ir S the nUlJ1Lcn Qr poles to I)(! 'qual to the !lumber 
of zeros (m = n). This ensures that for very large values of w, the product of the 
distances of poles from w will be equal to the product of the distances of zeros from 
w. Moreover, unity gain at w = 0 requires a pole and the corresponding zero to 
be equidistant from the origin. For example, if we use two (complex conjugate) 
zeros, we must have two poles; the distance from the origin of the poles and of 
the zeros should be the same . This requirement can be met by placing the two 
conjugate poles on the semicircle of radius wo, as depicted in Fig. 7.17a. The poles 
can be anywhere on the semicircle to satisfy the equidistance condition. Let the 
two conjugate poles be at angles ±e with respect to the negative real axis. Recall 
that a pole and a zero in the vicinity tend to cancel out each other's influences. 
Therefore, placing poles closer to zeros (selecting e closer to 7r /2) results in a rapid 
recovery of the gain from value 0 to 1 as we move away from Wo in either direction. 
Figure 7.17b shows the gain IH(jw)1 for three different values of e . 

• Example 7.5 
Design a second-order notch filter to suppress 60 Hz hum in a radio receiver. 
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We use the poles and zeros in Fig. 7.17a with Wo = 1201f . The zeros are at 8 = ±jwo. 
The two poles are at -Wo cos 0 ± jwo sin O. The filter transfer fun ction is (with Wo = 1207r) 

and 

H(8) = (8 - j WO)(8 + jwo ) 
(8 + Wo cos 0 + jwo sin 0)(8 + Wo cos 0 - jwo sin 0) 

8
2 + 142122.3 

8
2 + (2wo cos 0)8 + w5 8

2 + (753.9S cos 0)8 + 142122.3 

_ w 2 + 142122.3 
IH (jw)1 = --,:======~=;======== J( - w 2 + 142122.3)2 + (753.9Sw cos OF 

The c los 'r t,he poles a l' 1.0 the zeros (closer the 0 L ~ ), tl ](' J'IlSLer the gain recovery from 
o to 1 on eillJer s id ofwo = 1207r. Figure 7.17b shows Lbo amplit ud response for three 
differcll values of e. This example is a case of V' I-Y simple dcsigH. To fl"iJieve zero gain 
over a band , we n d all infinite number of poles as Willi U,'1 of zeros. • 

o Computer Example C7.3 

Plot the amplitude response of the transfer function 

2 2 
H(8) = 8 + Wo 

8
2 + (2wo cos O)s + w6 

of a second order notch filter for wo = 1207r and 0 = 60° , SO°, and S7° . 

wO=120*pi; 
theta=[60 80 87]*(pi/180); 
for m=l:length(theta) 

num=[l 0 wO-2]; 

den=[l 2*wO*cos(theta(m» wO-2]; 
w=0:.5:1000; w=w'; 
[mag,phase,w]=bode(num,den,w); 
plot(w,mag),hold on,axis([O 1000 0 1.1]) 

end 0 

Figures 7.16b and 7.17b show that a notch (stopband) filter frequency response 
is a complement of the bandpass filter frequency response . If HBP(S) and HBS(S) 
are the transfer functions of a bandpass and a bandstop filter (both centered at the 
same frequency), then 

Therefore, a bandstop filter transfer function may also be obtained from the corre­
sponding bandpass filter transfer function. The case of lowpass and high pass filters 
is similar. If HLP (s) and H H P (s) are the transfer functions of a lowpass and a 
highpass filter respectively (both with the same cutoff frequency), then 

Therefore, a high pass filter transfer function may also be obtained from the corre­
sponding lowpass filter transfer function. 
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6. Exercise E7.2 

Using the qualitative method of sketching the frequency response, show that the system with 

the pole-zero configuration in Fig. 7.18a is a highpass filter, and that with the configuration in 

Fig. 7.18b is a bandpass filter. \l 

s plane 

1m 1m 

~------~~R-e--7 
-roo 

(a) 

x j (fJo 

Re -7 

x 

(b) 

Fig. 7.18 Pole-zero configuration of a highpass filter in Exercise E7.2. 

7.4-:-5 Practical Filters and Their Specifications 

For ideal filters everything is black and white; the gains are either zero or unity 
over certain bands. As we saw earlier, real life does not permit such a world view. 
Things have to be gray or shades of gray. In practice, we can realize a variety of 
filter characteristics which can only approach ideal characteristics. 

An ideal filter has a passband (unity gain) and a stopband (zero gain) with 
a sudden transition from the passband to the stopband. There is no transition 
band. For practical (or realizable) filters, on the other hand, the transition from 
the passband to the stopband (or vice versa) is gradual, and takes place over a finite 
band of frequencies. Moreover, for realizable filters, the gain cannot be zero over 
a finite band (Paley-Wiener condition). As a result, there can no true stopband 
for practical filters. We therefore define a stopband to be a band over which the 
gain is below some small number G s , as illustrated in Fig. 7.19. Similarly, we define 
a passband to be a band over which the gain is between 1 and some number 
Gp (G p < 1), as shown in Fig. 7.19. We have selected the passband gain of unity 
for convenience. It could be any constant. Usually the gains are specified in terms 
of decibels. This is simply 20 times the log (to base 10) of the gain. Thus 

C(dB) = 20log lO G 

A gain of unity is 0 dB and a gain of v'2 is 3.01 dB, usually approximated by 3 dB. 
Sometimes the specification may be in terms of attenuation, which is the negative of 
the gain in dB. Thus a gain of 1/v'2; that is, 0.707, is -3 dB, but is an attenuation 
of 3 dB. 

In our design procedure we assume that Gp (minimum passband gain) and 
G s (maximum stopband gain) are specified. Figure 7.19 shows the passband, 
the stopband, and the transition band for typicallowpass, bandpass, highpass, and 
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Fig. 7.19 Passband, stopband, and transitionband in various types of filters. 

bandstop filters. In this chapter we shall discuss the design procedures for these 
four types of filters. Fortunately, the highpass, bandpass, and bandstop filters can 
be obtained from a basic lowpass filter by simple frequency transformations. For 
example, replacing s with wei s in the lowpass filter transfer function results in a 
highpass filter. Similarly, other frequency transformations yield the bandpass and 
bandstop filters. Hence, it is necessary to develop a design procedure only for a basic 
lowpass filter. Using appropriate transformations, we can then design other types 
of filters. We shall consider here two well known families of filters: the Butterworth 
and the Chebyshev filters. 

7.5 Butterworth Filters 

The amplitude response IH Uw) I of an nth order Butterworth low pass filter is 
given by 

(7.31 ) 

Observe that at W = 0, the gain IHUO)I is unity and at W = wc, the gain IH(jwe)1 = 
1/V2 or -3 dB. The gain drops by a factor V2 at W = Wc. Because the power 
is proportional to the amplitude squared, the power ratio (output power to input 
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Fig. 7.20 Amplitude response of a normalized lowpass Butterworth filter. 

power) drops by a factor 2 at W = We. For this reason We is called the half-power 
frequency or the 3 dB-cutoff frequency (amplitude ratio of V2 is 3 dB). 

Normalized Filter 

In the design procedure it proves most convenient to consider a normalized 
filter H(s), whose half-power frequency is 1 rad/s (we = 1). For such a filter, the 
amplitude characteristic in Eq. (7.31) reduces to 

1 
IH(jw)1 = VI + w2n (7.32) 

We can prepare a table of normalized transfer functions H(s) which yield the fre­
quency response in Eq. (7.32) for various values of n. Once the normalized transfer 
function is obtained, we can obtain the desired transfer function H (s) for any value 
of We by simple frequency scaling, where we replace s by s/w e in the normalized 
H(s). 

The amplitude response IH(jw) 1 of the normalized lowpass Butterworth filters 
is depicted in Fig. 7.20 for various values of n. From Fig. 7.20 we observe the 
following: 

1. The Butterworth amplitude response decreases monotonically. Moreover, the 
first 2n - 1 derivatives of the amplitude response are zero at W = O. For 
this reason this characteristic is called maximally flat at w = o. Observe 
that a constant characteristic (ideal) is maximally fiat for all w < 1. In the 
Butterworth filter we try to retain this property at least at the origin. t 

2. The filter gain is 1 (0 dB) at w = 0 and 0.707 (-3 dB) at w = 1 for all n. 
Therefore, the 3-dB (or half power) bandwidth is 1 rad/s for all n. 

3. For large n, the amplitude response approaches the ideal characteristic. 

To determine the corresponding transfer function H(s), recall that H(-jw) is 
the complex conjugate of H(jw). Therefore 

H(jw)H(-jw) = IH(jw)1 2 = _I_ 
1+ w2n 

tButterworth filter exhibits maximally flat characteristic also at w = 00. 
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Fig. 7.21 Poles of a normalized even-order lowpass Butterworth Filter transfer function 
and its conjugate. 

Substituting 8 = jw in this equation, we obtain 

1 
'H (8) 'H ( - 8) = 1 + (8 li)2n 

The poles of 'H(8)'H(-8) are given by 

82n = _(j)2n 

In this result we use the fact that -1 = e j7r (2k-1) for integral values of k, and 
j = ej7r

/ 2 La obtain 

k integer 

This equation yields the poles of 'H (8 )'H ( -8) as 

k = I, 2, 3, ... , 2n (7.33) 

Observe that all poles have a unit magnitude; that is, they are located on a unit 
circle in the 8-plane separated by angle 7r In, as illustrated in Fig. 7.21 for odd 
and even n. Since 'H(8) is stable and causal, its poles must lie in the LHP. The 
poles of 'H ( - 8) are the mirror images of the poles of 'H (8) about the vertical axis. 
Hence, the poles of 'H (8) are those in the LHP and the poles of 'H ( - 8) are those 
in the RHP in Fig. 7.21. The poles corresponding to 'H(8) are obtained by setting 
k = 1, 2, 3, ... , n in Eq. (7.33); that is 

7r 7r 
= cos -(2k + n - 1) + j sin -(2k + n - 1) 

2n 2n k = 1, 2, 3, ' .. I n (7.34) 

and 'H(8) is given by 

1 
'H ( 8) = -;-( 8---81--:-)-;-( 8---8 2--:-)-' -.. -:-( 8---8 n--:-) (7.35) 
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Fig. 7.22 Poles of a normalized lowpass Butterworth filter of various orders . 

For instance, from Eq. (7.34), we find the poles of 71.(8) for n = 4 to be at angles 
571' /8, 77l' /8, 971'/8, and 1l7r /8. These lie on the unit circle, as shown in Fig. 7.22, and 
are given by -0.3827 ± jO.9239, -0.9239 ± jO.3827. Hence, 71.(8) can be expressed 
as 

] 

H(8) = (8 + 0.3827 - jO.9239)(s + 0.3827 + jO.9239)(s + 0.9239 - jO.3827)(8 + 0.9239 + jO.3827) 

1 

(S2 + 0.7654s + 1)(82 + 1.84788 + 1) 

1 

84 + 2.613183 + 3.414282 + 2.61318 + 1 

We can proceed in this way to find 71.(8) for any value of n. In general 

1 1 
71.(8) = -- = -----,------------

Bn(8) 8n + an_l8 n - l + ... + al8 + 1 
(7.36) 

where Bn(8) is the Butterworth polynomial of the nth order. Table 7.1 shows the 
coefficients aI, a2, ... , an-2, an-l for various values of nj Table 7.2 shows Bn(8) in 
factored form. In these Tables, we read for n = 4 

1 
71. (8) = -84"--+-2-.6- 1-3-1-8""'3 -+- 3-.-41-4-2-8""'2 -+- 2-.-6-13-1-8-+- 1 

1 
=~~~~~--~~--~~~~~ 

(82 + 0.76548 + 1)(82 + 1.84788 + 1) 

a result, which confirms our earlier computations. 
We can also find the normalized Butterworth filter transfer function using 

MATLAB function [z,p,k]=buttap(n) to find poles,zeros and the gain factor of a 
normalized nth-order Butterworth filter. 

o Computer Example C7.4 
Using MATLAB, find poles, zeros, and the gain factor of a normalized 4th-order 

Butterworth filter. 

[z,p,kj=buttap(4) 
MATLAB returns poles, zeros, and the gain factor k, which is unity for all orders. 0 
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Table 7.1: Coefficients of Butterworth Polynomial Bn(s) = sn + an_lsn- 1 + ... + als + 1 

n al a2 a3 a4 as a6 a7 a8 ag 

2 1.41421356 
3 2.00000000 2.00000000 
4 2.61312593 3.41421356 2.61312593 
5 3.23606798 5.23606798 5.23606798 3.23606798 
6 3.86370331 7.46410162 9.14162017 7.46410162 3.86370331 
7 4.49395921 10.09783468 14.59179389 14.59179389 10.09783468 4.49395921 
8 5.12583090 13.13707118 21.84615097 25.68835593 21.84615097 13.13707118 5.12583090 
9 5.75877048 16.58171874 31.16343748 41.98638573 41.98638573 31.16343748 16.58171874 5.75877048 

10 6.39245322 20.43172909 42.80206107 64.88239627 74.23342926 64.88239627 42.80206107 20.43172909 6.39245322 

Table 7.2: Butterworth Polynomials in Factorized Form 

n Bn(s) 

1 s + 1 
2 S2 + 1.41421356s + 1 
3 (5+1)(52 +5+1) 
4 (52 + 0.765366865 + 1)(82 + 1.847759075 + 1) 
5 (8 + 1) (82 + 0.618033998 + 1)(82 + 1.9318033998 + 1) 
6 (S2 + 0.517638098 + 1)(52 + 1.414213568 + 1)(82 + 1.931851658 + 1) 
7 (s + 1)(82 + 0.445041878 + 1)(82 + 1.246979608 + 1)(s2 + 1.80193774s + 1) 
8 (82 + 0.390180648 + 1)(s2 + 1.111140478 + 1)(82 + 1.662939228 + 1) (8 2 + 1.961570568 + 1) 
9 (8 + 1)(82 + 0.347296368 + 1)(82 + s + 1)(82 + 1.532088898 + 1)(82 + 1.879385248 + 1) 

10 (8
2 + 0312868935 + 1)(52 + 0.907981008 + 1)(52 + 1.414213568 + l)(s2 + 1.782013055 + 1)(52 + 1.975376685 + 1) 

k 
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Frequency Scaling 
Although Tables 7.1 and 7.2 are for normalized Butterworth filters with 3 dB 

bandwidth We = 1, the results can be extended to any value of We by simply replacing 
S by s/we. This step implies replacing W by w/we in Eq. (7.32). For example, the 
second-order Butterworth filter for We = 100 can be obtained from Table 7.1 by 
replacing S by 8/100. This step yields 

1 
H (8) = - ----;;2:------

L~o) + V2 (l~O) + 1 

1 = ------~~----
82 + 100V28 + 104 

(7.37) 

The amplitude response [H(jw)[ of the filter in Eq. (7.37) is identical to that 
of normalized [H(jw)[ in Eq. (7.32), expanded by a factor 100 along the horizontal 
(w) axis (frequency scaling). 

Determination of n, the Filter Order 

If Gx is the gain of a lowpass Butterworth filter in dB units at W = wx , then 
according to Eq. (7.31) 

Gx = 20log10 [H(jwx)1 = -101og [1 + (::) 2n] 

Substitution of the specifications in Fig. 7.19a (gains Gp at Wp and G s at ws ) in this 
equation yields 

or 

Gp = -101og [1 + (::) 2n] 

6 s = - 10 log [1 + (::rn

] 

(::) 2n = 1O-Op/lO _ 1 

(::rn 

=10-08
/

10 _1 

Dividing (7.38b) by (7.38a), we obtain 

(
WS)2n = [lO-CAltO_I] 
wp 10- 0.,,/10 - 1 

and 

n= 
log [( 1O-C8/ 1O - 1) / (1O- Op/lO - 1)] 

2Iog(w s /wp ) 

(7.38a) 

(7.38b) 

(7.39) 
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Also from Eq. (7.38a) 

(7.40) 

Alternatively, from Eq. (7.38b) 

We = -[-1-0-_-C-,/-1-O-_-1-j7"1/T.;2:-n (7.41 ) 

• Example 7.6 

Design a Butterworth low pass filter to meet the specifications (Fig. 7.23): 

(i) Passband gain to lie between 1 and G p = 0.794(Gp = -2dB) forO :s: W < 10. 

(ii) Stopband gain not to exceed G s = 0.1 (G s = -20dB) forw ;:: 20. 

Step 1: Determine n 

Here Wp = 10, Ws = 20, Gp = -2 dB, and Gs = -20 dB. Substituting these values in 
Eq. (7.39) yields 

n = 3.701 

Since n can only be an integer, we choose 

n=4 

Step 2: Determine We 

Substitution of n = 4, wp = 10 in Eq. (7.40) yields 

We = 10.693 

Alternately, substitution of n = 4 in Eq. (7.41) yields 

We = 11.261 

Because we selected n = 4 rather than 3.701, we obtain two different values of We. 

Choice of We = 10.693 will satisfy exactly the requirement Gp = 0.794 over the 
passband (0, 10), and will surpass the requirement G s = 0.1 in the stopband W :::: 20. 
On the other hand, choice of We = 11.261 will exactly satisfy the requirement on G

s 
but will oversatisfy the requirement for Gp . Let us choose the former case (we 
10.693). 

Step 3: Determine the normalized transfer function 7i(5) 
The normalized fourth-order transfer function 7i (8) is found from Table 7.1 as 

1 
7i(8) = 54 + 2.613153 + 3.414282 + 2.61315 + 1 

Step 4: Determine the final filter transfer function H(5) 
The desired transfer function with We = 10.693 is obtained by replacing 5 with 
5/10.693 in the normalized transfer function 7i(5) as 

1 H(5) = ~ 3 2 

(lO.~93) + 2.6131 ( 1O.~93) + 3.4142 (lO.~92) + 2.6131 (10.~93) + 1 

13073.7 

84 + 27.94283 + 390.452 + 3194.885 + 13073.7 

13073.7 
- (8 2 + 8.18445 + 114.34)(82 + 19.7585 + 114.34) 
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10 20 

Wc = 10.693 

Fig. 7 .23 Amplit ude response of the lowpass Butterworth filter in Example 7 .6. 

The amplitude response of this filter is given by Eq. (7.31) with n = 4 and We = 10.693 

IH(jw)1 = J(~)8 1 
10.693 + 

Figure 7.23 shows the amplitude response of this filter. 
We could also have used the alternate value of We = 11.261. This choice would result 

in a slightly different design. Either of the two designs satisfies the specifications. • 

o Computer Example C7 .5 
Solve Example 7.6 using MATLAB 

% Ste p 1: Dete rmine n 
wp=10; ws=20; Gp=-2; Gs=-20; 
Pl=-Gs/I0; P2= -Gp/ l0; W sp=ws/wp; 
nc=log( (10 - PI-I) / (10 - P2-1)) / (2*log(Wsp)); 
n=ceil(nc); 
% Step 2 : Determine Wc (option that satisfies passband requirement 
% exactly and may oversatisfy stopband requirement). 
Wc=wp/(10 - P2-1) - (1/(2*n)); 
% Step 3: D e t e rmine the normalized transfer function H(s) 
for k=l :n 

A=(2*(k-l)+n+l) / (2*n); 
Sk=cos(A *pi)+j*sin(A *pi); 
s=[s Sk]; 

end 
8=8' ; 
numl=[O 1]; d e nl=poly([s']); 
% Ste p 4: Dete rmine the final filter transfer function H(s) 
num2=[O W c- n]; den2 = poly(Wc*[s']); 
fprintf('Filter Order is n = %i\ n' ,n) 
fprintf('Cutoff Freque n cy of the Filter is Wc = %.4f\n',Wc) 
disp('Poles of the t ransfer funct ion are'),s 
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disp('The normalized fourth-ot'der transfer function is') 
printsys( abs(numl) ,abs( denl» 
disp('The transfer function with s replaced by s/W cis') 
printsys( abs(num2) ,abs( den2» 
% Step 5: Amplitude response of the filter 
w=0:.01:40; w=w'; 
[mag,phase,w]=bode(num2,den2,w); 
plot(w,mag) 
Filter Order is n = 4 
Cutoff Frequency of the Filter is Wc 
Poles of the transfer function are 
s = -0.3827 - 0 . 9239i 

-0.9239 - 0.3827i 

-0.9239 + 0.3827i 

-0.3827 + 0.9239i 

10.6934 

The normalized fourth-order transfer function is 

1 
num/den = ~~~~~~~--~~~~--~~~ __ ~ 

s'4 + 2.613 s'3 + 3.414 s'2 + 2.613 s + 1 

The transfer function with s replaced by s/Wc is 

/
d 13 , 000 

num en = s ' 4 + 27.94 8'3 + 390.4 s'2 + 3195 s + 1.3 e+004 

Using M -files from MATLAB Signal Processing Toolbox 

513 

o 

We can also compute the desired filter transfer function using appropriate M­
files from the Signal Processing Toolbox as shown in the next few examples. 

o Computer Example C7.6 
Using M-file functions in MATLAB, design a lowpass Butterworth filter to meet the 

specifications in Example 7.6. 

Wp=10;Ws=20;Gp=-2;Gs=-20; 
[n,Wc]=buttord(Wp,Ws,-Gp,-Gs,'s'); 
[num,den]=butter(n,Wc,'s'); 

Here num and den are the coefficients of the numerator and the denominator poly­
nomials of the desired filter. In this example, the matlab answer is n + 1 element vectors 
as num= 0 0 0 0 16081 and den= 1 29 433 3732 16081; that is, 

H 3 _ 16081 
( ) - 34 + 2933 + 4333 2 + 37323 + 16081 

This is the alternate solution where the passband specifications are exceeded, but the 

stopband specifications are satisfied exactly. On the other hand, the solution in Example 

C7 .5 exceeds the stopband specifications, but satisfies the passband specifications exactly 

because of use of Eq. (7.40) [rather than Eq. (7.41)]. To plot amplitude response, we can 
use the last three functions from Example C7.5. 0 
6 Exercise E7.3 

Determine n, the order of the lowpass Butterworth filter to meet the following specifications: 
Gp = -O.5dB, Gs = -20dB, wp = 100, andws = 200. 
Answer: 5. 'V 
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7.6 Chebyshev Filters 

The amplitude response of a normalized Chebyshev lowpass filter is given by 

1 
[H(jw)[ = --;:==== 

)1 + t 2Cn 2(w) 

where Cn(w), the nth-order Chebyshev polynomial, is given by 

An alternative expression for Cn (w) is 

(7.42) 

(7.43a) 

(7.43b) 

The form (7.43a) is most convenient to compute Cn(w) for [w[ < 1 and form 
(7.43b) is convenient for computing Cn(w) for [wi> 1. We can show l that Cn(w) 
is also expressible in polynomial form, as shownt in Table 7.3 for n = 1 to 10. 

The normalized Chebyshev lowpass amplitude response [Eq. (7.42)] is depicted 
in Fig. 7.24 for n = 6 and n = 7. We make the following general observations: 

Table 7.3: Chebyshev Polynomials 

o 1 
1 w 
2 2w 2 - 1 
3 4w 3 - 3w 
4 8w 4 - 8w 2 + 1 
5 16w 5 - 20w 3 + 5w 
6 32w 6 - 48w 4 + 18w 2 - 1 
7 64w 7 - 112w 5 + 56w 3 - 7w 
8 128w 8 - 256w6 + 160w 4 - 32w 2 + 1 
9 256w 9 - 576w 7 + 432w 5 - 120w 3 + 9w 

10 512w lO - 1280w 8 + 1120w 6 - 400w 4 + 50w 2 - 1 

tThe Chebyshev polynomial Cn(w) has the propertyl 

Cn(w) = 2wCn_ 1(w) - Cn- 2(W) n> 2 
Thus, knowing that 

Co(w) = 1 and 

we can construct Cn(w) for any value of n. For example, 

and so on. 
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Fig. 7.24 Amplitude response of normalized sixth- and seventh-order lowpass Chebyshev 
filters. 

1. The Chebyshev amplitude response has ripples in the passband and is smooth 
(monotonic) in the stopband. The passband is 0 ::; W ::; 1, and there is a total 
of n maxima and minima over the passband 0 ::; W ::; l. 

2. From Table 7.3, we observe that 

C~(O)={~ n odd 
(7.44) 

n even 

Therefore, the dc gain is 

17-l(O)1 = { 1_1_ 

-/1+<2 

n odd 
(7.45) 

n even 

3. The parameter E controls the height of ripples. In the passband, r, the ratio of 
the maximum gain to the minimum gain is 

r= '~ (7.46a) 

This ratio r, specified in decibels, is 

(7.46b) 
so that 

(7.47) 

Because all the ripples in the passband are of equal height, the Chebyshev 
polynomials Cn(w) are known as equal-ripple functions. 

4. The ripple is present only over the passband 0 ::; W ::; l. At w = 1, the ampli­
tude response is 1/~ = 1/r. For w > 1, the gain decreases monotonically. 

5. For Chebyshev filters, the ripple i' dB takes the place of Gp (the minimum gain 
in the passband). For example, i' ::; 2 dB specifies that the gain variations of 
more than 2 dB cannot be tolerated in the passband. In the Butterworth filter 
Gp = -2 dB means the same thing. 

6. If we reduce the ripple, the passband behavior improves, but it does so at 
the cost of stopband behavior. As r is decreased (E is reduced), the gain in 
the stopband increases, and vice-versa. Hence, there is a tradeoff between the 
allowable passband ripple and the desired attenuation in the stopband. Note 



516 7 Frequency Response and Analog Filters 

that the extreme case c = 0 yields zero ripple, but the filter now becomes an 
allpass filter, as seen from Eq. 7.42, by letting c = O. 

7. Finally, the Chebyshev filter has a sharper cutoff (smaller transition band) 
than the same-order Butterworth filter, t but this is achieved at the expense of 
inferior passband behavior (rippling) . 

Determination of n (Filter Order) 
For a normalized Chebyshev filter, the gain (; in dB [see Eq. (7.42)] is 

, [2 2 ] G=-10Iog 1+10 C n (w) 

The gain is (; s at w s. Therefore 

, [2 2 ] G s = -10 log 1 + c C n (w s ) (7.48) 
or 

€2Cn 2(w s ) = 1O-6s11O - 1 

Use of Eq. (7.43b) and Eq.(7.47) in the above equation yields 

[
. ]1/2 lQ -G. / H) _ 1 

] 0"/10 - 1 

Hence 

n = cosh- 1 -~.-;-:-::--
1 [10-68110 - 1]1/2 

cosh- 1 (w s ) IOr / l0 - 1 
(7.49a) 

Note that these equations are for normalized filters, where wp = 1. For a general 
case, we replace Ws with ~ to obtain 

Wp 

1 -1 [10-68 / 10 - 1]1/2 
n = 1 cosh ---:-.0=--

cosh- (ws/W p ) IOr/10 _ 1 
(7.49b) 

Pole Locations 
We could follow the procedure of the Butterworth filter to obtain the pole 

locations of the Chebyshev filter. The procedure is straightforward but tedious and 
does not yield any special insight into our development. The Butterworth filter 
poles lie on a semicircle. We can show that the poles of an nth-order normalized 
Chebyshev filter lie on a semiellipse of the major and minor semiaxes cosh x and 
sinh x, respectively, where l 

1. h-l(l) x = :;;:sm ~ 

The Chebyshev filter poles are 

[
(2k - 1)7r ] 

S k = - sin 2n sinh x + j cos [
(2k-1)7r ] cosh x 

2n 

(7.50) 

k = 1,2, . . . , n (7.51) 

tWe can show2 that at higher frequencies (in the stopband), the Chebyshev filter gain is smaller 
than the comparable Butterworth filter gain by about 6(n - 1) dB. 
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Fig. 7.25 Poles of a normalized third-order lowpass Chebyshev filter transfer function 
and its conjugate. 

The geometrical construction for determining the pole location is depicted in Fig. 
7.25 for n = 3. A similar procedure applies to any n; it consists of drawing two 
semicircles of radii a = sinh x and b = cosh x. We now draw radial lines along 
the corresponding Butterworth angles and locate the nth-order Butterworth poles 
(shown by crosses) on the two circles. The location of the kth Chebyshev pole is 
the intersection of the horizontal projection and the vertical projection from the 
corresponding kth Butterworth poles on the outer and the inner circle, respectively. 

The transfer function H (s) of the normalized nth-order lowpass Chebyshev 
filter is 

( ) 
Kn Kn 

H s - -- - (7.52) 
- C',,(s) - s" + an_ls n - l + ... + als + ao 

The constant K n is selected to have proper dc gain, as shown in Eq. (7.45). As a 
result 

Kn = {a
o 

ao ao 
~ = 101'/20 

n odd 

n even 
(7.53) 

The design procedure is considerably simplified by ready-made tables of the 
polynomial C~(s) in Eq. (7.52) or the pole locations ofH(s). Table 7.4 lists the co­
efficients ao, aI, a2, "', an-l of the polynomial C~(s) in Eq. (7.52) for i' = 0.5, 1,2, 
and 3 dB ripples corresponding to the values of E = 0.3493, 0.5088, 0.7648, and 
0.9976, respectively. Table 7.5 lists the poles of various Chebyshev filters for the 
same values of i' (and E). Tables listing more extensive values of 1~ (or E) can be 
found in the literature. We can also use MATLAB functions for this purpose. 

o Computer Example C7. 7 
Using MATLAB, find poles, zeros, and the gain factor of a normalized 3rd-order 

Chebyshev filter with f = 2 dB. 

[z,p,k]=cheblap(3,2) 0 
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Table 7.4: Chebyshev Filter Coefficients of the Denominator Polynomial 
C~(s) = sn + an_lsn- l + an_2sn-2 + ... + als + ao 

n ao 

1 2.8627752 0.5 db ripple 
2 1.5162026 1.4256245 (7' = 0.5) 
3 0.7156938 1.5348954 1.2529130 
4 0.3790506 1.0254553 1.7168662 1.1973856 
5 0.1789234 0.7525181 1.3095747 1.9373675 1.1724909 
6 0.0947626 0.4323669 1.1718613 1.5897635 2.1718446 1.1591761 
7 0.0447309 0.2820722 0.7556511 1.6479029 1.8694079 2.4126510 1.1512176 

1 1.9652267 1 db ripple 
2 1.1025103 1.0977343 (i = 1) 
3 0.4913067 1.2384092 0.9883412 
4 0.2756276 0.7426194 1.4539248 0.9528114 
5 0.1228267 0.5805342 0.9743961 1.6888160 0.9368201 
6 0.0689069 0.3070808 0.9393461 1.2021409 1.9308256 0.9282510 
7 0.0307066 0.2136712 0.5486192 1.3575440 1.4287930 2.1760778 0.9231228 

1 1.3075603 2 db ripple 
2 0.8230604 0.8038164 (7' = 2) 
3 0.3268901 1.0221903 0.7378216 
4 0.2057651 0.5167981 1.2564819 0.7162150 
5 0.0817225 0.4593491 0.6934770 1.4995433 0.7064606 
6 0.0514413 0.2102706 0.7714618 0.8670149 1.7458587 0.7012257 
7 0.0204228 0.1660920 0.3825056 1.1444390 1.0392203 1.9935272 0.6978929 

1 1.0023773 3 db ripple 
2 0.7079478 0.6448996 (7' = 3) 
3 0.2505943 0.9283480 0.5972404 
4 0.1769869 0.4047679 1.1691176 0.5815799 
5 0.0626391 0.4079421 0.5488626 1.4149874 0.5744296 
6 0.0442467 0.1634299 6990977 6906098 1.6628481 0.5706979 
7 0.0156621 0.1461530 0.3000167 1.0518448 0.8314411 1.9115507 0.5684201 
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Table 7.5: Chebyshev Filter Pole Locations 

n r = 0.5 r = 1 r=2 r=3 

1 -2.8628 -l.9652 - l.3076 -l.0024 

2 -0.7128 ± j1.0040 -0.5489 ± jO.8951 -0.4019 ± jO.8133 -0.3224 ± jO.7772 

3 -0.6265 -0.4942 - 0.3689 -0.2986 
-0.3132 ± jl.0219 -0.2471 ± jO.9660 -0.1845 ± jO.9231 -0.1493 ± jO.9038 

4 -0.1754 ± j l.0163 -0.1395 ± jO.9834 -0.1049 ± jO.9580 -0.0852 ± jO.9465 
-0.4233 ± jO.4209 -0.3369 ± jO.4073 -0.2532 ± jO.3968 -0.2056 ± jO.3920 

5 -0.3623 -0.2895 - 0.2183 -0.1775 
-0.1120 ± j 1.0116 -0.0895 ± jO.9901 - 0.0675 ± jO.9735 -0.0549 ± jO.9659 
-0.2931 ± jO.6252 -0.2342 ± jO.6119 - 0.1766 ± jO.6016 -0.1436 ± jO.5970 

6 -0.0777 ± j1.0085 -0.0622 ± jO.9934 -0.0470 ± jO.9817 - 0.0382 ± jO.9764 
-0.2121 ± jO.7382 -0.1699 ± jO.7272 -0.1283 ± jO.7187 - 0.1044 ± jO.7148 
-0.2898 ± jO.2702 -0.2321 ± jO.2662 -0.1753 ± jO.2630 - 0.1427 ± jO.2616 

7 -0.2562 - 0.2054 - 0.1553 - 0.1265 
-0.0570 ± j1.0064 -0.0457 ± jO.9953 -0.0346 ± jO.9866 -0.0281 ± jO.9827 
-0.1597 ± jO.8071 -0.1281 ± jO. 7982 -0.0969 ± jO.7912 -0.0789 ± jO.7881 
-0.2308 ± jO.4479 -0.1851 ± jO.4429 -0.1400 ± jO.4391 -0.1140 ± jO.4373 

8 -0.0436 ± jl.0050 -0.0350 ± jO.9965 -0.0265 ± jO.9898 - 0.0216 ± .10.9868 
-0.1242 ± jO.8520 -0.0997 ± jO.8447 -0.0754 ± jO.8391 -0.0614 ± jO.8365 
-0.1859 ± .10.5693 -0.1492 ± jO.5644 -0.1129 ± jO.5607 -0.0920 ± jO.5590 
-0.2193 ± jO.1999 -0.1760 ± jO.1982 -0.1332 ± jO.1969 - 0.1085 ± jO.1962 

9 -0.1984 -0.1593 -0.1206 -0.0983 
-0.0345 ± jl.0040 -0.0277 ± jO.9972 -0.0209 ± jO.9919 - 0.0171 ± jO.9896 
-0.0992 ± jO.8829 -0.0797 ± jO.8769 -0.0603 ± jO.8723 - 0.0491 ± jO.8702 
-0.1520 ± jO.6553 -0.1221 ± jO.6509 -0.0924 ± jO.6474 -0.0753 ± jO.6459 
-0.1864 ± jO.3487 -0.1497 ± jO.3463 -0.1134 ± jO.3445 -0.0923 ± jO.3437 

10 -0.0279 ± j1.0033 -0.0224 ± jO.9978 -0.0170 ± jO.9935 - 0.0138 ± jO.9915 
-0.0810 ± jO.9051 -0.1013 ± jO. 7143 -0.0767 ± jO.7113 -0.0401 ± jO.8945 
-0.1261 ± jO.7183 -0.0650 ± jO.9001 -0.0493 ± jO.8962 -0.0625 ± jO.7099 
-0.1589 ± jO.4612 -0.1277 ± jO.4586 - 0.0967 ± jO.4567 -0.0788 ± jO.4558 
-0.1761 ± jO.1589 -0.1415 ± jO.1580 - 0.1072 ± jO.1574 -0.0873 ± jO.1570 
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Fig. 7.26 Amplitude response of the lowpass Chebyshev filter in Example 7.7 . 

• Example 7.7 
Design a Chebyshev lowpass filter to satisfy the following criteria (Fig. 7.26): 
The ratio f ::; 2 dB over a passband 0 ::; W ::; 10 (wp = 10). The stopband gain 

6 5 ::; -20 dB for w > 16.5 (w s = 16.5). 
Observe that the specifications are the same as those in Example 7.6, except for the 

transition band. Here the transition band is from 10 to 16.5, whereas in Example 7.6 it 
is 10 to 20. Despite this stringent requirement, we shall find that Chebyshev requires a 
lower-order filter than the Butterworth filter found in Example 7.6. 

Step 1: Determining n 
According to Eq. (7.49b), we have 

n = 1 cosh- 1 10 - 1 = 2.999 
[ 

2 ] 1/2 

cosh - 1 (1.65) 100.2 - 1 

Because n must be an integer, we select n = 3. Observe that even with more stringent 
requirements, the Chebyshev filter requires only n = 3. The passband behavior of 
the Butterworth filter, however, is superior (maximally flat at w = 0) compared to 
that of the Chebyshev, which has rippled passband characteristics. 

Step 2: Determining H(s) 
We may use the Table 7.4 to determine H(s). For n = 3 and f = 2 dB, we read 
the coefficients of the denominator polynomial of H(s) as ao = 0.3269, a1 = 1.0222, 
and a2 = 0.7378. Also in Eq. (7.53), for odd n, the numerator is given by a constant 
Kn = ao = 0.3269. Therefore, 

H(s) _ 0.3269 
- s3 + 0.7378s2 + 1.0222s + 0.3269 

(7.54) 

Because there are infinite possible combinations of nand f, Table 7.4 (or 7.5) can list 
values of the denominator coefficients for values of f in quantum increments only.1 
For the values of nand f not listed in the Table, we can compute pole locations 
from Eq. (7.51). For the sake of demonstration, we now recompute H(s) using this 
method. In this case, the value of <: is [see Eq. (7.47)] 

E = V1Oi'/lO - 1 = )100.2 - 1 = 0.7647 
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From Eq. (7.50) 

x = .!:. sinh- 1 ~ = ~ sinh- 1 (1.3077) = 0.3610 
n c 3 . 

Now from Eq. (7.51), we have 81 = -0.1844 + jO.9231, 82 = -0.3689, and S3 

-0.1844 - jO.9231. Therefore 

H(s) = Kn 
(s + 0 .3689)(s + 0.1844 + jO.9231)(s + 0.1844 - jO.9231) 

Kn 0.3269 

S3 + 0.737852 + 1.02225 + 0.3269 s3 + 0.737852 + 1.02225 + 0.3269 

which confirms the earlier result. 

Step 3: Determining H(5) 
Recall that Wp = 1 for the normalized transfer function. For Wp = 10, the desired 
transfer function H(5) can be obtained from the normalized transfer function H(5) 
by replacing 5 with 51wp = silO. Therefore 

H(5) = s s 0.3269 s . 
(10 + 0.3689)( 10 + 0.1844 + JO.9231)( 10 + 0.1844 - JO.9231) 

326.9 
S3 + 7.37852 + 102.225 + 326.9 

In the present case, r = 2 dB means that [see Eq. (7.47)] 

€2 = 10° 2 
_ 1 = 0.5849 

The frequency response is [see Eq. (7.42) and Table 7.3] 

IH(jw)1 = --;::===1= ===== Jl + 0.5849(4w3 - 3w)2 

This is the normalized filter amplitude response. The actual filter response 1 H (jw) 1 

is obtained by replacing w with :::p; that is, with fa- in H(jw) 

1 
IH(jw)1 = --r:===== === = 

1 + 0.5849 [4 (fa-)3 - 3 (fa-)2] 

103 

V9.3584w 6 - 1403.76w4 + 52640w2 + 106 

Observe that despite more stringent specifications than those in Example 7.6, the 

Chebyshev filter requires n = 3 compared to the Butterworth filter in Example 7.6, which 

requires n = 4. Figure 7.26 shows the amplitude response. • 

o Computer Example C7.8 
Design a lowpass Chebyshev filter for the specifications in Example 7.7 using functions 

from Signal Processing Toolbox in MATLAB. 

Wp=10;Ws=16.5;r=2;Gs=-20; 
[n,Wp]=cheblord(Wp,Ws,r,-Gs,'s'); 
[num,den]=chebyl(n,r,Wp,'s'); 
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MATLAB returns n = 3 and num= 0 0 0 326.8901, den= 1 7.3782 102.219 
326.8901; that is, 

H(s) _ 326.8901 
- S3 + 7.378232 + 102.2193 + 326.8901 

a result, which agrees with the solution in Example 7.7. To plot amplitude response, we 

can use the last three functions from Example C7.5. 0 
l:; Exercise E7.4 

Determine n, the order of the lowpass Butterworth filter to meet the following specifications: 
ap = -0.5dB, as = -20 dB, Wp = 100, andws = 200. 

Answer: 5. \l 

l:; Exercise E7.5 
Determine n (the order) and the transfer function of a Chebyshev filter to meet the following 

specifications: r = 2 dB, as = -20 dB, wp = 10 rad/s, and Ws =: 28 rad/s. 
Answer:n = 2 

H(s) = 50.5823 
(8 + 4.0191 + j6.8937)(8 + 4.0191 - j6.8937) 

50.5823 

S2 + 8.03813 + 63.6768 

Hint: In this case K2 = ~ \l 
V 1+<2 

7.6-1 Inverse Chebyshev Filters 

The passband behavior of the Chebyshev filters exhibits ripples and the stop­
band is smooth. Generally, passband behavior is more important and we would 
prefer that the passband have smooth response. However, ripples can be tolerated 
in the stop llfl.nu as I ng as they lTLeet a given speci:£icaLion. The inver ell by­
shev filter does eX1l. ·t ly thA.I.. Both, the Butterworth a nd the j hebyshev filters, hay 

finite poles and no finjtc zeros. Tn · inver h bysl1 v has liniL' zeros and poles. 
It exhibits max iLnally flat. I asS band l" spons · and equal-rippl stopband resp I1S '. 

The inverse Chebyshev response can be obtained from the Chebyshev in two 
sl.eVs as fo llows: L t "Hc (w) he I,he hebysh v amp]jtud' resp as given in Eq. 
(7.42). in t.he firs!. st p, we> !mbtract l"HcCw) 12 trow 1 to bLain a higllpass filter 
haract · risj,i w1ter(~ tile stopuand (from 0 to 1.) has ripples a nd he passband (from 

1 t ) is sm tli. III t.1I second step, we w.tel' hange the stopband and passband 
by IT qlleocy tra,ns~ ("Illation w llere w is replaced by l/w. This step inverts tb 
passband from the range 1 to 00 to the range 0 to 1, and the stopband is now from 
1 to 00. Moreover, the passband is now smooth and the stopband has ripples. This 
is precisely the inverse Chebyshev amplitude response 1"H(w)1 given by 

1"H(w)12 = l-I"H (1/w)12 = E
2
C;(1/W) 

C 1 + E2C;(1/w) 

where Cn(w) are the nth-order Chebyshev polynomials listed in Table 7.3. 
The inverse Chebyshev filters are preferable to the Chebyshev filters in many 

ways. For example, the passband behavior, especially for small w, is better for 
the inverse Chebyshev than for the Chebyshev or even for the Butterworth filter 
of the same order. The inverse Chebyshev also has the smallest transition band 
of the three filters. Moreover, the phase function (or time-delay) characteristic 
of the inverse Chebyshev filter is better than that of the Chebyshev filter.2 Both 
the Chebyshev and inverse Chebyshev filter require the same order n to meet a 
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given set of specifications. 1 But the inverse Chebyshev realization requires more 
elements and thus is less economical than the Chebyshev filter. But the inverse 
Chebyshev does require fewer elements than a comparable performance Butterworth 
filter. Rather than give complete develop~ent of inverse Chebyshev filters, we shall 
solve a problem using MATLAB functions from the Signal Processing Toolbox. 

o Computer Example C7.9 
Design a lowpass inverse Chebyshev filter for the specifications in Example 7.7, using 

functions from Signal Processing Toolbox in MATLAB. 

is, 

Wp= 10j W s= 16.5jGp=-2jGs=-20j 
[n,Ws]=cheb2ord(Wp,Ws,-Gp,-Gs,'s')j 
[num,den] =cheby2( n,-Gs,W s, 's') 
MATLAB returns n = 3 and num= 0 5 0 1805.9, den= 1 23.2 256.4 1805.9; that 

H 8 _ 58
2 + 1805.9 

( ) - 83 + 23.282 + 256.48 + 1805.9 

To plot amplitude response, we can use the last three functions from Example C7.5. 0 

7.6-2 Elliptic Filters 

Recall our discussion in Sec. 7.4 that placing a zero on the imaginary axis (at 
s = jw) causes the gain (IH(jw)l) to go to zero (infinite attenuation). We can realize 
a sharper cutoff characteristic by placing a zero (or zeros) near w = Ws' Butterworth 
and Chebyshev filters do not make use of zeros in H (s). But an elliptic filter does. 
This is the reason for the superiority of the elliptic filter. 

A Chebyshev filter has a smaller transition band compared to that of a Butter­
worth filter because a Chebyshev filter allows rippling in the passband (or stopband) . 
If we allow ripple in both the passband and the stopband, we can achieve further 
reduction in the transition band. Such is the case with elliptic (or Cauer) filters, 
whose normalized amplitude response is given by 

1 
IH (jw ) I = ----r===== 

Jl + 02 Rn 2 (w) 
where Rn(w) is the nth-order Chebyshev rational function determined from the 
specific ripple characteristic. The parameter 0 controls the ripple. The gain at wp 

(wp = 1 for the normalized case) is v'1~€2' 
The elliptic filter is the most efficient if we can tolerate ripples in both the 

passband and the stopband. For a given transition band, it provides the largest 
ratio of the passband gain to stopband gain, or for a given ratio of passband to 
stopband gain, it requires the smallest transition band. In compensation, however, 
we must accept ripples in both the passband and the stopband. In addition, because 
of zeros in the numerator of H(s), the elliptic filter response decays at a slower rate 
at frequencies higher than Ws. For instance, the amplitude response of a third­
order elliptic filter decays at a rate of only -6 dB/octave at very high frequencies. 
This is because the filter has two zero ,and three poles. The two zeros increase 
the amplitude response at a rate of 12 dB/octave, and the three poles reduce the 
amplitude response at a rate of -18 dB/octave, thus giving a net decay rate of -6 
dB/octave. For the Butterworth and Chebyshev filters, there are no zeros in H(s), 
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Therefore, their amplitude response decays at a rate of -18 dB/octave. However, 
the rate of decay of the amplitude response is seldom important as long as we meet 
our specification of a given G s at WS' 

O ... lcula t.i Jl or pol ,-z · ro 10 at i<ms of ell iptic .lilters is much more compli 'n~ d 
th<'l.1l that ill B I1-~~('rwor Lh ot' (. ven ' 11 I yshev filL I S. Fort wlately, this task i gl' aLly 
sirn plirieu by (. mpul;e!' programs and extensive ready-made design Ta.bl '5 nvailabl ·. 
iul,h lit raL ure.; The MATLAB function [z, p,k] = ellipap(n,-Gp,-Gs) ill SigJJa.] Pro­
ccssiIJ.g T, o/l)OX net lrmill. ' 8 poles zeros, and Lb gain fa tor r a u rwaliz d analog 
l1li iptk I, w ass filL r of order n with a minimum I assband gaill Gp dB, and ruaxi­
WllU I s l.opl au cl gain s dB. The normaliz d passba.nd dg i 1 tad/. . 

o Computer Example C7.10 
Design the lowpass elliptic filter for the specifications in Example 7.7 using functions 

from Signal Processing Toolbox in MATLAB. 

Wp=10;Ws=16.5;Gp=-2;Gs=-20; 
[n,Wp)=ellipord(Wp,Ws,-Gp,-Gs,'s'); 
[num,den)=elLip(n,-Gp,-Gs,Wp,'s') 

MATLAB returns n = 3 and num= 0 2.7881 0 481.1626, den= 1 7.261 106.9991 
481.1626; that is, 

H 8 _ 2.788182 + 481.1626 
( ) - s3 + 7.261 s2 + 106.99918 + 481.1626 

To plot amplitude response, we can use the last three functions from Example C7.5. 0 

7.7 Frequency Transformations 

EaJ' li ' r we saw how a. Iowpass ni ter transfer func~i n of arbil.rary sp cificaL i llS 

fl.l1 b' 1 ~ai n ·'d from 11 norma lized lowpass fil t'r using frequency scaling. Using 
certaiu rl'eqw')Jl 'y transforlllations. we can btain tra nsf ·r [unctions r ~ighpass 
ba.ndpass , and bandstop fi lters [rom :~, basic lowpass lilt; r (tbe prot Lyp filter) 
design. For ex, lllple, a highpass fi ll. · r f.ransr. r fun t ioD can l> , btained from the 
prototype lowpass filter transfer function by replacing s with wp / s. Similar transfor­
mations allow us to design bandpass and bandstop filters from appropriate lowpass 
prototype filters. 

The PrototY I~e lliler may be f any kind, su.ch as Butterworth, Chebyshev, 
ell ipLi', anc.l so on. W fus~ u sign a suitable prototype lowpass filter 'H.p (8). In 
Lit ' o. ·x l. step, W I' pia s wil;b a proper transformaLion T(s) to obtain the desired 
Jligltpts , bandpass. Ot' ban 1st. p fiJter. 

7.7-1 Highpass Filters 

Figur ) 7.27a s buws an ampULud response of a f.J'picaJ highpass filLer. The 
appropl.'iat low pass prototype respollS ' reql.lired for til design of a highpass filter 
ill F ig. 7.270. is depicLcd in Fig;. 7.27b. W must first. deterIDUle this prototype filter 
transfer function 'H.tJ'(s) with th passband 0 :::; w :::; 1 and the stopband w ~ w,)/w". 
The desired (;rans[ r fun tion 0[' I.h highpass filLer to satisfy specifications in ig. 
7.273, is l;ll en obt· iued by replacing:; with T(s) in 'H.pCs) where 
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Fig. 7.27 Frequency transformation for highpass filters. 

T(s) = wp 

s 

• Example 7.8 
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Cb) 

(7.55) 

Design a Chebyshev highpass filter with the amplitude response specifications illus­
trated in Fig. 7.28a with Ws = 100, wp = 165, Gs = 0.1 (-20 dB), and Gp = 0.794 (-2 dB). 

Step 1: Determine the prototype lowpass filter 

The prototype lowpass filter has wp = 1 and Ws = 165/100 = 1.65. This means the 
prototype filter in Fig. 7.27b has a passband 0 ::; W ::; 1 and a stopband W 2: 1.65, as 
shown in Fig. 7.28b. Also, Gp = 0.794(-2dB) and Gs = 0.1(-20dB). We already 
designed a Chebyshev filter with these specifications in Example 7.7. The transfer 
function of this filter is [Eq. (7.54)] 

OdB 

0.794 • -2 dB 

0.7 

Ca) Cb) 

0.5 

0.3 

0.1 -20 dB ................... .. 

o 100 165 400 600 800 1000 o 1.65 

Fig. 7.28 Highpass Filter Design for Example 7.8 . 

3 
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7t (5) _ 0.3269 
p - 53 + 0.737852 + 1.02225 + 0.3269 

The amplitude response of this prototype filter is depicted in Fig. 7.28b. 

Step 2: Substitute 5 with T(5) in 7tp (s) 
The desired high pass filter transfer function H (5) is obtained from 7tp (s) by replacing 
5 with T(s) = Wp/5 = 165/5. Therefore 

H(s ) = , 0.3269 
( l~S) ,\ + O.7a78 ( '!/i.) 2 + 1.0222( 1. =5) + O.32Gc 

:I 

The amplitude response IH(jw)1 for this filter is illustrated in Fig. 7.28a. • 

o Computer Example C7.11 
Design the high pass filter for the specifications in Example 7.8 using functions from 

Signal Processing Toolbox in MATLAB. We shall give here MATLAB functions for all 
types of filters. 

Ws=lOOjWp=165jGp=-2jGs=-20j 
% Butterworth 
[n,Wn]=buttord(Wp,Ws,-Gp,-Gs,'s') 
[num,den]=butter(n,Wn, 'high' ,'s') 
% Chebyshev 
[n,Wn]=cheblord(Wp,Ws,-Gp,-Gs,'s') 
[num,den]=chebyl(n,-Gp,Wn,'high','s') 
% Inverse Chebyshev 
[n,Wn]=cheb2ord(Wp,Ws,-Gp,-Gs,'s') 
[num,den]=cheby2(n,-Gs,Wn, 'high', 's') 
% Elliptic 
[n, Wn] =ellipord(Wp, Ws,-Gp,-Gs, 's') 
[num,den] =ellip (n,-Gp,-Gs, W n, 'high', 's') 

To plot amplitude response, we can use the last three functions in Example C7.5. 0 

7.7-2 Bandpass Filters 

Figure 7.29a shows an amplitude response of a typical bandpass filter. To 
design such a filter, we first find Hp (5), the transfer function of a prototype lowpass 
filter, to meet the specifications in Fig. 7.29b, where Ws is given by the smaller of 

2 
W p 'WP2 - WSJ 

W s , (W p2 - W P,) 
or 

2 
W S2 - W p , W P2 

W S2 (W p2 - W P,) 
(7.56) 

Now, the desired transfer function of the bandpass filter to satisfy the specifi­
cations in Fig. 7.29a is obtained from Hp(5) by replacing s with T(s), where 

() 
82 + W p1 W P2 T 8 = --,-------'-'--~ 
(W p2 - Wp,)s 

(7.57) 
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Fig. 7.29 Frequency transformation for ba ndpass filters . 

• ExaIllple 7.9 

Design a Chebyshev bandpass filter with the amplitude response specifications shown 
in Fig. 7.30a with W P1 = 1000, W P2 = 2000, W S1 = 450, W S2 = 4000, Gs = 0.1 (-20dB), 
and Gp = 0.891 (-1 dB). Observe that for Chebyshev filter, G p = -1 dB is equivalent to 
r = 1 dB. 

The solution is executed in two steps: in the first step, we determine the lowpass 
prototype filter transfer function 'Hp(s). In the second step, the desired bandpass filter 
transfer function is obtained from 'Hp(s) by substituting s with T(s) , the lowpass to' 
bandpass transformation in Eq. (7.57). 

Step 1: Find 'Hp(s), the lowpass prototype filter transfer function. 

This is done in 3 substeps as follows: 

Step 1.1: Find Ws for the prototype filter. 

The frequency Ws is found [using Eq. (7.56)], to be the smaller of 

OdB · 

0.891 ~l dB· 

0.7 (a) 

0.5 

0.3 

0.1 ~20dB 

o 1000 2000 4000 6000 8000 o 2 

W --7 

Fig. 7.30 Chebyshev Bandpass Filter Design for Example 7.9. 
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(1000)(2000) - (450)2 = 3.99 
450(2000 - 1000) 

and 
(4000)2 - (1000)(2000) = 3 5 

4000(2000 - 1000) . 

which is 3.5. 

Step 1.2: Determine n 
We now need to desigu apr to type lowpass filter in Fig. 7.29b with Op = -1 dB, 
O. = -20 dB, wI' = 1, fU'ld w" = 3.5, as illustrated in Fig. 7.30b. The Chebyshev 
filter order n required to meet these specifications is obtained from Eq. (7.49b) (or 
Eq. (7.49a) because, in t his case, WI' = 1), as 

n = L cosh- 1 10 - 1 = 1.904 
[ 

2 ] t 
(:05h - l (3.5) 100 . 1 - 1 

a result, which is rounded up to n = 2. 

Step 1.3: Determine the prototype filter transfer function 1-{p(s) 
We can obtain the transfer function of the second-order Chebyshev filter by computing 
its poles for n = 2 and f = 1 (E = 0.5088) using Eq. (7.51). However, since Table 
7.4 lists the denominator polynomial for f = 1 and n = 2, we need not perform the 
computations and may use the ready-made transfer function directly as 

0.9826 
1-{p(s) = S2 + 1.0977s + 1.1025 (7.58) 

Here we used Eq. (7.53) to find the numerator Kn = V~!.2 = J~1~~~9 = 0.9826. The 

amplitude response of this prototype filter is depicted in Fig. 7.30b. 

Step 2: Find the desired bandpass filter transfer function H(s) using the 
lowpass to bandpass transformation. 

Finally, the desired bandpass filter transfer function H (s) is obtained from 1-{p (s) by 
replacing s with T(s), where [see Eq. (7.57)] 

S2 + 2(10)6 
T(s) = 1000s 

Replacing s with T(s) in the right-hand side of Eq. (7.58) yields the final bandpass 
transfer function 

9.826( lO) fi s2 
H(s) = s4 + 1097.783 + 5.1025(1O)6s 2 + 2.195(1O)9s + 4(10)12 

The amplitude response IH(jw)1 of this filter is shown in Fig. 7.30a. • 

We may use a similar procedure for the Butterworth filter. Compared to Cheby­
shev design, Butterworth filter design involves two additional steps. First, we need 
to compute the cutoff frequency We of the prototype filter. For a Chebyshev filter, 
the critical frequency happens to the frequency where the gain is Gp . This frequency 
is w = 1 in the prototype filter. For Butterworth, on the other hand, the critical 
frequency is the half power (or 3 dB-cutoff) frequency We, which is not necessarily 
the frequency where the gain is Gp . To find the transfer function of the Butterworth 
prototype filter, it is essential to know We. Once we know We, the prototype filter 
transfer function is obtained by replacing s with s/we in the normalized transfer 
function H(s) . This step is also unnecessary in the Chebyshev filter design. We 
shall demonstrate the procedure for the Butterworth filter design by an example 
below. 
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Fig. 7.31 Butterworth Bandpass Filter Design for Example 7.10 . 

• Example 7.10 
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2 

Design a Butterworth bandpass filter with the amplitude response specifications il­
lustrated in Fig. 7.31a with wP1 = 1000, wP2 = 2000, W S1 = 450, W S2 = 4000, Gp = 

0.7586 (-2.4 dB), and G s = 0.1 (-20 dB). 
As in the previous example, the solution is executed in two steps: in the first step, 

we determine the lowpass prototype filter transfer function rip (s). In the second step, the 
desired bandpass filter transfer function is obtained from rip(s) by substituting s with 
T(s), the lowpass to bandpass transformation in Eq. (7.57). 

Step 1: Find rip(s), the lowpass prototype filter transfer function. 
This goal is accomplished in 5 substeps used in the design of the lowpass Butterworth 
filter (see Example 7.6): 

Step 1.1: Find Ws for the prototype filter. 
For the prototype lowpass filter transfer function rip (s) with the amplitude response 
shown in Fig. 7.31b, the frequency Ws is found [using Eq. (7.56)] to be the smaller of 

(1000)(2000) - (450)2 
450(2000 - 1000) = 3.99 and 

which is 3.5, as depicted in Fig. 7.31b. 

Step 1.2: Determine n 

(4000 )2 - (1000) (2000) = 3.5 
4000(2000 - 1000) 

For a prototype lowpass filter in Fig. 7.29b, Gp = -2.4 dB, Gs = -20 dB, Wp = 1, 
and Ws = 3.5. Hence, according to Eq. (7.39), the Butterworth filter order n required 
to meet these specifications is 

1 I [10
2 

- 1 ] 
n = 2 log 3.5 og 100.24 _ 1 = 1.955 

which is rounded up to n = 2. 

5 

(j}--7 



530 7 Frequency Response and Analog Filters 

Step 1.3: Determine We 

In this step (which is not necessary for the Chebyshev design), we determine the 3 
dB cutoff frequency We for the prototype filter. Use of Eq. (7.41) yields 

3.5 
We = 7(1'-::0"""2 -_- 1:7)';'""1/;-;'4 = 1.1 0958 

Step 1.4: Determine the normalized transfer function 1t(s) 
The normalized second-order lowpass Butterworth transfer function from Table 7.1 
is 

1 
1t(s) = - - =--

S2 + V2s + 1 

This is the transfer function of a normalized filter (meaning that We = 1) . 

Step 1.5: Determine the prototype filter transfer function 1tp (s) 
The prototype filter transfer function 1tp (s) is obtained by substituting S with s/we = 
5/1.10958 in the normalized transfer function 1t (5) found in step 1.4 as 

1t S _ (1.10958? 
p( ) - S2 + V2(1.10958)s + (1.10958)2 

1.231 
(7.59) 

S2 + 1.56925 + 1.2312 

The amplitude response of this prototype filter is illustrated in Fig. 7.31b. 

Step 2: Find the desired bandpass filter transfer function H(s) using the 
lowpass to bandpass transformation. 

Finally the desired bandpass filter transfer function H(5) is obtained from 1tp (s) by 
replacing s with T(s), where [see Eq. (7.57)] 

S2 + 2(10)6 
T(s) = 1000s 

Replacing s with T(8) in the right-hand side of Eq. (7.59) yields the final bandpass 
transfer function 

H s _ 1.2312(10)6 82 

( ) - .9~ + 156983 + 5.2312(10)6 S2 + 3.1384(10)95 + 4(1O)l2 

The amplitude response IH(jw)1 of this filter is shown in Fig. 7.31a. • 

o Computer Example C7.12 
Design a bandpass filter for the specifications in Example 7.10 using functions from 

Signal Processing Toolbox in MATLAB. We shall give here MATLAB functions for the 
four types of filters . 

For bandpass filters, we use the same functions as those used for lowpass filter in 
Examples C7.6, C7.8-C7.10, with one difference: Wp and Ws are 2 element vectors as 
Wp=[Wpl Wp2], Ws=[Wsl Ws2]. 

Wp=[IOOO 2000]jWs=[450 4000]jGp=-2.4;Gs=-20; 
% Butterworth 
[n,Wn]=buttord(Wp,Ws,-Gp,-Gs,'s') 
[num,den]=butter(n,Wn,'s') 
% Chebyshev 
[n,Wn]=cheblord(Wp,Ws,-Gp,-Gs,'s'); 
[num,den]=chebyl(N,-Gp,Wn,'s') 
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% Inverse Chebyshev 

[n,Ws]=cheb2ord(Wp,Ws,-Gp,-Gs,'s'); 
[num,den]=cheby2(n,-Gs,Ws,'s') 
% Elliptic filter 

[n, Wn] =ellipord(Wp, W s,-Gp,-Gs, 's'); 
[num,den]=ellip(n,-Gp,-Gs,Wn,'s') 0 

531 

To plot amplitude response, we can use the last three functions from Example 
C7.S . 

7.7-3 Bandstop Filters 

Figure 7.32a shows an amplitude response of a typical bandstop filter. To 
design such a filter, we first find Hp (s), the transfer function of a prototype lowpass 
filter, to meet the specifications in Fig. 7.32b, where Ws is given by the smaller of 

(W p2 - wP1 )W S1 

W p1 W P2 - w s1
2 or 

(Wp2 - wP1 )WS2 

W s2
2 - w p , w P2 

(7.60) 

The desired transfer function of the bandstop filter to satisfy the specifications 
in Fig. 7.32a is obtained from Hp(s) by replacing s with T(s), where 

o 

(a) 

r 
l.?ip (j0l) I 
1t---_. 

G 
,\ 

Olp I OlSI OlS2 OlP2 Ol -1 0 Ols 

Fig. 7.32 Frequency transformation for bandstop filters . 

• Example 7.11 

(7.61) 

(b) 

Design a Butterworth bandstop filter with the specifications depicted in Fig. 7.33a 
with W P1 = 60, wP2 = 260, W s , = 100, W S2 = 150, Gp = 0.776 (-2.2dB) , and Gs = 
0.1 (-20dB). 

In the first step we shall determine the prototype lowpass filter transfer function 
Hp(s), and in the second step we use the lowpass to bandstop transformation in Eq. (7.61) 
to obtain the desired bandstop filter transfer function H (s). 

Step 1: Find Hp(s), the lowpass prototype filter transfer function. 
This goal is accomplished in 5 substeps used in the design of the lowpass Butterworth 
filter (see Example 7.6): 
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Fig. 7.33 Butterworth Bandstop Filter Design for Example 7.11. 

Step 1.1: Find Ws for the prototype filter. 
For the prototype lowpass filter transfer function 7tp(s) with the specifications illus­
trated in Fig. 7.32b, the frequency Ws is found [using Eq. (7.60)J to be the smaller 
of 

(100)(260 - 60) = 3.57 and 
(260)(60) - 1002 

which is 3.57, as shown in Fig. 7.33b. 

Step 1.2: Determine n 

150(260 - 60) = 4.347 
1502 - (260) (60) 

For the prototype lowpass filter in Fig. 7.33b, Op = -2.2 dB, O. = -20 dB, Wp = 1, 
and w. = 3.57. According to Eq. (7.39), the Butterworth filter order n required to 
meet these specifications is 

1 
n=----

2 log(3.57) 

We round up the value of n to 2. 

Step 1.3: Determine We 

[ 
102 - 1 ] 

100.22 _ 1 = 1.9689 

The half power frequency We for the prototype Butterworth filter, using Eq. (7.40) 
with Wp = 1, is 

We = ___ w..!:.p __ ~ 

(1O-Gp / 10 
- 1) * 

1 
----7' = 1.1096 
(10°·22 - 1)* 

Step 1.4: Determine the normalized transfer function 
The transfer function of the second-order normalized Butterworth filter from the 
Table 7.1 is 

1 
7t(s) = --=---

8
2 + ../28 + 1 

(7.62) 

5 
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Step 1.5: Determine the prototype filter transfer function Hp(s) 
The prototype filter transfer funct ion Hp(s) is obtained by substituting s with s/wc = 
s/1.1096 in the normalized transfer fun'ction H(s) in step 1.4. This move yields 

H (s) ____ 1=-__ 
p - (..L)2 + .J2..L + 1 

We We 

1.2312 
(7.63) 

S2 + 1.5692s + 1.2312 

The amplitude response of this prototype filter is depicted in Fig. 7.33b. 

Step 2: Find the desired bandstop filter transfer function H(s) using the 
lowpass to bandstop transformation 

Finally, the desired transfer function H (s) of the bandpass filter with specifications 
illustrated in Fig. 7.33a is obtained from Hp(s) by replacing s with T(s), where [see 
Eq. (7.61)] 

T(s) _ 2008 
- s2 + 15,600 

Replacing 8 with T(s) in the right-hand side of Eq. (7.63) yields the final bandstop 
transfer function 

8 4 + 254.9s3 + 63690.9s2 + (3.977)106s + (2.433)108 

The amplitude response IH(jw)1 is shown in Fig . 7.33a. • 

o Computer Example C7.13 
Design the bandstop filter for the specifications in Example 7.11 using functions from 

Signal Processing Toolbox in MATLAB. We shall give here MATLAB functions for all the 
four types of filters. 

Wp=[60 260]; Ws=[100 150]; Gp=-2.2;Gs=-20; 
% Butterworth 
[n,Wn]=buttord(Wp,Ws,-Gp,-Gs,'s') 
[num,denJ=butter(n, Wn, 'stop', 's') 
% Chebyshev 
[n, W n] =cheblord(W p, W s,-Gp,-Gs, 's') 
[num,den]=chebyl(n,-Gp,Wn,'stop','s') 
% Inverse Chebyshev 
[n,Wn]=cheb2ord(Wp,Ws,-Gp,-Gs,'s') 
[num,den]=cheby2(n,-Gs,Wn,'stop','s') 
% Elliptic 
[n,Wn]=ellipord(Wp,Ws,-Gp,-Gs,'s') 
[num,den]=ellip(n,-Gp,-Gs,Wn,'stop','s') 0 

7.8 Filters to Satisfy Distortionless transmission Conditions 

The purpose of a filter is to suppress unwanted frequency components and 
to transmit the desired frequency components without distortion. In Sec. 4.4, we 
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saw that this requires the filter amplitude response to be constant and the phase 
response to be a linear function of w over the passband. 

The filters discussed so far have stressed the constancy of the amplitude re­
sponse. The linearity of the phase response has been ignored. As we saw earlier, 
the human ear is sensitive to amplitude distortion but somewhat insensitive to 
phase distortion. For this reason filters in audio application are designed primar­
ily for constant amplitude response, and the phase response is only a secondary 
consideration. 

We also saw earlier that the human eye is sensitive to phase distortion and 
relatively insensitive to amplitude distortion. Therefore, in video applications we 
cannot ignore phase distortion. In pulse communication, both the amplitude and 
the phase distortion are important for correct information transmission. Thus, 
in practice, we also need to design filters primarily for phase linearity in video 
applications. In pulse communication applications, it is important to have filters 
with constant amplitude response and a linear phase response. We shall briefly 
discuss some aspects and approaches to the design of such filters. More discussion 
appears in the literature. 2 

We showed [see Eq. (4.59)] that the time delay td resulting from the signal 
transmission through a filter is the negative of the slope of the filter phase response 
LH(jw); that is, 

d 
td(W) = --LH(jw) 

dw 
(7.64) 

If the slope of L H (j w) is constant over the desired band (that is, if L H (j w) is linear 
wi th w), all the components are delayed by the same time interval td. In this case 
the output is a replica of the input, assuming that all components are attenuated 
equally; that is, IH(jw)1 = constant over the passband. 

If the slope of the phase response is not constant, td, the time delay, varies 
with frequency. This variation means that different frequency components undergo 
different amounts of time delay, and consequently the output waveform will not 
be a replica of the input waveform even if the amplitude response is constant over 
the passband. A good way of judging phase linearity is to plot td as a function of 
frequency. For a distortionless system, td (the negative slope of LH(jw» should 
be constant over the band of interest. This is in addition to the requirement of 
constancy of the amplitude response. 

Generally speaking, the two requirements of distortionless transmission conflict . 
The more we approach the ideal amplitude response, the further we deviate from the 
ideal phase response. The sharper the cutoff characteristic (smaller the transition 
band), the more nonlinear is the phase response near the transition band. We 
can verify this fact from Fig. 7.34, which shows the delay characteristic of the 
Butterworth and the Chebyshev family of filters. The Chebyshev filter, which has a 
sharper cutoff than that of the Butterworth, shows considerably more variation in 
time delay of various frequency components as compared to that of the Butterworth. 

For the applications where the phase linearity is also important, there are two 
possible approaches: 

1 If td = constant (phase linearity) is the primary requirement, we design a filter 
for which td is maximally flat around w = 0 and accept the resulting ampli­
tude response, which may not be so flat nor have a sharp cutoff characteristic. 
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Fig. 7.34 Delay characteristics of the Butterworth and Chebyshev filters. 

Contrast this with the Butterworth filter, which is designed to yield the max­
imally fiat amplitude response at w = 0 without any attention to the phase 
response. A family of filters which yields a maximally flat td goes under the 
name Bessel-Thomson filters, which uses the nth-order Bessel polynomial 
in the denominator of nth-order H (s). 

2 If both amplitude and phase response are important, we start with a filter to 
satisfy the amplitude response specifications, disregarding the phase response 
specifications. We cascade this filter with another filter, an equalizer, whose 
amplitude response is flat for all frequencies (the allpass filter) and whose 
td characteristic is complementary to that of the main filter in such a way that 
their composite phase characteristic is approximately linear. The cascade thus 
has linear phase and the amplitude response of the main filter (as required). 

Allpass Filters 

An allpass filter has equal number of poles and zeros. All the poles are in the 
LHP (left half plane) for stability. All the zeros are mirror images of the poles about 
the imaginary axis. In other words, for every pole at -a + jb, there is a zero at 
a + jb. Thus, all the zeros are in the RHP. Any filter with this kind of pole-zero 
configuration is an allpass filter; that is, its amplitude response is constant for all 
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frequencies. We can verify this assertion by considering a transfer fUnction with a 
pole at -a + jb and a zero at a + jb: 

s - a - jb 
H(s)= --~ 

s + a - jb 

Therefore 

and 
. jw-a-jb -a+j(w-b) 

H (Jw) = = -----'..,..;---'-
jw+a-jb a+j(w-b) 

IH(jw)l= J(-a)2+(w-b}2 =1 
Ja2+(w-b)2 

1 [w - b] 1 [w - b] LH(jw) = tan- ~. - tan- -a-

(7.65) 

[
W-b] [W-b] [W-b] = 7r - tan-1 -a- - tan- 1 -a- = 7r - 2 tan- 1 -a- (7.66) 

Observe that although the amplitude response is unity regardless of pole-zero 
locations, the phase response depends on the locations of poles (or zeros). By 
placing poles in proper locations, we can obtain a desirable phase response that is 
complementary to the phase response of the main filter. 

7.9 Summary 

The response of an LTIC system with transfer function H(s) to an everlasting 
sinusoid of frequency w is also an everlasting sinusoid of the same frequency. The 
output amplitude is IH (jw) I times the input amplitude, and the output sinusoid is 
shifted in phase with respect to the input sinusoid by LH (jw) radians. The plot of 
IH (jw) I vs w indicates the amplitude gain of sinusoids of various frequencies and 
is called the amplitude response of the system. The plot of LH (jw) vs w indicates 
the phase shift of sinusoids of various frequencies and is called the phase response. 

Plotting of the frequency response is remarkably simplified by using logarithmic 
units for amplitude as well as frequency. Such plots are known as the Bode plots. 
The use of logarithmic units makes it possible to add (rather than multiply) the 
amplitude response of four basic types of factors that occur in transfer functions: 
(1) a constant (2) a pole or a zero at the origin (3) a first order pole or a zero, 
and (4) complex conjugate poles or zeros. For phase plots, we use linear units for 
phase and logarithmic units for the frequency. The phases corresponding to the 
three basic types of factors mentioned above add. The asymptotic properties of the 
amplitude and phase responses allow their plotting with remarkable ease even for 
transfer functions of high orders. 

The frequency response of a system is determined by the locations in the com­
plex plane of poles and zeros of its transfer function. We can design frequency 
selective filters by proper placement of its transfer function poles and zeros. Plac­
ing a pole (a zero) near a frequency jwo in the complex plane enhances (suppresses) 
the frequency response at the frequency w = woo With this concept, a proper combi­
nation of poles and zeros at suitable locations can yield desired filter characteristics. 

Two families of analog filters are considered: Butterworth and Chebyshev. 
The Butterworth filter has a maximally flat amplitude response over the passband. 
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The Chebyshev amplitude response has ripples in the passband. On the other 
hand, the behavior of the Chebyshev filter in the stopband is superior to that of 
the Butterworth filter. The design proc~dure for lowpass filters can be readily 
applied to highpass, bandpass, and bandstop filters by using appropriate frequency 
transformations discussed in Sec. 7.7. 

Allpass filters have a constant gain but a variable phase with respect to fre­
quency. Therefore, placing an allpass filter in cascade with a system leaves its 
amplitude response unchanged, but alters its phase response. Thus, an allpass filter 
can be used to modify the phase response of a system. 
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Problems 

7.1-1 For an LTIC system described by the transfer function 

H(s)- s+2 
- s2 + 5s + 4 

find the response to the following everlasting sinusoidal inputs: (a) 5 cos (2t + 
30°) (b) lOsin(2t+45°) (c) 10cos(3t + 40°). Observe that these are everlasting 
sinusoids. 

7.1-2 For an LTIC system described by the transfer function 

s+3 
H(s) = (8 + 2)2 

find the steady-state system response to the following inputs: 

(a) lOu(t) (b) cos (2t + 60 0 )u(t) (c) sin (3t - 45°)u(t) (d) ej3tu(t) 

7.1-3 For an allpass filter specified by the transfer function 

H(8) = - (s - 10) 
s + 10 

find the system response to the following (everlasting) inputs: (a) ejwt (b) cos (wt+O) 
(c) cos t (d) sin 2t (e) cos lOt (f) cos lOOt. 

Comment on the filter response. 

7.2-1 Sketch Bode plots for the following transfer functions: 

s(s + 100) (b) (8 + 10)(8 + 20) (8 + 10)(8 + 200) 
(a) (s + 2)(s + 20) s2(s + 100) (c) (8 + 20)2(8 + 1000) 
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9 '--_-'P 
Fig. P7.3-1 

7.2-2 Repeat Prob. 7.2-1 if 

$:1 S (s + 10) 
(a) (b) (c) 

(s - 1)(s2 + 48 + L6) (s + 1)(s2 + 14.14s + 100) s(s2 + 14.14s + 100) 

7.3-1 Feedback can be used to increase (or decrease) the system bandwidth. Consider a 
system in Fig. P7.3-1a with transfer function O(s) = ~e • 

(a) Show that the 3 dB bandwidth of this system is :c. We 

(b) To increase the bandwidth ofthis system, we use negative feedback with H(s) = 9, 
as depicted in Fig. P7.3-1b. Show that the 3 dB bandwidth of this system is lOwe. 

(c) To decrease the bandwidth of this system, we use positive feedback with H(s) = 
-0.9, as illustrated in Fig. P7.3-1c. Show that the 3 dB bandwidth of this system is 
we/10. 
(d) The system gain at dc times its 3 dB bandwidth is called the gain-bandwidth 
product of a system. Show that this product is the same for all the three systems in 
Fig. P7.3-1. This result shows that if we increase the bandwidth, the gain decreases 
and vice versa. 

7.4-1 Using the graphical method of Sec 7.4-1, draw a rough sketch of the amplitude and 
phase response of an LTIC system described by the transfer function 

S2 - 2s + 50 
H(s)=s2+2s+50 = 

What kind of filter is this? 

1m 

-2 -1 
Re~ 

(a) 

(s - 1 - j7)(s - 1 + j7) 
(8 + 1 - j7)(8 + 1 + j7) 

s plane 

1m 

-2 -1 
Re~ 

(b) 

Fig. P7.4-2 
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7.4-2 Using the graphical method of Sec. 7.4-1, draw a rough sketch of the amplitude and 
phase response of LTJC systems whose p\lle-zero plots are shown in Fig. P7.4-2. 

7.4-3 Design a second-order bandpass filter with center frequency W = 10. The gain should 
be zero at w = 0 and at W = 00. Select poles at -a ± jlO. Leave your answer in 
terms of a. Explain the influence of a on the frequency response. 

7.5-1 Determine the transfer function H(s) and the amplitude response H(jw) for a third­
order lowpass Butterworth filter if the 3 dB cutoff frequency We = 100. Find your 
answer without using Tables 7.1 or 7.2. Verify your answer using either of these 
Tables. 

7.5-2 Determine n, the order of a [owpass Butterworth filter, and the corresponding cutoff 
frequency We required to satisfy the following lowpass filter specifications. Find both 
the values of We, the one that oversatisfies the passband specifications, and the one 
that oversatisfies the stopband specifications. 

(a) Gp 2': -0.5 dB, Os :S -20 dB, Wp = 100 rad/s, and w. = 200 rad/s. 
(b) Gp 2': 0.9885, G s :S 10-3

, Wp = 1000 rad/s, and w. = 2000 rad/s. 
(c) The gain at 3we is required to be no greater than -50 dB. 

7.5-3 Find the transrer fU!ll:tion f-J.(s) and the amplitude response H(jw) for a lowpass 
Butterworth fil~er (.0 s<\~i s [y the specifications: Op 2': -3 dB, O. :S -14 dB, Wp = 
100, 000 rad/s, and W . = 150,000 rad/s. It is desirable to oversatisfy (if possible) the 
requirement of 6 s . Oet. nllille 1,lIe Op and G. of your design. 

7.6-1 Repeat Prob. 7.5-1 for a Chebyshev filter. Do not use Tables. 

7.6-2 Design a low pass Chebyshev filter to satisfy the specifications: Op 2': -1 dB, Gs :S 
-22 dB, Wp = 100 rad/s, and Ws = 200 rad/s. 

7.6-3 Design a lowpass Chebyshev filter to satisfy the specifications: Op 2': -2 dB, Os :S 
-25 dB, Wp = 10 rad/s, and Ws = 15 rad/s. 

7.6-4 Design a lowpass Chebyshev filter whose 3 dB cutoff frequency is We, and the gain 
drops to -50 dB at 3we. 

7.7-1 Find the transfer function H (s) for a high pass Butterworth filter to satisfy the spec­
ifications: O.:S -20 dB, Op 2': -1 dB , Ws = 10, and Wp = 20. 

7.7-2 Find the transfer function H(s) for a highpass Chebyshev filter to satisfy the speci­
fications: G s :S - 22 dB, Op 2': -1 dB, Ws = 10, and Wp = 20 

7.7-3 Find the transfer function H (s) for a Butterworth bandpass filter to satisfy the spec­
ifications: Gs :S -17 dB, Op 2': -3 dB, W P1 = 100 rad/s, W P2 = 250 rad/s, and 
W S1 = 40 rad/s, W S2 = 500 rad/s. 

7 .7-4 Find the transfer function H (s) for a Chebyshev bandpass filter to satisfy the speci­
fications: Os:S -17 dB, f :S 1 dB, W P1 = 100 rad/s, w P2 = 250 rad/s, and W

S1 
= 40 

rad/s, W S2 = 500 rad/s. 

7.7-5 Find the transfer function H(s) for a Butterworth bandstop filter to satisfy the speci­
fications: Os:S -24 dB, Op 2': -3 dB, W P1 = 20 rad/s, wP2 = 60 rad/s, and W'

l 
= 30 

rad/s, W' 2 = 38 rad/s. 




