
Frequency Response and 
Digital Filters 

Filtering characteristics of a system are specified by its frequency response. For 
this reason it is important to study frequency response of discrete-time systems, 
which is very similar to the frequency response of continuous-time systems with 
some significant differences. 

12.1 Frequency Response of Discrete-Time Systems 

For (asymptotically stable) continuous-time systems we showed that the system 
response to an input ejwt is H (jw )e jwt , and that the response to an input cos wt is 
IH(jw)1 cos [wt + LH(jw)j. Similar results hold for discrete-time systems. We now 
show that for an (asymptotically stable) LTID system, the system response to an 
input ej Ok is H[ejOje jOk and the response to an input cos 0.k is IH[ejOjl cos (0.k + 
LH[ej°J). 

The proof is similar to the one used in continuous-time systems. In Sec. 9.4-2 
we showed that an LTID system response to an (everlasting) exponential zk is also 
an (everlasting) exponential H[zjzk. It is helpful to represent this relationship by 
a directed arrow notation as 

Zk ==> H[zjzk 

Setting z = e±jO in this relationship yields 

ejOk ==> H[ejOjejOk 

e- jOk ==> H[e-jOje-jOk 

Addition of these two equations yields 

2 cos 0.k ==> H[ejOjejOk + H[e-jOje-jOk = 2Re ( H[ejOjejOk) 

Expressing H [ejOj in the polar form 

H[ejOj = IH[ejOjlejLH[eiO] 

Eq. (12.3) can be expressed as 
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(12.1) 

(12.2a) 

(12.2b) 

(12.3) 

(12.4) 



12.1 Frequency Response of Discrete-Time Systems 717 

(12.5) 

In other words, the system response y[kJ to a sinusoidal input cos nk is given by 

(12.6a) 

Following the same argument, the system response to a sinusoid cos (nk + B) is 

y[kJ = IH[ejnJI cos (nk + B + LH[ein]) (12.6b) 

This result applies only to asymptotically stable systems because Eq. (12.1) is valid 
only for values of z lying in the region of convergence of H[z]. For z = ein , z lies 
on the unit circle (Izl = 1). The region of convergence for unstable and marginally 
stable systems does not include the unit circle. 

This important result shows that the response of an asymptotically stable LTID 
system to a discrete-time sinusoidal input of frequency n is also a discrete-time sinu
soid of the same frequency. The amplitude of the output sinusoid is IH[ejnJI times 
the input amplitude, and tIle phase of tiJe output sinusoid is shifted by LH [ein] with 
respect to the input phase. Clearly IH [ejn]1 is the amplitude gain, and a plot of 
IH [ein] I versus n is the amplitude response of the discrete-time system. Similarly, 
LH [ein] is the phase response of the system, and a plot of LH [ein] vs n shows 
how the system modifies or shifts the phase of the input sinusoid. Note that H [ein] 
incorporates the information of both amplitude and phase response and therefore 
is called the frequency response of the system. 

These results, although parallel to those for continuous-time systems, differ 
from them in one significant aspect. In the continuous-time case, the frequency re
sponse is H(jw). A parallel result for the discrete-time case would lead to frequency 
response Hun]. Instead, we found the frequency response to be H[ein]. This devi
ation causes some interesting differences between the behavior of continuous-time 
and discrete-time systems. 

Steady-State Response to Causal Sinusoidal Input 

As in the case of continuous-time systems, we can show that the response of an 
LTID system to a causal sinusoidal input cos nk u[k] is y[k] in Eq. (12.6a), plus a 
natural component consisting of the characteristic modes (see Prob. 12.1-4). For a 
stable system, all the modes decay exponentially, and only the sinusoidal component 
in Eq. (12.6a) persists. For this reason, this component is called the sinusoidal 
steady-state response of the system. Thus, yss[kJ, the steady-state response of a 
system to a causal sinusoidal input cos nk u[kJ, is 

System Response to Sampled Continuous-Time Sinusoids 

So far we have considered the system response of a discrete-time system to a 
discrete-time sinusoid cos nk (or exponential ejnk ). In practice, the input may be a 
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sampled continuous-time sinusoid cos wt (or an exponential ejwt ). When a sinusoid 
cos wt is sampled with sampling interval T, the resulting signal is a discrete-time 
sinusoid cos w kT. Therefore, all the results developed in this section apply if we 
substitute wT for D: 

D=wT 

• Example 12.1 
For a system specified by the equation 

y[k + IJ - 0.8y[kJ = I[k + IJ 
find the system response to the input (a) 1 k = 1 (b) cos [i k - 0.2J 

(c) a sampled sinusoid cos 1500t with sampling interval T = 0.001. 

The system equation can be expressed as 

(E - 0.8)y[kJ = E/[kJ 

Therefore, the transfer function of the system is 

The frequency response is 

Therefore 

H[zJ --Z_- 1 
- z - 0.8 - -1---0-.8-z---'-1 

1 
1 - 0.8(cos 0 - j sin 0) 

1 
(1 - 0.8 cos 0) + jO.8 sin 0 

IH[ejoJI = 1 
V(l - 0.8 cos 0)2 + (0.8 sin 0)2 

1 

\/'1.64 - 1.6 cos n 
and 

LH[ iOJ -1 [ 0.8sin 0 ] e = - tan 
1- 0.8cos 0 

(12.7) 

(12.8a) 

(12.8b) 

The amplitude response IH[ejoJI can also be obtained by observing that IHI2 = H H*. 
Therefore 

From Eq. (12.7) it follows that 

IH[ej oJ12 = H[eiOJH*[eiOJ 

= H[ej !1JH[e-i !1J 

IH[ejoJ 12 = C _ o.~e-iO) (1- o\ei{l ) 
1 

=-----~ 
1.64 - 1.6 cos 0 

which yields the result found earlier in Eq. (12.8a). 

(12.9) 
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Fig. 12.1 Frequency response of an LTID system in Example 12.1. 

Figure 12.1 shows plots of amplitude and phase response as functions of D. We now 
compute the amplitude and the phase response for the various inputs: 

(a) i[kj = 1 Ie = 1 

Since 1 k = (ejO)k with D = 0, the amplitude response is H[ejOj . From Eq. (12.8a) 
we obtain 

H[ejOj = 1 = _1_ = 5 = 5LO 
Jl.64 - 1.6 cos (0) v'0.04 

Therefore 
and 

These values also can be read directly from Figs. 12.1a and 12.1b, respectively, correspond
ing to D = O. Therefore, the system response to input 1 is 

y[kj = 5(1 k) = 5 (12.10) 

(b) i[k] = cos [~k - 0.2] 

Here D = ~. According to Eqs. (12.8) 

IH[ej 1l"/6]I = 1 11" = 1.983 
J1.64 - 1.6 cos 6" 

. /6 1 [ 0.8 sin.!!: ] LH[e1
1l" ]=-tan- 0 6". =-0.916rad. 

1 - .8cos 6" 

These values also can be read directly from Figs. 12.1a and 12.1b, respectively, correspond
ing to D = ~. Therefore 
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Fig. 12.2 Sinusoidal input and the corresponding output of an LTID system in Example 
12.1. 

y[k] = 1.983 cos C~k - 0.2 - 0.916) 

= 1.983 cos (~k - 1.116) 

Figure 12.2 shows the input ![k] and the corresponding system response. 

(12.11) 

(c) A sinusoid cos 1500t sampled every T seconds (t = kT) results in a discrete-time 
sinusoid 

![k] = cos 1500kT (12.12) 
For T = 0.001, the input is 

J[k] = cos (1.5k) (12.13) 

In this case, n = 1.5. According to Eqs. (12.8a) and (12.8b) 

IH[ei
1.

5
]I = 1 = 0.809 

y'1.64 - 1.6 cos (1.5) 
(12.14) 

e = - tan = -. ra LH[ i1.5] -1 [ 0.8sin (1.5)] 0702 d 
1 - 0.8 cos (1.5) 

(12.15) 

These values also could be read directly from Fig. 12.1 corresponding to n = 1.5. 
Therefore 

y[k] = 0.809 cos (1.5k - 0.702) • 

o Computer Example C12.1 
Using MATLAB, find the frequency response of the system in Example 12.1. 
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num=[1 0]; den=[1 -0.8]; 
W=-pi:pi/l00:pi; 
H=freqz(num,den,W}; 
mag=abs(H}; 
phase= 180 /pi*unwrap (angle(H}); 
subplot(2,1,1}; 
plot(W,mag};grid; 
subplot(2,1,2}; 

plot(W,phase};grid 0 

Comment 

721 

Figure 12.1 shows plots of amplitude and phase response as functions of rl. 
These plots as well as Eqs. (12.8) indicate that the frequency response of a discrete
time system is a continuous (rather than discrete) function of frequency rl. There 
is no contradiction here. This behavior is merely an indication of the fact that the 
frequency variable rl is continuous (takes on all possible values) and therefore the 
system response exists at every value of rl. 

l:, Exercise E12.1 
For a system specified by the equation 

y[k + 1] - 0.5y[k] = f[k] 

find the amplitude and phase response. Find the system response to sinusoidal input cos (lOOOt- i) 
sampled every T = 0.5 ms. 
Answer: 

IH[eiO]I- 1 - vI. 25 cos n LH[eiO]=-tan-1[ sinO] 
cos 0-0.5 

y[k] = 1.639 cos (0 .5k - i - 0.904) = 1.639 cos (O .5k - 1.951) \l 

l:, Exercise E12.2 

Show that for an ideal delay (H[z] = liz), the amplitude response IH[eiOIi = 1, and the 

phase response LH[eiO ] = -no Thus, a pure time-delay does not affect the amplitude gain of 

sinusoidal input, but it causes a phase shift (delay) of n radians in a discrete sinusoid of frequency 

n. Thus, in the case of an ideal delay, we see that the phase shift at the output is proportional to 

the frequency of the input sinusoid (linear phase shift). \l 

The Periodic Nature of the Frequency Response 

Figure 12.1 shows that for the system in Example 12.1, the frequency response 
H [ejoJ is a periodic function of rl with period 27r. This fact is not a coincidence. 
Unlike the frequency response of a continuous-time system, the frequency response 
of every LTID system is a periodic function of rl with period 27r. This fact fol
lows from the very structure of the frequency response H[ejOIyJ. Its argument ejOk 

is a periodic funeL ion of n with period 211". This fact will automatically render 
H [e;Ok j periodic. Ther is a physical reason (or this periodicity and the periodicity 
of H [ejOk j should It t come as a :)urprise. We know that discrete-time sinusoids sep
an'.\.t d by value::; of rl in integral IDultiples of 271" are identical. Therefore, the system 
response to such sinusoids (or exponentials) is also identical. Thus for discrete-time 
systems, we need to plot the frequency response only over the frequency range from 
-7r to 7r (or from 0 to 27r). In a real sense, discrete-time sinusoids of frequencies 
outside the fundamental range of frequencies do not exist (although they exist in a 
technical sense) . 
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Fig. 12.3 (a) vector representation of complex numbers (b) vector representation of 
factors of H[z]. 

12.2 Frequency Response From Pole-Zero Location 

The frequency response (amplitude and phase response) of a system are deter
mined by pole-zero locations of the transfer function H [z]. Just as in continuous
time systems, it is possible to determine quickly the amplitude and the phase re
sponse and to obtain physical insight into the filter characteristics of a discrete-time 
system by using a graphical technique. Consider the transfer function 

(z - ZI)(Z - Z2) ... (z - zn) 
H [z] = bn -'----------'--'---------'-----'--------'-

(z - 11)(Z - 12) ... (z - In) 
(12.16) 

We can compute H [z] graphically using the concepts discussed in Sec. 7.3. The 
directed line segment from Zi to z in the complex plane (Fig. 12.3a) represents the 
complex number z - Zi. The length of this segment is Iz - zil and its angle with the 
horizontal axis is L (z - Zi)' 

In filtering applications, the inputs are often the sampled continuous-time sinu
s(')ids. Earlier, we showed that a sampled continuous-time sinusoid cos wt appears 
as a discrete-time sinusoid cos nk (0, = wT). The appropriate function for com
puting the frequency response in such a situation, therefore, is H[e jwT ] (0, = wT). 
To compute the frequency response H[e jwT ] we evaluate H[z] at z = ejwT . But for 
z = ejwT

, Izl = 1 and Lz = wT so that z = ejwT represents a point on the unit circle 
at an angle wT with the horizontal. We now connect all zeros (ZI, Z2, ... , zn) and 
all poles (,1, 12, ... , In) to the point ejwT , as indicated in Fig. 12.3b. Let 1'1, 1'2, 

... , Tn be the lengths and <Pl, <P2, ... , <Pn be the angles, respectively, of the straight 



12.2 Frequency Response From Pole-Zero Location 723 

lines connecting Zl, Z2, ... , Zn to the point ejwT . Similarly, let d1, d2 , ... , dn be the 
lengths and 01 , O2 , ... , On be the angles, respectively, of the lines connecting 1'1,,2, 

... , In to ejwT . Then 

Therefore 

and 

IH[ejwTJI = bn q
r

2" ·rn 

d1d2 ... d n 

produ t of the clistanoes of z ros to ejwT 
=bn ~--------------------------~~-

produ t f distances of poles to ei wT 

"T LH[eJW J = (rPl + (P2 + ... rPn) - (01 + 02 +" .. + On) 

= sum of zero angles to ejwT - sum of pole angles to ejwT 

(12.17) 

(12.18) 

(12.19a) 

(12.19b) 

In this manner, we can compute the frequency response H [ejwTJ for any value of w 

by selecting the point on the unit circle at an angle wT corresponding to that value 
of w. This point is ejwT . In summary, to compute the frequency response H[ejwTJ, 
we connect all poles and zeros to this point and determine IH[ejwTJ I and LH[ejwTJ 
using the above equations. We repeat this procedure for all values of wT from 0 to 
7r to obtaill the frequency response. 

Controlling Gain by Placement of Poles and Zeros 

The nature of the influence of pole and zero locations on the frequency response 
is similar to that observed in continuous-time systems with a minor difference. In 
place of the imaginary axis of the continuous-time systems, we have a unit circle in 
the discrete-time case. The nearer the pole (or zero) is to a point ejwT (on the unit 
circle) representing some frequency w, the more influence that pole (or zero) wields 
on the amplitude response at that frequency because the length of the vector joining 
that pole (or zero) to the point ejwT is small. The proximity of a pole (or zero) has 
similar effect on the phase response. From Eq. (12.19a), it is clear that to enhance 
the amplitude response at a frequency w we should place a pole as close as possible 
to the point ejwT (on the unit circle) representing that frequency w. Sjmilarly, to 
suppress the amplitude response at a frequency w, we should place a zero as close 
as possible to the point ejwT on the unit circle. Placing repeated poles or zeros will 
further enhance their influence. 

Total suppression of signal transmission at any frequency can be achieved by 
placing a zero on the unit circle at a point corresponding to that frequency. This is 
the principle of the notch (bandstop) filter. 

Placing a pole or a zero at the origin does not influence the amplitude response 
because the length of the vector connecting the origin to any point on the unit 
circle is unity. However, a pole (a zero) at the origin generates angle -wT (wT) in 
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Fig. 12.4 Various pole-zero configurations and the corresponding frequency response. 

LH [ejwTj. The phase spectrum -wT is a linear function of frequency and there
fore represents a pure time-delay of T seconds (see Eq. (10.48) or Exercise E12.2). 
Therefore, a pole (a zero) at the origin causes a time delay (time advance) of T 
seconds in the response. There is no change in the amplitude response. 
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For a stable system, all the poles must be located inside the unit circle. The 
zeros may lie anywhere. Also, for a physically realizable system, H [z] must be 
a proper fraction, that is, n 2" m. If, to achieve a certain amplitude response, 
we require m > n, we can still make the system realizable by placing a sufficient 
number of poles at the origin. This will not change the amplitude response but it 
will increase the time delay of the response. 

In general, a pole at a point has the opposite effect of a zero at that point. 
Placing a zero closer to a pole tends to cancel the effect of that pole on the frequency 
response. 

Lowpass Filters 

A lowpass filter has a maximum gain at w = 0, which corresponds to point 
e jOT = 1 on the unit circle. Clearly, placing a pole inside the unit circle near the 
point z = 1 (Fig. 12.4a) would result in a lowpass response. The corresponding 
amplitude and phase response appears in Fig. 12.4a. For smaller values of w, the 
point e jwT (a point on the unit circle at an angle wT) is closer to the pole, and con
sequently the gain is higher. As w increases, the distance of the point e jwT from the 
pole increases. Consequently the gain decreases, resulting in a lowpass characteris
tic. Placing a zero at the origin does not change the amplitude response but it does 
modify the phase response, as illustrated in Fig. 12.4b. Placing a zero at z = -1, 
however, changes both the amplitude and phase response (Fig. 12.4c). The point 
z = -1 corresponds to frequency w = n: IT (z = ejwT = ej7r = -1). Consequently, 
the amplitude response now becomes more attenuated at higher frequencies, with 
a zero gain at wT = n:. We can approach ideal lowpass characteristics by using 
more poles staggered near z = 1 (but within the unit circle). Figure 12.4d shows 
a third-order lowpass filter with three poles near z = 1 and a third-order zero at 
z = -1, with corresponding amplitude and phase response. For an ideal lowpass 
filter we need an enhanced gain at every frequency in the band (0, we). This can 
be achieved by placing a continuous wall of poles (requiring an infinite number of 
poles) opposite this band. 

Highpass Filters 

A high pass filter has a small gain at lower frequencies and a high gain at 
higher frequencies. Such a characteristic can be realized by placing a pole or poles 
near z = -1 because we want the gain at wT = n: to be the highest. Placing a 
zero at z = 1 further enhances suppression of gain at lower frequencies. Figure 
12.4e shows a possible pole-zero configuration of the third-order high pass filter with 
corresponding amplitude and phase response . 

• Example 12.2: Bandpass Filter 
Using trial-and-error, design a tuned (bandpass) filter with zero transmission at 0 

Hz and also at 500 Hz. The resonant frequency is required to be 125 Hz. The highest 
frequency to be processed is fh = 500 Hz. 

Because fh = 500, we require T ~ 10
1
00 [see Eq. (8.17)]. Let us select T = 10-3

. 

Since the amplitude response is zero at w = 0 and w = 1000n:, we need to place zeros at 
eJwT corresponding to w = 0 and w = 1000n:. For w = 0, z = ejwT = 1; for w = 1000n: 
(with T = 10-3

), ejwT = -1. Hence, there must be zeros at z = ±1. Moreover, we need 
enhanced frequency response at w = 250n: . This frequency (with wT = n: I 4) corresponds 
to z = ejwT = ej7r /4. Therefore, to enhance the frequency response at this frequency, we 
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Fig. 12.5 Designing a bandpass filter in Example 12.2. 
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place a pole in its vicinity (near ej7r/ 4). Because this is a complex pole we also need its 
conjugate near e-j7r/ 4, as indicated in Fig. 12.5a. Let us choose these poles ).,1 and ).,2 as 

where hi < 1 for stability. The closer the value of hi is to the unit circle, the more sharply 
peaked is the response around w = 25071'. We also have a zeros at ±1. Hence 

H[zJ = K (z - 1)(z + 1). = K z2 - 1 
(z - h'leJ7r/4)(z - hlcJ7r/ 4) z2 - v2}Ylz + 11'12 

(12.20) 

For convenience we shall choose K = 1. The amplitude response is given by 

I j2wT 11 

I
H[ jWTJI- e-

e - le jwT _ hlej7r/41IejwT _ hle-j7r/41 

Now, using Eq.(12.9), we obtain 

IH[ejwTJI2 = 2(1- cos 2wT) 
[1 + 11'12 - 2hl cos (wT - i)] [1 + hl 2 

- 2hl cos (wT + i)] 
(12.21 ) 
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Figure 12.5b shows the amplitude response for values of h'l = 0.83, 0.96, and 1. As 
expected, the gain is zero at w = 0 and at 500 Hz (w = 1000rr) . The gain peaks at about 
125 Hz (w = 250rr) . The resonance (peaking) becomes pronounced as ITI approaches 1. 

Fig. 12.5c shows a canonical realization of this filter [see Eq. (12.20)]. • 

o Computer Example C12.2 
Using MATLAB, find the frequency respons~ of the bandpass filter in Example 12.2 

for h'l = 0.96. 

gamma=O.96; 
num=[1 0 -1]; den=[1 -sqrt(2)*gamma gamma-2]; 
W =-pi:pij 100:pi; 
H=freqz( num,den, W); 
mag=abs(H); 
phase=180jpi*unwrap(angle(H»; 
subplot(2,1,1) 
plot(W,mag) 
subplot(2,1,2) 
plot (W ,phase) 0 

• Example 12.3: Notch (Bandstop) Filter 
Design a second-order notch filter to have zero transmission at 250 Hz and a sharp 

recovery of gain to unity on both sides of 250 Hz. The highest significant frequency to be 
processed is :F h = 500 Hz. 

In tills case, T S Ij2.'Fi, = 10- 3
. Let. us choos T = 10- 3 . F I' the frequency 

250 Hz, wT = 2'1l'(250)T = 7fj2. T hus, tl,e frequency 250 Hz is l' present d by (l. point 
ejwo:r = e j1f

/
2 = j on t,h unit circl , as depicted ill F i . 12.611.. S ince we Heed zero 

traUtiJuissioJl at this frequency, we musL plac · a zero at. z = <;]'11'/2 = j and its conjugate at 
z = e-],,/2 = -j. We also require a sharp recov ry of gain OJ] both sid s of freqnency 250 
Hz. To accomplish this goal, we place two poles dos' to til two z ros i.n order t cancel 
out the effect of Lhe zeros as We move away hom the point. .i ( Ol'l'espollding to frequency 
250 Hz) . For Lhis reason, let us us poles at; ±j(~ with a < 1 for stability. The closer the 
poles are to t he zeros (Lhe closer t he a. Lo 1), the faster is the ga.in recovery on either side 
of 250 fu. T he res ulting transfer f\lllction is 

H[z] = K (z - j)(z + j) = K z2 + 1 
(z - ja)(z + ja) z2 + 0.2 

The dc gain (gain at w = 0, or z = 1 ) of this filter is 

2 
H[l]=K--

1 + 0.2 

Because we require a dc gain of unity, we must select K = 1"\0.2 . The transfer function is 
therefore 

and according to Eq. (12.9) 

fI [zJ = (1 + a2
)(z:'! + 1) 

2{z2 + a.2) 

H ]wT 2 _ (1 + 0.
2

)2 (e
j2wT + 1)(e-

j2WT + 1) 
1 [e ]1 - 4 (ej2wT + a2J(e j2wT + 0.2) 

(12 .22) 

(1 + 0.
2 )2(1 + cos 2wT) 

2(1 + 0.4 + 2a2 cos 2wT) 
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Fig. 12.6 Designing a notch (bandstop) filter in Example 12.3. 

(c) 

Figure 12.6b shows IH[ejWTll for values of a = 0.3,0.6, and 0.95. Figure 12.6c shows 

a realization of this filter. • 

/:; Exercise E12.3 
Using the graphical argument, show that a filter with transfer function 

H[z] = z - 0.9 
z 

acts as a highpass filter. Make a rough sketch of the amplitude response. \l 
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12.3 Digital Filters 

Digital filters and some of their advantages were discussed in Sec. 8.5. Digital 
filters can hp. classified as either recursive or nonrecursive. 

Recursive Filters 
The terms recursive and nonrecursive are easily understood in terms of a spe

cific example. Consider a third-order system with the transfer function 

(12.23) 

The input f[k] and the corresponding output y[k] of this system are related by the 
difference equation. 

y[k] + a2y[k - 1] + aIy[k - 2) + aoy[k - 3] = 

b3f[k) + b2f[k - 1] + bl![k - 2] + boi[k - 3] (12.24a) 

or 

y[k) = -a2y[k - 1] - aly[k - 2] - aoy[k - 3] , ~ 

v 
output terms 

+ b3f[k) + b2f[k - 1] + bl![k - 2] + bof[k - 3] (12.24b) , , 
input terms 

Here y[k), the output at instant k, is determined by the input values f[k], i[k - I), 
i[k - 2], and i[k - 3] as well as by the past output values y[k - I), y[k - 2), and 
y[k - 3]. The output is therefore determined iteratively or recursively from the its 
past values. To compute the present output of this third-order system, we use the 
past three values of the output. In general, for an nth-order system we use the past 
n values of the output. Such a system is called a recursive system. 

An interesting feature of a recursive system is that once an output exists, it 
tends to propagate itself forever because of its recursive nature. This is also seen 
from the canonical realization of H[z] in Fig. 12.7a. Once an input (any input) is 
applied, the feedback connections loop the output continuously back into the system, 
and the output continues forever. This propagation of the output in perpetuity 
occurs because of the nonzero values of coefficients ao, aI, a2, . .. , an-I . These 
coefficients [appearing in the denominator of H[z] in Eq. (12.23)] are the recursive 
coefficients. The coefficients bo, bl , b2, ... , bn (appearing in the numerator of 
H [z]) are the nonrecursive coefficients. If an input 6[k] is applied at the input 
of a recursive filter, the response h[k] will continue forever up to k = 00. For this 
reason, recursive filters are also known as infinite impulse response (IIR) filters. 
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F[z] 

(b) 

Fig. 12.7 Digital filter realization: (a) recursive filter (b) nonrecursive filter . 

Nonrecursive Filters 
If the recursive coefficients ao, ai, and a2 are zero, H[z] in Eq. (12.23) reduces 

to 

(12.25a) 

(12.25b) 

The difference equation corresponding to this system now reduces to 

y[k] = b3f[k] + b2/[k - 1] + bl/[k - 2] + bo/[k - 3] (12.26) 

Note that y[k] is now computed from the present and the three past values of the 
input f[k]. Such filters are called nonrecursive filters. Figure 12.7b shows a 
canonical realization of H [z], which is identical to the realization in Fig. 12.7a, with 
all the feedback connections eliminated. If we apply an input I[k] = 6[k] to this 
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5ySt m, the input will pass through the system and will be comll tely QuL of Lhe 
system by Ie ~ 4. There a.re DO feedack connections to perpetu te the outpu . 
Ther fore , h[k ] will be nonzero only for , Ie ~ 0 1, 2, and 3. For s.n n th-order 
nonr cursive filter, h[kJ is zero for k > n. Therefore, the duration of "lk] .is finite for 
a nonrecUTsive fi lter. Fo:r tills reason , nonrecursive fil ters ar al. 0 known as fin ite 
impulse response (FIR) fiLters. NonrecUTsive filters are a special ,-ase f recillsive 
filt ers, in which .. II th recursive coefficients a.o, al, a2, ... an-l are zero. 

An nth-order Donx cillsive filter hl'MaCer function is given by ((to = al = (£2 = 
. .. = a·n~l = 0). 

(12.27a) 

(12 .27b) 

The inverse z-transform of this equation yields 

h[k] = bno[k] + bn_l0[k - 1] + ... + b1o[k - n + 1] + boo[k - nJ (12.28) 

Observe that h[k] = 0 for k > n. 
Because nome ursive filter.s are a special case of recursive filters, we expect the 

performance of recursive filters to be superior . This expectation is true in the sense 
that a given amplitude response C8,n be achieved by a recursive filter of an order 
smaller than that required for the corresponding nonrecursive filter. However, non
recursive fil ters have the advantage of baving linear phase characteristics. Recursive 
fil ters can r alize linea.r phase only approximately. 

12.4 Filter Design Criteria 

A digital filter processes discrete-time signals to yield a discrete-time output. 
Digital filters can also process analog signals by converting them into discrete-time 
signals. If the input is a continuo1Js- time signal f(t) , it is converted into a discrete
time signal J[k] = J(kT) by a C/D (continuous-ti1l1e to dis rete-time) . converter. 
The signal J[k ] is now processed by a "digita l" (meaning discr te-time) system with 
transfer function H[z). The out put y[k] of H[z] is t hen c nverted into an "analog" 
(meaning continuous-time) s ~gnaJ lI(t). The system in Fig. 12.8a, therefore, acts as 
a conti'nuolls-time (or 'analog") system. Our objective is to determine the "digital" 
(discrete-time) pro esso1' H[zJ that will make the system in Fig. 12.8a equivalent to 
a desired "analog" (continuous-time) system with transfer function H a(s), shown 
in'ig. 12.8b. 

We may strive to make the two systems behave similarly in the time-domain or 
in the frequency-domain. Accordingly, we have two different design procedures. Let 
us now determine the equivalence criterion of the two systems in the time-domain 
and in the frequency-domain. 

12.4-1 The Time-Domain Equivalence Criterion 

By time-domain equivalence we mean that for the same input f (t), the output 
y(t) of the system in Fig. 12.8a is equal to the output y(t) of the system in Fig. 
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J(t) y (I) 
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Fig. 12.8 Analog filter realization with a digital filter. 

12.8b. Therefore y(kT), the samples of the output in Fig. 12.8b, are identical to 
y[k]' the output of H[z] in Fig. 12.8a. 

The output y(t) of the system in Fig. 12.8b ist 

An integral is a sum in the limit. Therefore, the above equation can be expressed 
as 

00 

y(t) = lim ~ f(mt:;.T)ha(t - mt:;.T)t:;.T 
LI,r--->O ~ 

(12.29a) 
m=-oo 

For our purpose it is convenient to use the notation T for t:;.T in the above equation. 
Such a change of notation yields 

00 

y(t) = lim T ~ f(mT)ha(t - mT) 
T--->O ~ 

(12.29b) 
m=-OQ 

The response at the kth sampling instant is y(kT) obtained by setting t = kT in 
the above equation: 

00 

y(kT) = lim T ~ f(mT)ha[(k - m)T] 
T--->O ~ 

(12.29c) 
m=-OQ 

In Fig. 12.8a, the input to H[z] is f(kT) = f[k]. If h[k] is the unit impulse response 
of H[z], then y[k], the output of H[z], is given by 

00 

y[k] = L f[m]h[k - m] (12.30) 
m=-OQ 

tFor the sake of generality, we are assuming a noncausal system. The argument and the results 
are also valid for causal systems. 
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If the two systems are to be equivalent, y(kT) in Eq. (12.29c) must be equal to y[k] 
in Eq. (12.30). Therefore 

h[k] = lim Tha(kT) 
T---;O 

(12.31) 

This is the time-domain criterion for equivalence of the two systems. according to 
this criterion, hlkJ, the uniL impuJs response of H [z] in Fig. 12.8a, must be equal 
to T tim . th samples of' ha(t), the unit impulse response of the system in Fig. 
12.8b, assuming that T -4 O. T his is known as the im pulse invariance criterion 
of filter design. t 

12.4-2 The Frequency-Domain Equivalence Criterion 

In Sec. 2.4-3 [Eq. (2.47)], we proved that for an analog system with transfer 
function H a(s), the system response y(t) to the everlasting exponential input f(t) = 
est is also an everlasting exponential 

(12.32) 

Similarly, in Eq. (9.57a), we showed that for a discrete-time system with transfer 
function H [z], the system response y [k] to an everlasting exponential input f [k] = zk 
is also an everlasting exponential H[zJz k: 

y[k] = H[z]zk (12.33) 

If the systems in Figs. 12.8a and 12.8b are equivalent, then the response of both 
systems to an everlasting exponential input f(t) = est should be the same. A 
continuous-time signal f(t) = est sampled every T seconds results in a discrete
time signal 

f[k] = eskT 

= zk with z = esT 

This discrete-time exponential zk is applied at the input of H [z] in Fig. 12.8a, whose 
response is 

y[k] = H[z]zklz=eST 

= H[esT]eskT (12.34) 

Now, for the system in Fig. 12.8b, y(kT), the kth sample of the output y(t) in Eq. 
(12.32), is 

(12.35) 

If the two systems are to be equivalent, a necessary condition is that y[k] in Eq. 
(12.34) must be equal to y(kT) in Eq. (12.35). This condition means that 

(12.36) 

This is the frequency-domain criterion for equivalence of the two systems. It should 
be remembered, however, that with this criterion we are ensuring only that the 

tBecause T is a constant, some authors ignore the factor T, which yields alternate criterion 
h[k] = ha(kT). Ignoring T merely scales the amplitude response of the resulting filter. 
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digital filter 's response matches exactly that of the desired analog filter at sampling 
instants. If we want the two responses to match at every value of t , we must have 
T --> O. Therefore 

(12.37) 

A Practical Difficulty 

Both of these criteria for filter design require the condition T --> 0 for real
izing a digital filter equivalent to a given analog filter. However, this condition is 
impossible in practice because it necessitates an infinite sampling rate, resulting 
in an infinite data rate. In practice, we must choose a small but nonzero T to 
achieve a compromise between the two conflicting requirements, namely closeness 
of approximation and system cost. 

This approximation, however, does not mean that the system in Fig. 12.8a 
is inferior to that in Fig. 12.8b, because often Ha(s) itself is an approximation 
to what we are seeking. For example, in lowpass filter design we strive to design 
a system with ideal lowpass characteristics. Failing that, however, we settle for 
some approximation such as Butterworth lowpass transfer functions. In fact, it is 
entirely possible that H[z], which is an approximation to Ha(s), may be a better 
approximation to the desired characteristics than is H a (s) itself. 

12.5 Recursive Filter Design by the Time-Domain Criterion: 
The Impulse Invariance Method 

The time-domain design criterion for the equivalence of the systems in Figs. 
12.8a and 12.8b is [see Eq. (12.31)] 

h[k] = lim Tha(kT) 
T-+O 

(12.38) 

where h[k] is the unit impulse response of H[z], ha(t) is the unit impulse response 
of Ha(s), and T is the sampling interval in Fig. 12.8a. 

As indicated earlier, it is impractical to let T --> O. In practice, T is chosen 
to be small but nonzero. We have already discussed the effect of aliasing and the 
consequent distortion in the frequency response caused by nonzero T. Assuming 
that we have selected a suitable value of T, we can ignore the condition T --> 0, and 
Eq. (12.38) can be expressed as 

The z-transform of this equation yields 

H[z] = TZ(ha(kT)) 

This result yields the desired transfer function H [z J. 
Let us consider a first-order transfer function 

c 
Ha(s) =-

s-,\ 

(12.39) 

(12.40) 

(12.41a) 
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c -- cT h [k] 

(a) (b) 

t-

Fig. 12.9 Procedure for the impulse invariance method of filter design. 

The impulse response h (t) of this filter is the inverse Laplace transform of H a (s), 
which in this case is 

(12.41b) 

The corresponding digital filter unit sample response h[k] is given by Eq. (12.39) 

h[k] = Tha(kT) = Tcek)"T (12.42) 

Figures 12.9a and b show ha(t) and h[k]. According to Eq. (12.40), H[z] is T times 
the z-transform of h[k]. Thus, 

Tcz 
H[z] = )"T z-e 

(12 .43) 

The procedure of finding H[z] can be systematized for any nth-order system. First 
we express an nth-order analog transfer function H a (s) as a sum of partial fractions 
as 

n 
~ c' 

Ha(s) = ~ --'-
i=l S - Ai 

Then the corresponding H[z ] is given by 

n 

L CiZ 
H[z]=T )"T 

z-e ' 
i =l 

(12.44) 

(12.45) 

This transfer function can be readily realized as a parallel combination of the n first
order systems if all the n poles of H a (s) are real. The complex conjugate poles, if 
any, must be realized as a single second-order term. Table 12.1 lists several pairs of 
H a (s) and their corresponding H [z]. 

Choosing the Sampling Interval T 

If Fh is the highest frequency to be processed, then the sampling interval must 
be no greater than 1/2Fh in order to avoid signal aliasing. However, in the impulse 
invariance method, there is yel: another consideration, which must also be taken into 
account. Consider a hypothetical frequency response H a(jw) (Fig. 12.lOa) that we 
wish to realize using a digital filter, as illustrated in Fig. 12.8a. Let us assume that 
we have an equivalent digital filter that meets the time-domain equivalence criterion 
in Eq. (12.37); that is , 
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TABLE 12.1 

Ha(8) ha(t) h[k] H[z] 

1 K K 8(t) TK8[k] TK 

2 
1 

u(t) TU[k] 
Tz 

8 z - 1 

1 
kT2 

T 2z 
3 

82 (z - 1)2 

4 
1 t 2 k 2T3 T3 z (z + 1) 

83 2 2 2(z - 1)3 

1 eAt Te AkT Tz 
5 

8-'\ z - eAT 

6 
1 teAt kT 2eAkT T2ze AT 

(8 - ,\)2 (z - e AT )2 

7 
A8+B 

Tre- at cos (bt + 8) Tre- akT cos (bkT + 8) 
Trz [z cos 8 - e-aT cos (bT - 8)] 

82 + 2a8 + C z2 - (2e- aT cos bT)z + e-2aT 

r = J A2c+B2-2ABa 
c-a2 b=~ 8 = tan-1 ( Aa-B ) 

A~ 
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Fig. 12.10 Aliasing in digital filters, and a choice of the sampling interval T. 

h[kJ = lim Tha(kT) 
T-40 

In Chapter 5 (Fig. 5.6), we showed that the Fourier transform of the samples of ha(t) 
consists of periodic repetition of Ha (jw) with period equal to the sampling frequency 
Ws = 27f-jT = 211"Fs.t Also Ha(jw) is not generally bandlimited. Hence, aliasing 
among various repeating cycles cannot be prevented, as depicted in Fig. 12.lOb. The 
resulting spectrum will be different from the desired spectrum, especially at higher 
frequencies. If Ha(jw) were to be bandlimited; that is, if Ha(jw) = 0 for Iwl > Wo, 
then the overlap could be avoided if we select the period 211" IT > 2wo. However, ac
cording to the Paley-Wiener criterion [Eq. (4.61)J, every practical system frequency 
response is nonbandlimited, and the cycle overlap is inevitable. However, for fre
quencies beyond some Wo, if IHa(jw) I is a negligible fraction, say 1%, of Ha(jw)lmax, 
then we can consider l Ha(jw) to be essentially bandlimited to Wo, and we can select 

T=~ 
Wo 

(12.46) 

• Example 12.4 
Design a digital filter to realize the first-order analog lowpass Butterworth filter with 

the transfer function 

(12.47) 

tHow can we apply the discussion in Chapter 5, which applies to impulse samples of continuous
time signals, to discrete-time signals? Recall our discussion in Sec. 10.4 (Fig. 10.8), where we 
showed that the spectrum of discrete-time signal is just a scaled version of the spectrum of the 
impulse samples of the corresponding continuous-time signal. 
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For this filter , we find the corresponding H[z] according to Eq. (12.43) (or pair 5 in Table 
12.1) as 

(12.48) 

Next, we select the value of T according to Eq. (12.46). We find the essential filter 
bandwidth wo, where the filter gain is 1% of the maximum filter gain. Here we use 

IHa(jW)1 = I We I 
..Jw2 + w~ 

In this case IHa(jW)lmax = 1. Hence, the essential bandwidth Wo is that frequency where 
the IHa(jwo)1 = 0.01. Observe that 

Hence, 

w» We 

IHa(jwo)1 ~ We = 0.01 ~ Wo = 100we = 107 

Wo 

Thus, for good results, we should select T = 2':... = 1O-7 7r. However, for the sake of Wo 
demonstrating aliasing effect of the overlapping cycles, we shall deliberately select a lower 
value of Wo (higher T). Let us select 

T = (~) = 10-6 7r 
lOwe 

Substitution of this value in Eq. (12.48) yields 

and 

[ 1 
0.3142z 

H z = -----=--=-=--=-c 
Z - 0.7304 

(12.49) 

(12.50) 

A canonical realization of this filter is shown in Fig. 12.11a by following the procedure in 
Sec. 11.4 (see Example 6.18c, Fig. 6.25b). Note the recursive nature of the filter. To find 
the frequency response of this digital filter, we rewrite H[zl as 

H[z] _ 0.3142 
- 1 - 0.7304z 1 

Therefore 
H [eiWTl = 0.3142 = ~----::-::-::-::-:-__ O-:::, 3::;-14_2---,-::-=:::-::-:---:----= 

1 - 0.7304e-J·wT (1 - 0.7304 cos wT) + jO.7304sin wT 

Consequently 

0.3142 
IH[eiwTJI = ---r-=:::::::::::;=::::::::====0:::::::.3=;=;14:=2===;==:::::::::::::::===~ 

';(1 - 0.7304 cos WT)2 + (0.7304sin wT)2 ..J1.533 - 1.4608 cos wT 

LH[ iwT] - 1 ( 0.7304sin wT ) e = - tan 
1 - 0.7304 cos wT 

Substituting T = 7r X 10-6 in the above equations, we obtain 

IH[eiWTll = O.h 
";1.533 - 1.4608 cos (7r X 1O - 6w) 

(12.51a) 

LH[ jwT] -1 [ 0.7304sin (7r x 1O-
6
w) ] e = - tan 

1 - 0.7304 cos (7r X 10-6w ) 
(12.51b) 
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Fig. 12.11 An example of filter design by the impulse invariance method: (a) filter 
realization (b) amplitude response (c) phase response. 

Also, according to Eq. (12.47) (with We = 105) 

Therefore 

Ha(jw) = . We 
JW+Wc jw + 105 

105 
JHa(jw)J = VW 2 + 1010 and LHa(Jw) = - tan-

1 1~5 

(12.52) 

Figures 12.11b and 12.11c show the amplitude and phase response of the analog and the 
(normalized)t digital filter over the frequency range 0 ~ w ~ 7r/T = 106 . Observe that 

tThQ frequency respolls H[eJ";'Z'] is higher than the desired frequency response Ha{jw) because of 
aliasing. We can partially correct this difference by multiplying H[z] with a normalizing constant, 
forcing the resuit;i"lg H[&,w'Z'j to be equal to Ha{jw) at w = O. The normal izing constant K is 
defined as the ratio of H,,(jO) to H[eJO ] = H[l], which in this case is 1/1.653 = 0.858. The 
normalized amplitude response in Fig. l2.llh is that of 0.858 C~O~;:04)' . 
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the behavior of the analog and the digital filter is very close over the range W ~ We = 105
. 

However, for higher frequencies, there is considerable aliasing, especially in the phase 
spectrum. • 

o Computer Example C12.3 
Using MATLAB, find the impulse invariance digital filter to realize the first-order 

analog Butterworth filter in Example 12.4. 
The analog filter transfer function is 105/(8 + 105) and the sampling interval T = 

10-6
11". A suitable MATLAB function to solve this problem is 'impinvar' . The input 

data are the coefficients of the numerator and the denominator polynomials of H a (8) 
[entered as (n + I)-element vectors num and den] and the sampling interval T. MATLAB 
returns b and a , the numerator and the denominator polynomial coefficients of the desired 
digital filter H[z]. 

In designing impulse invariance filter, we use the criterion h[k] = Tha(kT) in Eq. 
(12.39), whereas most books, including MATLAB, use the criterion h[k] = ha(kT). Hence, 
out answer will be T times the answer returned by MATLAB. To correct this discrepancy, 
we multiply num by T. 

T=pi/10 ' 6; num=T*[O 10'5]; den=[l 10'5]; 
FS=l/T; 
[b ,a] =impinvar( num,den,Fs) 

MATLAB returns b=O. 3142 and a=l -0.7304. Therefore 

H[z] = 0.3142z 
z - 0.7304 

a conclusion which agrees with our result in Eq. (12.50) . To plot the amplitude and the 
phase response, we can use the last 8 functions in Example C12.1. 0 
t:, Exercise E12.4 

Design a digital filter to realize an analog transfer function 

20 
Ha(s) =-

s+20 

Answer: H[z] = z':~!20T with T = 2;00 \l 

limitations of the Impulse Invariance Method 
The impulse invariance method is handicapped by aliasing. Consequently this 

method can be used to design filters where H a (j w) becomes negligible beyond some 
frequency B Hz. This condition restricts the procedure to lowpass and bandpass 
filters. The impulse invariance method cannot be used for highpass or bandstop 
filters. Moreover, to reduce aliasing effects the sampling rate has to be very high, 
which makes its implementation costly. In general, the frequency-domain method 
discussed in the next section is superior to this method. 

12.6 Recursive Filter Design by the Frequency-Domain Criterion: 
The Bilinear Transformation Method 

The bilinear transformation method discussed in this section is preferable to 
the impulse invariance method in filtering problems where the gains are constant 
over certain bands (piecewise constant amplitude response). This condition exists in 
lowpass, bandpass, highpass, and bandstop filters. Moreover, this method requires 
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a lower sampling rate compared to the impulse invariance method because of the 
absence of aliasing. In addition, the filter rolloff characteristics are sharper with 
this method compared to those obtained using the impulse invariance method. The 
absence of aliasing is the result of one-to-'one mapping from s plane to z plane 
inherent in this method. 

The frequency-domain design criterion is [see Eq. (12.37)] 

lim H[esT
] = Ha(s) (12.53) 

T-+O 

Let us consider the following power series for the hyperbolic tangent (see Sec. B.7-3) 

tanh (ST) == e
sT

/
2 - e -

sT
/
2 

= [ST _ ~ (ST)3 + ~ (ST)5 ... J 
2 esT/ 2 + e- sT/ 2 2 3 2 15 2 + (12.54) 

For small T (T --+ 0), we can ignore the higher-order terms in the infinite series on 
the right-hand side to yield 

Therefore, as T --+ 0 

lim =-(
eST / 2 _ e-ST/ 2 ) sT 

T-+O esT/ 2 + e-sT/ 2 2 

S = (~) 

(~) 

(>. "T/2 _ - 8']' / 2 

e sT /2 + - ., 1'/2 

Equation (12.53) now can be expressed as 

H[e
sT

] = Ha (~ ::~ ~ ~) 
From this result, it follows that 

H [z] = H a ( .: z - 1) 
T z + 1 

= Ha(s)ls=~ ;:;; 

Therefore, we can obtain H[z] from Ha(s) by using the transformationt 

S=(~):~~ 
This transformation is known as the bilinear transformation. 

(12.55a) 

(12.55b) 

(12.55c) 

(12.57) 

tThere exist other transformations, which can be used to derive H[z] from Ha(s). We start with 
the power series 

e-sT = 1- sT+ ~(sT)2 - !(sT)3 + ... 
In the limit as T --+ 0, all but the first two terms on the right-hand side can be ignored. This 
yields · 

This results in a transformation 
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Choice of T in Bilinear Transformation Method 

Because of the absence of aliasing in the bilinear transformation method, the 
value of the sampling interval T can be much smaller compared to the impulse 
invariance method. By absence of aliasing we mean only the kind of aliasing ob
served in impulse invariance method (Fig. 12.10b). The signal aliasing, which limits 
the highest usable frequency, is still present. Thus if the highest frequency to be 
processed is Fh Hz, then to avoid signal aliasing, we must use [see Eq. (8 .17c)] 

• Example 12.5 

1 
T<-

- 2Fh 

Using the bilinear transformation, synthesize 

From Eq. (12.57) , we obtain 

Ha(S)=~ 
s+we 

We 

H lz] = ...,-,( 2"--z--~l )-
- -- +Wc 
T z+ l 

weT(z + 1) 
(2 + weT)z - (2 - weT) 

(12.58) 

We should use Eq. (12.58) to select a suitable value for T . However, to facilitate comparison 
with the impulse invariance method, we choose here the same value for T as that in 
Example 12.4: T = 10:

0
' The substitution of weT = 11'/10 in the above equation yields 

Hence 

H[z] = 0.1357 ( z + 1 ) 
z - 0.7284 

H [ejwTj = 0. 1357(e
jwT + 1) 

eJwT - 0.7284 

0.1357( cos wT + 1 + j sin wT) = --~~~~~-~-~~ 
cos wT - 0.7284 + j sin wT 

T = 11' X 10- 6 

From this we obtain 

IH[ejwTJI = O.024(1 + coswT) [
. ]1/2 

1 - 0.9518 cos wT 
T = 11' X 10-6 

and 

1 1 z-1 
s=-(1--)=--

T z Tz 

(12 .59a) 

(12.56a) 

Similarly, starting with the power series for esT yields the transformation 
1 

S = T(z - 1) (12.56b) 

These are strikingly simple transformations, which work reasonably well for lowpass and bandpass 
filters with low resonant frequencies. They cannot be used for highpass and bandstop filters, 
however, and they are inferior to bilinear transformation. The transformation in Eq. (12.56b) also 
has a stability problem. 



12.6 Recursive Filter design: The Bilinear Transformation Method 743 

(a) 

IHa(joo)1 

............. -..... _.1( ...................... . 

LH 
00_ 

LHa(joo) (b) 

-rc/2 . 
.... .... ... ~ ....... - .. .... 

Fig.12.12 Bilinear transformation method of design: (a) amplitude response (b) phase 
response. 

LH[ 
jwT] -1 sin wT -1 sin wT 

e = tan - tan 
1 + cos wT cos wT - 0.7285 

(12.5gb) 

Figure 12.12 shows IHI and LH as computed from Eqs. (12.59). Compare these with the 
filter characteristics obtained from the impulse invariant method (Fig. 12.11). • 

o Computer Example C12.4 
Using MATLAB, find the bilinear transformed digital filter to realize the first-order 

analog Butterworth filter in Example 12.5. 
The analog filter transfer function is 105 /(s + 105

) and the sampling interval T = 

1O-6
7r. Hence, the sampling frequency Fs= 106/7r . A suitable MATLAB function to solve 

this problem is 'bilinear'. The input data are the coefficients of the numerator and 
the denominator polynomials of Ha(s) [entered as (n + I)-element vectors num and den] 
and the sampling frequency Fs Hz. MATLAB returns b and a, the numerator and the 
denominator polynomial coefficients of the desired digital filter H [z J. 

Fs=1O'6/pij num=[O 10'5]jden=[1 10'5Jj 
[b,a]=bilinear(num,den,Fs) 

MATLAB returns b=O .1358 0.1358 and a=l -0.7285. Therefore 

H[z] = 0.1358(z + 1) 
z - 0.7285 

which agrees with the answer found in Example 12.5. To plot the amplitude and the phase 
response, we can' use the last 8 functions in Example C12.1. 0 

Frequency Prewarping Inherent in Bilinear Transformation 

Figure 12.12 shows that IH [ejwTJ 1 ':::' IHaUw)1 for small w. For large values of w, 
the error increases. Moreover, IH [ejwTJ 1 = 0 at w = 7r IT. In fact, it appears as if the 
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entire frequency band (0 to 00) in IH a (jw) I is compressed within the range (0, ¥) 
in H [e jwT

]. Such warping of the frequency scale is peculiar to this transformation. 
To understand this behavior, consider Eq. (12.55a) with s = jw 

jwT _ 2 eJw 
- 1 _ 2 e 2 - e-2 - _ .2 wT 

H[e ]-Ha(- 'wT )-Ha - ~ ~ -Ha(JytanT) 
. T (~-jWT) 

T eJ + 1 T e 2 + e 2 

Therefore, response of the resulting digital filter at some frequency Wd is 

where 

H[e jwdT
] = Ha (j~tan ¥) 

= Ha(jw a) 

2 WdT 
W = -tan - -

a T 2 

(12.60) 

(12.61a) 

Thus, in the resulting digital filter, the behavior of the desired response Ha(jw) at 
some frequency Wa appears not at Wa but at frequency Wd, where [from Eq. (12.61a)] 

2 -1 Wa T 
wd = -tan --

T 2 
(12.61b) 

Figure 12.13a shows the plot of Wd as a function of Wa. For small Wa, the curve 
in Fig. 12.13a is practically linear, so Wd -::= Wa. At higher values of Wa, there is 
considerable diversion in the values of Wa and Wd. Thus, the digital filter imitates 
the desired analog filter at low frequencies, but at higher frequencies there is consid
erable distortion. Using this method, if we are trying to synthesize a filter to realize 
Ha(jw) depicted in Fig. 12.13b, the resulting digital filter frequency response will 
be, as illustrated in Fig. 12.13c. The analog filter behavior in the entire range of 
Wa from 0 to 00 is compressed in the digital filter in the range of Wd from 0 to 7r IT. 
This is as if a promising 20 year old man, who, after learning that he has only a 
year to live, tries to crowd his last year with every possible adventure, passion, and 
sensation that a normal human being would have experienced in an entire lifetime. 
This compression and frequency warping effect is the peculiarity of the bilinear 
transformation. 

There are two ways of overcoming frequency warping. The first is to reduce 
T (increase the sampling rate) so that the signal bandwidth is kept well below ¥ 
and Wa -::= Wd over the desired frequency band. This step is easy to execute, but 
it requires a higher sampling rate (lower T) than necessary. The second approach, 
known as prewarping, solves the problem without unduly reducing T. 

12.6-1 Bilinear Transformation Method with Prewarping 

In prewarping, we start not with the desired H a(jw) but with a prewarped 
H a(jw) in such a way that the warping because of bilinear transformation will 
compensate for the prewarping exactly. The idea here is to begin with a distorted 
analog filter (prewarping) so that the distortion caused by bilinear transformation 
will be canceled by the built-in (prewarping) distortion. The idea is similar to 
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Fig. 12.13 Frequency warping in bilinear transformation: (a) mapping relationship of 
analog and digital frequencies (b) analog response (c) corresponding digital response. 

the one used in prestressed concrete, in which a concrete beam is precompressed 
initially. When loaded, the beam experiences tension, which is canceled by the 
built-in compression. 

Usually the prew~rping is done at certain critical frequencies rather than over 
the entire band. The :final filter behavior is exactly equal to the desired behavior 
at these selected freqtiencies. Such a filter is adequate for most filtering problems 
if we choose the critical frequencies properly. 

If we require a filter to have gains gI, g2, ... , gm at frequencies (critical frequen
cies) WI, W2, ... , Wm respectively, then we must start with an analog filter H'(jw) 
which has gains gI, g2, ... , gm at frequencies WI', W2', ... , w m ' respectively, where 
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I 2 wiT 
Wi = -tan--

T 2 
i = 1,2,··· ,m (12.62) 

This results in prewarped filter H' (jw). Application of the bilinear transfor
mation (12 .57) to this filter yields the desired digital filter which has gains gl, g2, 

. . . , gm at frequencies W1, W2, ... , Wm respectively. This is because, according to Eq. 
(12.61a), the behavior of the analog filter at a frequency w/ appears in the digital 
filter at frequency 

2 -1 (W/T) 2 -1 [ (WiT)] T tan -2- = T tan tan -2-

We clarify these ideas with an example of a lowpass Butterworth filter. 

• Example 12.6 
Design a lowpass filter with the following specifications: The gain of unity at W = 0, 

and the gain is to be no less than -2 dB (G p = 0.785) over the passband 0 ::; W ::; 10. 
The gain is to be no greater than -11 dB (Gs = 0.2818) over the stopband w;::: 15. The 
highest frequency to be processed is Wh = 35 rad/s, which yields T ::; -rr /35. Let us use 
T = -rr/35. 

The specifications for a Butterworth filter for this design are wp = 8, Ws = 15, Gp = 

-2 dB, and Gs = -11 dB. Tn the first step, we prewarp the critical frequencies Wp and Ws 

according to Eq. (12.62) : 

Wp' = ~ tan ~ = ~ tan (~~) = 8.3623 

ws' = ~tan ¥ = ~tane:o") = 17.7696 

In the second step, we design a Butterworth filter with critical frequencies wp' = 8.3623 
and ws' = 17.7696 with Gp = -2 dB and Gs = -11 dB. The value of n (order of the filter) 
is obtained from Eq. (7.39): 

log[(lOl.l - 1)/(10°·2 - l)J 
n = = l.9405 

2Iog(17.7696/8.3623) 

We round up the value of n to 2. There are two possible values of Wi c. We shall choose 
the one given by equation (7.41), which satisfies the stopband specifications exactly, but 
oversatisfies that in the passband . This choice yields the 3-dB cutoff frequency we' as 

I 
We == 17.7696 = 9.6308 

(1011 - 1) ! 

From Table 7.1, we find the prewarped filter transfer function H a (s) for n = 2 and we' = 
9.6308 as 

1 
Ha(s) = ------",2------

(9.6~08) + v'2 (9.6~08) + 1 

92.7529 

82 + 13.628 + 92.7529 

Finally, we obtain H[zJ from Ha(s), using the bilinear transformation 

s= (~) :~~ = (~) :~~ 
This substitution yields 
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Fig. 12.14 Amplitude response of the filter in Example 12.6. 

H[zJ = Ha(8)ls=(~) fit 

92.7529 I 
= 82 + 13.628 + 92.7529 8=( ~) fit 

0.1039(z + 1)2 

Z2 - 0.9045z + 0.3201 

The frequency response of this filter is given by 

. 0 1039(ejWT + 1)2 H [ JWT] - . e - -eJ-OC.2c-w-=Tc-_-0-.9-0-'-4-5-eJ'7".w""T=--+!....0-.-32-0-1 

747 

30 

The amplitude response IH[ejwTJI, with T = 70/7r, is depicted in Fig. 12.14. • 

Summary of the Bilinear Transformation Method with Prewarping 

In the bilinear transformation method with prewarping, all the critical frequen
cies Wi are transformed (prewarped) by the equation 

, 2 wiT 
wi = -tan--

T 2 
i=1,2,"',m (12.63a) 

The prewarped cutoff frequency wc', determined by using prewarped critical fre
quencies, is used to find the prewarped analog filter transfer function H a (8). Fi
nally, we replace 8 with ~ ;:;:i in H a(8) to obtain the desired digital filter transfer 
function H[z] 

(12.63b) 
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A Simplified Procedure 

The above procedure can be simplified by observing that the scaling factor f 
is irrelevant in this manipulation and can be ignored. Instead of using Eqs. (12.63a) 
and (12.63b), we can use the simplified equations 

i = 1,2,·· ·, m (12.64a) 

and 
z - 1 

s=--
z + 1 

(12.64b) 

This simplification works because the factor 2/T in Eq. (12.63a) is a frequency 
scaling factor, and ignoring it in Eq. (12.64a) results in the pretransformed filter 
that is scaled by a factor 2/T in the frequency scale. This scaling is undone by 
using Eq. (12.64b) instead of Eq. (12.63b). 

To demonstrate the procedure, we shall redo Example 12.6 using this simplifi
cation. In the first step, we prewarp the critical frequencies Wp and Ws according to 
Eq. (12.64a): 

wp' = tan ¥ = tan (j;) = 0.3753 

ws' = tan ¥ = tan e;n = 0.7975 

In the second step, we design a Butterworth filter with critical frequencies 
wp ' = 0.3753 and ws' = 0.7975 with Gp = -2 dB and G s = - 11 dB. The value of 
n (order of the filter) is found from Eq. (7.39): 

log[(101.1 - 1)/(10°.2 - 1)] 
n = = 1.9405 

210g(0.7975/0.3753) 

We round up the value of n to 2. Also from Eq. (7.41), we find the 3-dB cutoff 
frequency we' as 

we' = 0.7975 1 = 0.4322 
(lOLl - I). 

From Table 7.1, we find the prewarped filter transfer function Ha(s) for n = 2 and 
we' = 0.4322 as 

1 0.1868 
Ha(s) = ( )2 In ( s2 + 0.6112s + 0.1868 

0.4;22 + v 2 0.4;22) + 1 

Finally, we obtain H[z] from Ha(s), using the simplified bilinear transformation in 
Eq. (12.64b): 

z - 1 
s=--

z +l 

Therefore 

0.1868 I Hz = H S z-1 = 
[ ] a( )ls=Z+I s2 + 0.6112s + 0.1868 s===-! 

0.1039(z + 1)2 

Z2 + 0.904z + 0.3201 
z+1 
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which is identical to the result obtained earlier. 

o Computer Example C12.5 
Design a lowpass digital filter to meet the specifications in Example 12.6, using bilin

ear transformation with prewarping. 
We shall give here MATLAB functions to design the four types of approximations: 

Butterworth, ChehYRhev, inverse Chebyshev, and elliptic. The input data asks for fre
quencies so normalized that the sampling radian frequency is 2. This requirement means 
the sampling radian frequency, which is 2rr/T, must be normalized to 2. Therefore, all the 
radian frequencies can be normalized by multiplying each of them by T/rr. In the present 
case, T = rr /35 so that T /rr = 1/35. Thus, to normalize any radian frequency, we just 
divide it by 35. The normalized Wp and Ws are 8/35 and 15/35, respectively. 

Wp=8/35;Ws=15/35;Gp=-2;Gs=-II;T=pi/35; 

% Butterworth 

[n,Wn]=buttord(Wp,Ws,-Gp,-Gs); 
[b,a]=butter(n,Wn) 

% Chebyshev 

[n,Wn]=cheblord(Wp,Ws,-Gp,-Gs); 
[b,a] =chebyl (n,-Gp, W n) 

% Inverse Chebyshev 

[n,Wn]=cheb2ord(Wp,Ws,-Gp,-Gs); 
[b,a]=cheby2(n,-Gs,Wn) 

% Elliptic 

[n,Wn]=ellipord(Wp,Ws,-Gp,-Gs); 
[b,a] =ellip( n,-Gp,-Gs, W n) 

% Plotting Amplitude and Phase Response 

W=O:.OOI:pi;W=W'; 
H=freqz(b,a,W); 

w=W/T; 
mag=abs(H); 
phase=180/pi*unwrap(angle(H»; 
subplot(2,1,1); 
plot(w,mag);grid; 
subplot(2,1,2); 
plot (w ,phase) ;grid 

MATLAB returns b=O .1039 0.2078 0.1039 and a=l -0 . 9045 0.3201 for Butterworth 
option. Therefore 

H _ 0.1039(z + 1)2 
[z] - Z 2 _ 0.9045z + 0.3201 

a result, which agrees with the answer found in Example 12.7. 0 
1:,. Exercise E12.5 

Design a first-order lowpass Butterworth filter using the prewarping method so that the 
analog and digital gains are identical at W = 0 and at the 3-dB cutoff frequency We. Use T = 7r /4we. 
Answer: 

H[z] = 0.8284(z + 1) 0.2929(z + 1) 
2.8284z - 1.1716 z - 0.4142 
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Fig. 12.15 Chebyshev highpass filter design using bilinear transformation with prewarp
ing method . 

• Example 12.7: Highpass Filter Design 
Design a I-dB ripple Chebyshev highpass filter with the following specifications (de

picted by the brick walls in Fig. 12.15a): The stopband gain 6 s ~ -6.3 dB (G s ~ 0.484) 
over the stopband 0 ~ w ~ 10 (w s = 10). The ripple f ~ 1 dB (Gp ~ 0.891) over a 
passband w ~ 15 (wp = 15). The highest frequency to be processed is Wh = 80 radians/so 

In order to select a suitable value of T, we use Eq. (12.58) to avoid signal aliasing: 

T<~=.!!.... 
- Wh 80 

7r 
==? Let us choose T = 100 

The critical frequencies are Ws = 10 and Wp = 15. The prewarped critical frequencies, 
according to Eq. (12.64a), are 

w/ = tan ¥ = tan (~) = 0.1584 

I _ t wpT - t (3,,-) - 0 24 wp - an -2- - an 40 - . 

In the second step, we design a prewarped Chebyshev high pass filter with critical 
frequencies ws' = 0.1584 and w/ = 0.24 with f = -1 dB and 6 s = -6.3 dB (Fig. 
12.15b). Following the procedure in Sec. 7.6-1, we first design a prototype lowpass filter 
with specifications, as indicated in Fig. 12.15b. Observe that the critical frequencies of 
the prototype filter are 1 (passband) and w/ /w/ = 1.515 (stopband) as explained in Sec. 
7.6-1 

The value of n needed to satisfy these specifications is given by [see Eq. (7.49b)] 

1 -1 [(100.63 
- 1] 1/2 

n = cosh-1 e.~15) cosh 100.1 _ 1 = 1.988 

We round up the value of n to 2. From Table 7.4 (Chebyshev filter with f = 1 and n = 2) 
we obtain the following prototype transfer function 
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0.982614 
Hp (8) = 82 + 1.09788 + 1.1025 (12.65) 

Next, to obtain the desired highpass transfer function, we replace 8 with w/ / s in the 
above prototype transfer function [see Eq. (7.55)]. To obtain the desired digital transfer 
function H[z], we then replace s with ~:;:~ [the bilinear transformation in Eq. (12.64b)]. 
This two-step operation may be combined in a single-step transformation as 

w/ w/(z + 1) 
s ==> -( Z--l-) = --':-( z-'----:"1 )-'

.+1 
(12.66) 

In this case w/ = 0.24 so that we replace s with 0.2:(Z;1) in the prototype transfer function 
in Eq. (12.65) to obtain the desired digital transfer function 

H _ 0.6902(z - 1)2 
[z] - z2 _ 1.4678z + 0.6298 

The continuous curve in Fig. 12.15a shows the amplitude response of this filter. • 

o Computer Example C12.6 
Design a high pass digital filter to meet the specifications in Example 12.7, using 

bilinear transformation with prewarping. 
As before, we shall give here MATLAB functions to design the four basic types of 

approximations. The input data asks for frequencies so normalized that the sampling 
radian frequency is 2. As explained in Example C12.5, all the radian frequencies can be 
normalized by multiplying each of them by T/7r. In the present case, T = 7r/100 so that 
T/7r = 1/100. Thus, to normalize any radian frequency, we just divide it by 100. The 
normalized Wp and Ws are 15/100 and 10/100, respectively. 

W p=0.15; W s=O.I;-Gp= 1;-Gs=6.3;T=pi/ 100; 

'l. Butterworth 
[n,Wn]=Buttord(Wp,Ws,-Gp,-Gs); 
[b,a]=butter(n,Wn,'high'); 

'l. Chebyshev 
[n,Wn]=cheblord(Wp,Ws,-Gp,-Gs)j 
[b,a]=chebyl (n,-Gp, W n, 'high') j 

'l. Inverse Chebyshev 

[n,Wn]=cheb2ord(Wp,Ws,-Gp,-Gs); 
[b,a]=cheby2(n,-Gs,Wn,'high') 

'l. Elliptic 
[n,Wn]=ellipord(Wp,Ws,-Gp,-Gs); 
[b,a]=ellip(n,-Gp,-Gs,Wn,'high') 

MATLAB returns b=0.6902 -1.3804 0.6902 and a=l -1.4678 0.6298 for Chebyshev op-
tion. Therefore 

0.6902(z - 1)2 
H[z] = z2 _ 1.4678z + 0.6298 

which agrees with the answer found in Example 12.6. To plot the amplitude and the phase 
response, we can use the last 9 functions in Example CI2.5. 0 
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Bandpass and Bandstop Filters 

For bandpass and bandstop filters, we follow a similar procedure. All the critical 
frequencies are first prewarped using the simplified form in Eq. (12.64a). Next, we 
determine a prototype lowpass filter, which is then converted to the desired analog 
filter using appropriate transformations discussed in Sec. 7.6. Finally, we use the 
bilinear transformation in Eq. (12.64b) to obtain the desired digital filter. As in 
the case of the highpass filter (discussed in Example 12.7), we can combine the two 
transformations into a single transformation. For the bandpass filter, we first use 
the transformation 

and then use the bilinear transformation in Eq. (12.64b). Thus, in the first step 
we replace S in the prototype transfer function Hp(s) with T(s) (the frequency 
transformation). In the second step we replace s with ~+~ (the simplified bilinear 
transformation). Thus, the final transformation is equivalent to replacing s with 
Tbp[Z] in the prototype filter transfer function Hp(s), where 

(Z - 1)2 + wp/wp,'(z + 1)2 
(w p,' - wp/)(z2 - 1) 

_ (wp,'w p,' + 1)z2 + 2(wP, 'wP,' - l)z + (wp,'w p,' + 1) 
- (w p,'-wp1 ')(z2-1) 

Using the same argument, we can show that for the bandstop filter, the desired 
digital filter transfer function H [z] can be obtained from the corresponding bandstop 
prototype filter Hp(s) by replacing s with ns[z], which is the reciprocal of np[z]. 
Both these transformations can be expressed in a more compact form as 

where 

[ ] 
_ z2 + 2az + 1 

Tbp z - (2 ) b z - 1 

b(Z2 - 1) 
Tbs[Z] = z2 + 2az + 1 

and 

(12.67a) 

(12.67b) 

(12.68) 

Thus, a digital filter transfer function H[z] can be obtained from Hp(s) by 
replacing s with Tbp[Z] for the bandpass filter, and replacing s with Tbs [z] for the 
bandstop filter. 

'1 
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• Example 12.8 
Design a digital Butterworth bandpass filter with amplitude response specifications 

illustrated by the brick walls in Fig. 12.16a with wPl = 1000, WP2 = 2000, W S1 = 450, 
W S2 = 4000, Gp = 0.7852 (-2.1 dB), and Gs = 0.1 (-.20 dB). Take T = 7r /10,000. 

The solution is executed in 3 steps: In the first step, we determine the prewarped 
critical frequencies. In the second step, the lowpass prototype filter transfer function 'J-lp(s) 
is found from the prewarped critical frequencies. Finally, the desired H[z) is found from 
'J-lp(s) using the lowpass analog to bandpass digital transformation by replacing sin 'J-lp(s) 
with Tbp[Z]. 

Step 1: Find prewarped critical frequencies 
The prewarped frequencies W P1 " wP2 ', W S1 ' , and W S2 ' corresponding to the four critical 
frequencies W p1 , Wp2 , W S1 , and W S 2 using Eq. (12.64a): 

, wslT 
W S1 = tan -2-

= tan ( 2~~~~0) = 0.0708 

wP1 ' = tan ( 10007r ) = 0.1584 
20 , 000 

W P2 ' = tan ( 20007r ) = 0.3249 
20,000 

W S2 ' = tan ( 40007r ) = 0.7265 
20,000 

Step 2: Find 'J-lp(s), the prewarped lowpass prototype analog filter 
This procedure with 5 substeps is identical to step 1 in the design of an analog 
bandpass filter discussed in Example 7.10 (Sec. 7.6-2). The 5 substeps are: 

Step 2.1: Find ws' for the prototype filter. For the prototype lowpass filter 
transfer function 'Hp(s) with amplitude response, as depicted in Fig. 12.16b. The 
frequency ws' is found [using Eq. (7.56») to be the smaller of 

(0 .1584)(0.3249) - (0.0708)2 = 3.939 
0.0708(0.3249 - 0.1584) 

and 
(0.7265)2 - (0.1584)(0.3249) = 3.937 

0.7265(0.3249 - 0.1584) 

which is 3.937. We now have a prototype lowpass filter in Fig. 12.16b with Op = -2.1 
dB, Os = -20 dB, wp' = 1, and ws' = 3.937. 

Step 2.2: Determine the filter order n 
The order of the Butterworth filter from Eq. (7.39) is 

.' l ' [ 10
2 

- 1 ] 
n = 2 log 3.937 log 100.21 _ 1 = 1.8498 

which is rounded up to n = 2. 

Step 2.3: Determine the cutoff frequency we' of the prototype filter 
In this step (which is not necessary for the Chebyshev design), we determine the 3-dB 
cutoff frequency We' for the prototype filter using anyone of the Eqs. (7.40) or (7.41). 
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Fig. 12.16 Butterworth bandpass filter design using the bilinear transformation with 
prewarping. 

Each equation gives a different answer, in general. However either answer will satisfy 
the specifications. Let us select Eq. (7.41), which yields 

, 
We == 

, 
Ws 

(2 )1/4 = 1.248 10 - 1 

Step 2.4: Find the normalized filter transfer function 
The normalized second-order Butterworth filter transfer function (from Table 7.1) is 

1t(8) ___ I=-_ 
- 8 2 + vl28 + 1 

Step 2.5: Find the prototype filter transfer function 1tp(8) 
The prototype filter transfer function 1tp (8) is obtained by substituting 8 with 8/ we' = 
8/1.248 in the normalized transfer function 1t(8) found in step 4. This substitution 
yields 

1t (8) _ (1.248? 
p - 82 + vI2(1.248)8 + (1.248)2 

1.5575 

8 2 + 1. 76498 + 1.5575 

Step 3: Find H[z] by using the bilinear transformation 
Finally, the desired transfer function H[z] of the bandpass filter is obtained from 
1tp(8) by replacing 8 with np[z] from Eqs. (12.67) and (12.68). From Eq. (12.68), we 
obtain 

a = wp, ' wP2 ' - 1 = -0.9485 = -0.9021 
wp,'wp,' + 1 1.0515 

and 
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Substitution of these values in Eq. (12.67) yields 

T [z] = z2 + 2az + 1 = 6.317(z2 - 1.8042z + 1") 
bp b(z2-1) , z2-1 

The desired bandpass filter transfer function H[z] is obtained from Hp(s) by substituting 
S with np[z] : 

H z _ 0.02964(z2 - l }2 
[ 1 - z4 - 3.1l9z3 + 3.926z 2 - 2.354z + 0.576 

The amplitude response IH[ejWTll of this filter is illustrated in Fig. 12.16a. • 

(:) Computer Example C12.7 
Design a bandpass digital filter to meet the specifications in Example 12.8, using 

bilinear transformation with prewarping. 
As before, we shall give here MATLAB functions to design the four basic types of 

approximations. In this case, Wp and Ws are 2-element vectors: Wp= [1000 2000] and 
Ws= [450 4000]. The iuput data as/<s [or frequencies so normalized that ,the sampling 
radian frequency is 2. As explained in Example C12.5, all the radian frequencies can b 
normalized by multiplying each of them by T/7r. In the present case, T = 11"/10'1 so that. 
T /7r = 1/104

. Thus, to normalize any radian frequency, we just divide it by 104 . The 
normalized Wp and Ws are [0.1 0.2] and [0.045 0.4], respectively. 

Wp=[O.l O.2]jWs=[O.045 O.4]jGp=-2.1;Gs=-20; 

% Butterworth 
[n,Wn]=buttord(Wp,Ws,-Gp,-Gs); 
[b,aJ=butter(n,Wn) 

% Chebyshev 
[n,Wn]=cheblord(Wp,Ws,-Gp,-Gs) 
[b,a]=chebyl(n,-Gp,Wn) 

% Inverse Chebyshev 
[n,Wn]=cheb20rd(Wp,Ws,-Gp,-Gs) 
[b,a]=cheby2(n,-Gs,Wn) 

% Elliptic 
[n,Wn]=ellipord(Wp,Ws,-Gp,-Gs) 
[b,aj=ellip(n,-Gp,-Gs,Wn) 

MATLAB gives b=O. 0296 0 -0.0593 0 0.0296 and a=l -3.119 3.9259 -2 . 3539 0.576 
for Butterworth ,option. Therefore' 

H z _ 0.0296(z2 - 1)2 
[ ] - Z4 - 3.119z3 + 3.9259z2 - 2.3539z + 0.5760 

a result, which agrees with the answer found in Example 12.8. To plot the amplitude and 
the phase response, we can use the last 9 functions in Example C12.5. (:) 

(:) Computer Example C12.B 
Using bilinear transformation with prewarping, design a bandstop digital filter to 

meet the following specifications: Wp= [450 4000], Ws= [1000 2000], Gp = -2.1 dB , and 
" 4 G s = -20 dB. Use T = 7r/10 . 



756 12 Frequency Response and Digital Filters 

As before, we give here MATLAB functions to design the four types of approxima
tions. The input data asks for frequencies so normalized that the sampling radian fre
quency is 2. As explained in Example CI2.S, all the radian frequencies can be normalized 
by multiplying each of them by T/,rr. In the present case, T = 71'/104 so that T/7I' = 1/104

. 

Thus, to normalize any radian frequency, we just divide it by 104
. 

Ws=[O.l O.2]jWp=[O.045 0.4]jGp=-2.1jGs=-20j 

% Butterworth 
[n,Wn]=buttord(Wp,Ws,-Gp,-Gs) 
[b,a]=butter(n,Wn,'stop') 

% Chebyshev 
[n,Wn]=cheblord(Wp,Ws,-Gp,-Gs) 
[b,a]=chebyl(n,-Gp,Wn,'stop') 

% Inverse Chebyshev 
[n,Wn]=cheb2ord(Wp,Ws,-Gp,-Gs)j 
[b,a] =cheby2 (n,-Gs, W n, 'stop') 

% Elliptic 

[n,Wn]=ellipord(Wp,Ws,-Gp,-Gs)j 
[b,a]=ellip(n,-Gp,-Gs,Wn,'stop') 

MATLAB returns b=O. 3762 -1. 3575 1. 9711 -1. 3575 0.3762 and a=l -2.2523 2.0563 
-1. 2053 0.4197 for Chebyshev option. Therefore 

H[z] = O.3762{ t" - 3.6084z3 + 5.2395z 2 
- 3.6084z + ],) 

z 4 - 2.2523 .. 3 + 2.0563 .. 2 - 1.2053z + 0.4197 

To plot the amplitude and the phase response, we can use the last 9 functions in Example 

CI2.S. 0 

12.7 Nonrecursive Filters 

The recursive filters are very sensitive to coefficient accuracy. Inaccuracies in 
their implementation, especially too short a word length, may change their behavior 
drastically and even make them unstable. Moreover, the recursive filter designs are 
well established only for amplitude responses that are piecewise constant, such as 
lowpass, bandpass, highpass, and bandstop filters. In contrast, a nonrecursive filter 
can be designed to have an arbitrarily shaped frequency response. In addition, 
nonrecursive filters can be designed to have a linear phase response. On the other 
hand, if a recursive filter can be found to do the job of a nonrecursive filter, the 
recursive filter is of lower order; that is, it is faster (with less processing delay) and 
requires less memory. If processing delay is not critical, the nonrecursive filter is the 
obvious choice. They also have an important place in non-audio applications, where 
a linear phase response is important. We shall review the concept of nonrecursive 
systems briefly. 

As discussed in Sec. 12.3, nonrecursive filters may be viewed as recursive filters, 
where all the feedback or recursive coefficients are zero; that is , when 

ao = al = a2 = .. , = an-l = 0 

Consequently, the transfer function of the resulting nth-order nonrecursive filter is 
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(12.69a) 

(12.69b) 

Now, by definition, H[z] is the z-transform of h[k]: 

00 

H[z] = I:h[k]z-k 
k=O 

(12.70) 

Comparison of this equation with Eq. (12.69b) shows that h[k] = 0 for k > n, and 
Eq. (12.70) becomes 

. where 

h[l] h[2] h[n] 
H[z] = h[O] + - + - + ... +-z z2 zn 

= 
h[O]zn + h[l]zn-l + ... + h[n - l]z + h[n] 

{ 
bn-k 

h[k] = 0 
O:S k :S n 

k>n 

(12.71a) 

(12.71b) 

(12.72) 

The impulse response h[k] has a finite width of (n + 1) elements. Hence, these 
filters are finite impulse response (FIR) filters. We shall use the terms nonrecursive 
and FIR interchangeably. Similarly, the terms recursive and IIR (infinite impulse 
response) will be used interchangeably in our future discussion. 

The impulse response h[k] can be expressed as 

h[k] = h[0]6[k] + h[1]6[k - 1] + ... + h[n]6[k - n] (12.73) 

The frequency response of this filter is obtained from Eq. (12 .71a) as 

H[e jwT] = h[O] + h[l]e- jwT + ... + h[n]e- jnwT (12.74a) 
n 

= I:h[k]e-jkWT (12.74b) 
k=O 

Filter Realization 

The nonrecursive (FIR) filter in Eq. (12.69a)is a special case of a general 
filter with all feedback (or recursive) coefficients zero. Therefore, the realization of 
this filter is the same as that of the nth-order recursive filter with all the feedback 
connectionfl omitted. Figure 12.7b shows a canonical realization of this filter. It is 
easy to verify from this figure that for the input 6[kJ, the output is h[k] given in Eq. 
(12.73). 
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The filter in Fig. 12.7b is a tapped delay line with successive taps at unit delay 
(T seconds). Such a filter is known as a transversal filter. Tapped analog delays 
are integrated circuits, which are available commercially. In these circuits the time 
delay is implemented by using charge transfer devices, which sample the input signal 
every T seconds (unit delay) and transfer the successive values of the samples to m 
storage cells. The stored signal at the kth tap is the input signal delayed by k time 
units (kT seconds). The sampling interval can be varied electronically over a wide 
range. Time delay can also be obtained by using shift registers. 

12.7-1 Symmetry Conditions for Linear Phase Response 

Consider an nth-order finite impulse response (FIR) filter described by the 
transfer function H[z] [ Eq. (12.69) or (12.7l)] and the corresponding impulse re
sponse h[k] [Eq. (12.73)]. We now show that if h[k] is either symmetric (Fig. 12.17a) 
or antisymmetric (Fig. 12.17b) about its center point, the filter phase response is 
a linear function of w. We consider a case where n is even. To avoid too much 
abstractness, we choose some convenient value for n, say n = 4, to demonstrate our 
point. It will then be easier to understand the generalization to the nth-order case. 

For n = 4, the impulse response in Eq. (12.73) reduces to 

h[k] = h[O]o[k] + h[l]o[k - 1] + h[2]o[k - 2] + h[3]o[k - 3] + h[4]O[k - 4] 

The transfer function H[z] in Eq. (12.7lb) reduces to 

H[z] = h[O] + h[l] + h[2] + h[3] + h[4] 
z Z2 z3 Z4 

(12.75a) 

= z-2 (h[O]z2 + h[l]z + h[2] + h[3]z-1 + h[4]Z-2) ~2.75b) 

Therefore, the frequency response is 

H[ejwT] = e-j2wT (h[O]ej2WT + h[l]ejwT + h[2] + h[3]e-jwT + h[4]e-j2WT) (12.76) 

If h[k] is symmetric about its center point (k = 2 in this case), then 

h[O] = h[4J, h[l] = h[3] 

and the frequency response reduces to 

= e- j2wT (h[2] + 2h[1] cos wT + 2h[O] cos 2WT) (12.77) 
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Fig. 12.17 Symmetry conditions for linear phase frequency response in nonrecursive 
filters. 

The quantity inside the parenthesis is real; it may be positive over some bands of 
frequencies and negative over other bands. This quantity represents the amplitude 
response IH[ejwT]I.t The phase response is given by 

LH[ejwT] = -2wT 

The phase response is a linear function of w. The time delay is the negative of 
the slope of LH[e jwT] with respect to w, which is 2T seconds in this case [see Eq. 
(4.59)] . 

If h[k) is antisymmetric about its center point, then the antisymmetry about 
the center point requires that h[k] = 0 at the center pointt [see Fig. 12.17b] . Thus, 
in this case 

h[O] = -h[4J, h[l) = -h[3], h[2] = 0 

and the frequency response reduces to 

H[e jwT) = e-j2wT (h[O) (e j2wT _ e-j2wT ) + h[l](ejwT _ e-jWT )) 

= 2je-j2wT (h[l) sin wT + h[O) sin 2WT) 

= 2ej( ~-2wT) (h[l] sin wT + h[O] sin 2WT) 

Thus, the phase response in this case is 

tS trictly speaking, IH[eiwTJI cannot be negative. Recall, however, that the only restriction on 
amplitude is that it calUlot be complex. It has to be real; it can be positive or negative. We 
should have used some other notation such as A(w) to denote the amplitude response. But this 
would create too many related functions causing possible confusion, Another alternative is to 
incorporate the negative sign of the amplitude in the phase response, which will be increased (or 
decreased) by 1r over the band where the amplitude response is negative. This alternative will still 
maintain the phase linearity. 
tAntisymmetry property requires that h[k] = -h[-k] at the center point also. This condition is 
possible only if h[k] = 0 at this point. 
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h[k] 
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6 

o 1 2 3 4 5 7 8 k-
Q--

(b) (d) 

~ t Z l Z l-

Fig. 12.18 Comb filter: Its impulse and frequency response. 

The phase response in this case is also a linear function of w. The system has the 
time delay (the negative slope of LH [ejwTj with respect to w) of 2T seconds (2 
units), the same as in the symmetric case. The only difference is that the phase 
response has a constant term 7r /2 . 

We can obtain similar results for odd values of n (see Prob. 12.7-1). This result 
can be generalized for an nth-order case to show that the phase response is linear, 
and the time delay is ni seconds (or ~ units) . 

• Example 12.9: Comb Filter 
Determine the transfer function and the frequency response of a sixth-order comb 

filter whose impulse response is given by 

h[k] = 5[k] - 5[k - 6] 

This impulse response is illustrated in Fig. 12.18a. Its canonical realization is depicted in 
Fig. 12.18b. Observe that h[k] is antisymmetric about k = 3. Also 

00 6 

H[.o] = ~J[k].o-k = 1 - .0-
6 = .0 z~ 1 (12.78) 

-00 

The frequency response is given by 

H[e jn ] = 1 _ e -j6n 

= e-j3n(ej3n _ e - j3n ) 

= 2je -j3n sin 30 

= 2ej(~-3n) sin 3D 

The term sin 3D can be positive as well as negative. Therefore 

and LH[e jn
] is as indicated in Fig. 12.8d. The amplitude response, illustrated in Fig. 

12.18c, is shaped like a comb with periodic nulls. The filter can be realized by the structure 
in Fig. 12.7b. Since h[k] = b6-k [see Eq. (12.72)], bo = -1, bl = b2 = b3 = b4 = bs = 0, 
and b6 = 1. 
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Using the same argument, the reader can show that an nth-order comb filter transfer 
function is 

H[z) = zn -1 
zn , (12.79) 

and 

12.8 Nonrecursive Filter Design 

As in the case of recursive (IIR) filters, nonrecursive filters can be designed by 
using the time-domain and the frequency-domain equivalence criteria. In the time
domain equivalence criterion, the digital filter impulse response is made identical to 
the samples of the desired (analog) filter impulse response. In the frequency-domain 
equivalence criterion, the digital filter frequency response samples at uniform fre
quency intervals are matched to the desired analog filter frequency response samples. 
This method is also known as the frequency sampling or the spectral sampling 
method. 

12.8-1 Time-Domain Equivalence Method of FIR Filter Design 

The time-domain equivalence method (also known as the Fourier series 
method) of design of FIR filters is identical to that for IIR filters discussed in Sec. 
12.5, except that FIR filter impulse response must be of finite duration. Therefore, 
the desired impulse response must be truncated to have finite duration. Truncating 
the impulse response abruptly will result in oscillatory frequency response because 
of the Gibbs phenomenon discussed in Sec. 3.4-3. In some filtering applications 
the oscillatory frequency response (which decays slowly as l/w) in the stopband 
may not be acceptable. By using a tapered window function for truncation of h[kJ, 
the oscillatory behavior can be reduced or even eliminated at the cost of increasing 
the transition band as discussed in Sec. 4.9. Note that the impulse response of 
an nth-order FIR filter has n + 1 samples. Hence, for truncating h[k] for an n-th 
order filter, we must use an No-point window, where No = n + 1. Several window 
functions and their tradeoffs appear in Table 12.2. 

Design Procedure 

Much of the discussion so far has been rather general. We shall now give some 
concrete examples of such filter design. Because we want the reader to be focussed 
on the procedure, we shall intentionally choose a small value for n (the filter order) 
to avoid getting distracted by a jungle of data. The procedure, however, is general 
and it can be applied to any value of n. 

The steps in the time-domain equivalence design method are: 

1. Determine the filter impulse response h[k] 
In the first step, we find the impulse response h[k] of the desired filter. Ac
cording to the time-domain equivalence criterion in Eq. (12.31), 

h[k] = Tha(kT) (12.80) 
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TABLE 12.2 

Some Window Function and Their Characteristics 

Rolloff Peak 
Mainlobe Rate Sidelobe 

Window w[kJ Width d B/octave Level in dB 

-M:Sk:SM M - No-l 
- 2 

Rectangular: rect (Nok_l) 4.- - 6 -13.3 No 

Bartlett: t:,. (Nok_l) 8.- -12 -26.5 No 

Hanning: 0.5 [1 + cos (J;.'\ )] 8.- - 18 -31.5 No 

Hamming: 0.54 + 0.46 cos (Jo'-~ 1 ) 8.- -6 -42.7 
No 

Blackman: 0.42 + 0.5 cos (Jorr~l) + 0.08 (~orr~l) 12rr -18 -58.1 No 

Io 

Kaiser: 1 :S 0< ::;' 1O 11 .2rr -6 -59.9 (0< = 8.168) --,;ro 

where ha (t) is the impulse response of the analog filter H a (s). Therefore, ha (t) 
is the inverse Laplace transform of H a (s) or the inverse Fourier transform of 
Ha(jw). Thus, 

1 J7r/T 
ha(t) = - Ha(jw)ejwtdw 

2rr -7r/T 
(12.81a) 

Recall that a digital filter frequency response is periodic with the first period in 
the frequency range - if :s: w < if. Hence, the best we could hope is to realize 
the equivalence of H a(jw) within this range. For this reason, the limits of 
integration are taken from -rr IT to rr IT. Therefore, according to Eq. (12.80) 

T J"Tr/T 
h[kJ = Tha(kT) = - Ha(jw) ejwkT dw 

2rr - 7r /T 
(12.81b) 

2. Windowing 
For linear phase filters, we generally start with zero phase filters for which 
H a (jw) is either real or imaginary. The impulse response ha (t) is either an even 
or odd function of t (see Prob. 4.1-1). In either case, ha(t) is centered at t = 0 
and has infinite duration in general. But h[kJ must have only a finite duration 
and it must start at k = 0 (causal) for filt er realizability. Consequently, the 
h[kJ found in step 1 needs to be truncated using an No-point window and then 
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delayed by No2-1 to make it causal. This delay produces the desired linear-phase 
frequency response. 

Straight truncation of data amounts to llsing a rectangular window, which has 
a unit weight over the window width, and zero weight for all other k. We saw 
that although such a window gives the smallest transition band, it results in a 
slowly decaying oscillatory frequency response in he stopband. This behavior 
can be corrected by using a tapered window of a suitable width. 

* 
3. Filter Frequency Response and Realization 

Knowing h[O], h[l], h[2J, " ' , h[n]' we determine H[z] using Eq. (12.71) and the 
frequency response H [e jwT] using Eq. (12.74). We now realize the truncated 
h[k] using the structure in Fig. 12.7b. 

Optimality of the Procedure 

The procedure outlined here using a rectangular window function is the op
timum in the sense that the energy of the error (difference) between the desired 
frequency response H a (jw) and the realized frequency response H [e jwT] is the min
imum for a given No. This conclusion follows from the fact that the resulting filter 
frequency response H [e jwT] is given by 

H[e jwT] = L h[k]e- jwkT 

k 

This frequency response is an approximation of the desired frequency response 
Ha(jw) because of the truncation of h[k]. Thus, 

Ha(jw) ~ Lh[k]e-jWkT 

k 

How do we select h[k] for the best approximation in the sense of minimizing the 
energy of the error H a(jw) - H [ejwTJ? We have already solved this problem in 
Sec. 3.3-2. The above equation shows that the right-hand side is the finite term 
exponential Fourier series for Ha(jw) with period 271"/T. As seen from Eq. (12.81b), 
h[k] are the Fourier coefficients. We also know that a finite Fourier series is the 
optimum (in the sense of minimizing the error energy) for a given No according to 
the finality property of the Fourier coefficients discussed in Sec. 3.3-2. t Clearly, this 
choice of h[k] is optimum in the sense of the minimum mean squared error. For the 
obvious reason, this method is also known as the Fourier series method . 

• Example 12.10 
Design an ideal lowpass filter for audio band with cutoff frequency 20 kHz. Use 

a sixth-order nonrecursive filter using rectangular and Hamming windows. The highest 
frequency to be processed is fh = 40 kHz. 

In this case n = 6 and No = n + 1 = 7. First we shall choose a suitable value for T. 
According to Eq. (12.58) 

T < ~ = _1_ = 12.5 x 10-6 

- Wh 2fh 

tNote that this finite term Fourier series corresponds to the rectangular window function. For 
windows other than rectangular, the optimality does not hold. 
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Recall that a continuous-time sinusoid of frequency w, during digital processing appears 
as a discrete-time sinusoid of frequency r! = wT. The cutoff frequency We = 27f(20, 000) = 
40,OOO7f appears as a discrete-time sinusoid of frequency 

r!e = weT = 40, 000w(12.5 X 10-6
) = ~, and We = 2~ 

The desired (zero phase) filter frequency response is depicted in Fig. 12.19a on both wand 
r! scales. Recall that the digital frequency range is from -7f to w only. We wish to design 
an ideal lowpass filter of cutoff frequency We = 2~ rad/s. The frequency response has a 
period of 2w on r! scale, and 2w /T on W scale. Rather than substitute T = 12.5 X 10-

6
, 

it is convenient to leave T as an unknown in our computations and substitute the value 
only in the end. Thus, we shall use the radian cutoff frequency We = W /2T. 

The impulse response of the desired ideal low pass (zero phase) filter in Fig. 12.19a is 

(Table 4.1, Pair 18) 

hart) = 2~ sine (;; ) (12.82) 

and according to the impulse invariance criterion [Eq. (12.39)] 

1. (WkT) 1 (Wk) h[k] = Tha(kT) = "2 SIllC 2T ="2 sine 2"" (12.83) 

Figure 12.19b shows h[k]. To make this filter realizable, we need to truncate it using a 
suitable No-point window, then delay the truncated h[k] by No2-1 units. In the present 
example, No = 7. Figure 12.19c shows the impulse response truncated by a 7-point 
rectangular window and Fig. 12.19d shows the truncated h[k] delayed by No2-1 = 3 units. 

Note that the noncausal filter in this case is made realizable at the cost of a delay of 
t = 3T seconds. This constant delay of ni is what produces a linear phase characteristic. 
The rectangular windowed, causal filter impulse response hR[k] is the truncated h[k] in 

Fig. 12.19d delayed by 3T. 

hR[k] = h[k - 3] = ~sinc [ w(k 2- 3)] 0::; k ::; 6 (12.84) 

The values of the coefficient hR[k] are shown in Table 12.3. Also 

6 

H[z] = L h[k]z-k 
k=O 

= _~ + .!.z-2 + ~z-3 + .!.Z - 4 _ ~z-6 
37f W 2 7f 37f 

=Z --z +-z+-++-z --z -3 ( 1 3 1 1 1 - I 1 -3) 
3w W 2 W 3w 

Hence, the frequency response H R[ejwT] is 

6 

HR[ejwT] = LhR[k]e-jWkT 

k=O 

= e-
j3wT [~+ ~ (e jWT + e-

JwT
) _ 3~ (e

J3WT + e-
J3WT

)] 

= e - + - cos wT - - cos 3wT -j3wT [1 2 2 ] 
2 W 3w 

-J3wT [1 2 (w) 2 
= e "2 + -.;; cos 80,000 - 3w cos (80~~00) ] 

(12.85) 

(12.86) 
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Fig. 12.19 Nonrecursive method of lowpass filter design. 
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(a) 

(b) 

(c) 

(d) 

The term e- j3wT is a linear phase representing the delay of 3T seconds. The mag .. 
nitude of the bracketed term, depicted in Fig. 12.19a by a solid curve, exhibits oscilla .. 
tory behavior which decays rather slowly over the stopband. Although increasing n (the 
system order) improves the frequency response, its oscillatory nature persists (Gibbs phe .. 
nomenon).t In some filtering applications, the oscillatory characteristic (which decays 
slowly as l/w) in the stopband may not be acceptable. By using a tapered window func .. 

tEq . (12.86) is identiclll to the first three terms in ~q. (3.61) except that lhe Former is a fUllctlon 
of w and the latter is a function o~ i . Clearly, H!c1wT

J is a truncated Fou. ier series for the gate 
funct;ion. As we increase on, I-1 !ejw7 ] converges to 'the gate function in the manner depicted in Fig. 
:U l. Regardless £ the value of 'fL , how ver, Ff[eJw'rJ exhibits oscillatory behavior because of the 
Gibbs phenomenon. 
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TABLE 12.3 

Rectangular Window Hamming Window 

k hR[k] wH[k] hH[k] 

0 -1/37r 0.08 -0.00848 

1 0 0.31 0 

2 1/7r 0.77 0.245 

3 1/2 1 0.5 

4 1/7r 0.77 0.245 

5 0 0.31 0 

6 -1/37r 0.08 -0.00848 

tion such as a Hamming window, the oscillatory behavior can be eliminated at the cost 
of increasing the transition band (from passband to stopband). The Hamming window 
function is given by 

{ 
0.54 + 0.46 cos (~o"'~l) 

wH[k] = 
o 

(12.87) 
otherwise 

In our case No = n + 1 = 7. Hence, 

{ 

0.54 + 0.46 cos ("'n 
wH[k] = 

o 
-3::::; Ikl ::::; 3 

otherwise 

Table 12.3 also shows the (delayed) Hamming window coefficients wH[k] and the corre
sponding impulse response hH[k] = h[k]WH[k]. The frequency response of the Hamming 
window filter is 

HH[e jwT
] = e- j3wT [~ + 0.245 (e jWT + e-jWT

) _ 0.00848 (e j3WT + e- j3WT
)] 

= e- j3wT [~+ 0.49 cos wT - 0.01696 cos 3wT] 

With the coefficients hR[k] (or hH[kJ) in Table 12.3, the desired filter can be realized by 
using six delay elements, as depicted in Fig. 12.7. 

and 

According to Eqs. (12.86), we have 

. T { -3WT 
LHR[eJw 

] = 
7r - 3wT 

when ~ + ~ cos wT - 3~ cos 3wT ;0:: 0 

when ~ + ~ cos wT - 3~ cos 3wT < 0 

(12.88a) 

(12.88b) 
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For the Hamming filter 

· T 
IHH[e

Jw 11 = ~ + 0.49 cos wT - 0.01696 co,s 3wT (12.88c) 

In either filter, the phase response is a linear function of w with slope -3T, indicating 
time delay of 3T. Note that both hR[k] and hh[k1 are symmetric about k = 3. • 

o Computer Example C12.9 

Using MATLAB, find the frequency response of the lowpass filter in Example 12.10 
for 98th-order filter. Plot the frequency response for rectangular and Hamming window 
filters. 

NO=99j 
m=(NO-l)/2j 
k=O:NO-lj 
hl= (1 /2) *sinc( (k-m) /2) j 
numl=hlj 
den1=[l, zeros(l,NO-l)]j 
W =-pi:pi/100:pij 
Hl=freqz(numl,denl,W)j 
magl=abs(Hl)j 
phase1= 180 /pi*unwrap( angle(Hl» j 
for i=l:NO 
k=i-1j 

h2(i)= (1/2) *sinc( (k-m) /2) * (0.54+0.46*cos(pi* (k-m) /m» j 
end 
num2=h2j 
den2=[l, zeros(l,NO-l)]j 
W =-pi:pi/lOO:pij 
H2=freqz( num2,den2, W) j 
mag2=abs(H2)j 
phase2= 180 /pi *unwrap( angle(H2» j 
subplot(2,1,1)j 
plot(W,mag1,W,mag2)jgridj 
subplot(2,1,2) j 
plot(W ,phasel, W ,phase2) jgrid 0 

b. Exercise E12.6 
If we were to use n = 8 filter in Example 12.12, show that the filter transfer function for the 

bartlett (triangular) window is 

H[z ] = -0.02653z6 + 0.2387z4 + 0.5z3 + 0.2387z2 + 0.02653 
z6 

Observe that in this case the filter order is reduced by 2 because the two end-points have a zero 
value for the Bartlett window. \l 

• Example 12.11 

Design a differentiator using a tenth-order nonrecursive filter. 
In this case n = 10 and No = 11. The transfer function of an ideal differentiator is 

Ha(s) = s. Therefore, 

Ha(jw) =jw 
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and according to Eq. (12.81 b)t 

T J1f!T 
h[k] = - jwejwkT dw 

271' -1f!T 

cos k7l' 

kT 
(12.89) = 

This is a noncausal filter. We truncate it using an ll-point window and then delay it by 
No

2
-1 = 5 units to make it realizable. The desired impulse response using a rectangular 

window is 

hR[k] = h[k - 5] 0::; k ::; 10 

Table 12.4 shows this impulse response under the rectangular window. The frequency 
response is 

10 

HR[e
jwT

] = 2: hR[k]e-
jkTw 

k=O 

Substitution of values of hR[k] from Table 12.4 in this equation yields 

H [jwT] _ 1 -j5wT [( jwT -jwT) 1 (j2wT -j2wT) + 1 (j3wT -j3wT) R e - 'Te e - e - '2 e - e "3 e - e 

1 (j4wT -j4wT) + 1 ( j5wT -j5WT)] -4e -e 5e-e 

= ~e -j5wT [2 sin wT - sin 2wT + ~ sin 3wT - ~ sin 4wT + g sin 5wT] 

= ,j:,ej(~-5WT) [2 sin wT- sin 2wT+ ~ sin 3wT - ~ sin 4wT+ g sin 5wT] 

Hence 

IHR[ejWTlI = ,j:, 12sin wT - sin 2wT + ~ sin 3wT - ~ sin 4wT + g sin 5wTI (12.90a) 

and 

w>O 
(12.90b) 

w<O 

The terms ±5wT represent the time delay of 5T seconds. Note that because Ha(jw) = jw, 

{ 

71'/2 
LHa(jw) = 

-71'/2 

w>O 

w < 0 
(12.91) 

tNote that according to Eq. (12.81a) 

1 J1f!2T 
ha(O) = - jwc/;.,,; = 0 

271' -1f!2T 

Therefore, h[O] = O. 
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T herefore, the phase characteris l.ic of FI n lc·1WT I is icl ul. lc.:al t. the desired (ideal) differen
t,iator with a delay of 5T s~cond8 . Figure 12.20 shows ~l1e ampl lLlId r 'pouse IHI r t.he 
[ a lizeu fil ter and Lh ' IfIa l of t.he idenl (desired) cl ift' relll.iat.ol'. The ampli Lud response 
'H/{le·iw~ l , wh ich is osci llalory, call be improved by 1lsing a ta pered window ftlnctl n La 
trun at ho.(L) grauually. The Hamming window [W1ction Wff[k] rJ:1;q . (12.87)J fo.' n = 10 
is given by 

{ 

0.54 + 0.46 cos (1I'5k) 
wH[kj = 

o otherwise 

Table 12.4 shows the (delayed) Hamming coefficients wH[kj and the corresponding filter 
impulse response hH[kj = h[k]WH[kj . Note that hR[kj and hH[k] are both antisymmetric 
about k = 5. Using the Hamming coefficients from Table 12.4, HH[eiWTj, the windowed 
filter frequency response, is given by 

HH[eiwT ] = ~ej(:g. -5WT) [1.8242 sin wT - 0.682sin 2wT + O.2652sin 3wT 

-0.0839 sin 4wT + 0.032 sin 5wT] 

Figure 12.20 shows the amplitude response of the ideal, the rectangular-windowed, 
and the Hamming-windowed filter characteristics. The phase response of both the realized 
filters are identical, but with a delay of 5T seconds. The amplitude response of the 
windowed (Hamming) filter is practically the same over a large band (two thirds of the 
band) as that for the ideal filter, and hence is preferable to the unwindowed (or rectangular
windowed) filter . 

TABLE 12,4 

Rectangular Window Hamming Window 

k hR[k] wH[kj hH[k] 

0 1/5T 0.08 0.016/T 

1 -1/4T 0.1678 - 0.04195/T 

2 1/3T 0.3978 0.1326/T 

3 -1/2T 0.6821 -0.3410/T 

4 liT 0.9121 0.9121/T 

5 0 1 0 

6 -l/T 0.9121 -0.9121/T 

7 l/2T 0.6821 0.3410/T 

8 -1/3T 0.3978 -0.1326/T 

9 1/4T 0.1678 0.04195/T 

10 -1/5T 0.08 -0.016/T 
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Fig. 12.20 An ideal differentiator design by a tenth-order nonrecursive filter using 
rectangular and Hamming windows. 

The amplitude response of the Hamming filter is practically ideal up to frequency 
W ~ (2/3) (7r /T) = 27r /3T. If we wish to design a digital differentiator for audio application, 
for instance, where the highest frequency is, say 20 kHz, we should select this frequency 
to be less than 27r /3T. Thus, 

27r 
27r X 20,000 ::; 3T ===? T::; 16.67 J.Ls 

Thus, a choice of T ::; 16.67 J.LS would result in a desired differentiator. This example (also 
Fig. 12.20) shows that a Hamming window shrinks the passband. This is generally true of 
tapered windows. To compensate for this shrinkage, we start with a passband somewhat 

larger (typically 25% larger) than the design passband. In the present case, for instance, 
selecting T = 16.67 J.LS would make the passband Wh = 7r /T ~ 27r(30,000), which is 50% 
higher than the design passband of 20,000 Hz. • 

o Computer Example C12.10 
Using MATLAB, find the frequency response of the 48th-order digital differentiator 

in Example 12.10. Plot the frequency response for rectangular and Hamming window 
differentiators. 

NO=49j 
m=(NO-1)/2j 
k=0:NO-1j 
T=lj 
h1=cos( (k-m) *pi)./ «k-m) *T) jh1 (25 )=OJ 
num1=h1j 
den1=[1, zeros(1,NO-1)]j 
W =-pi:pi/100:pij 
H1=freqz(num1,den1,W)j 
mag1=abs(H1)j 
phase 1 =180 /pi *unwrap( angle(H1» j 
h2=cos( (k-m) *pi)./ «k-m)*T). * (0.54+0.46*cos(pi* (k-m)./m) )jh2(25 )=OJ 
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num2=h2; 
den2=denl; 
H2=freqz(num2,den2,W); 
mag2=abs(H2); 
phase2= 180 /pi*unwrap( angle(H2»; 
subplot(2,1,1); 
plot(W ,magl,W ,mag2); 
sUbplot(2,1,2); 
plot(W,phase2,W,phasel); 0 

6, Exercise E12.7 
Design a sixth-order nonrecursive filter to realize HaUw) = 6,(wT/7r) 

Answer: 

h[k] = { !sinc
2 

("4k) Ikl :S 3 

Ikl > 3 
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12.8-2 Nonrecursive Filter Design by the Frequency-Domain Criterion: 
The Frequency Sampling Method 

The frequency-domain criterion is [see Eq. (12.36)] 

In this case we shall realize this equality for real frequencies; that is, for s = jw: 

(12.92) 

For an nth-order filter, there are only No = n + 1 elements in h[k], and we can hope 
to force the two frequency spectra in Eq. (12.92) to be equal only at No points. 
Because the spectral width is Z;, we choose these frequencies wo J

o
7rT rad/s 

apart; that is , 

We require that 

. T 
Ha(jrwo) = H[eJTWO 

] 

271' 
Wo=-

NoT 

r = 0, 1, 2, , ... , No - 1 

(12.93) 

(12.94) 

Note that these are the samples of the periodic extension of Ha(jw) (or H[e jwT]). 

Because we force the frequency response of the filter to be equal to the desired 
frequency response at No equidistant frequencies in the spectrum, this method is 
known as the frequency sampling or the ;spectral sampling method. 

In order to find the filter transfer function, we first determine the filter impulse 
response h[k]. Thus, our problem is to determine the filter impulse response from 
the knowledge of the No uniform samples of the periodic extension of the filter 
frequency response H[eiwT). But II [eiwTj is the DTFT of h[k] [see Eq. (10.92)]. 
Hence, as hown in ec. 10.6-2 [Eqs. (10.6 ) and (10.69)]' h[kj and H[ejrwoT] (the 
No uniform samples of H [ejwT ]) 301' the DIT pair with 0 0 = woT. Hence, the 
desired h[k] is th IDF'f of H [ejwTJ, given by 
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No-l 1" . T ·2rrrk = - 6 H[eJrwo ]eJN(j 
No r=O 

k = 0, 1, 2, , ... , No - 1 (12.95) 

Note that H[ejrwoT] = Ha(jrwo) are known [Eq. (12.94)]. We can use IFFT to 
compute the No values of h[k]. From these values of h[k], we can determine the 
filter transfer function H [z] as 

No-l 

H[z] = ~ h[k]z-k (12.96) 
k=O 

Linear Phase (Constant Delay) Filters 

We desire that Ha(jw) = H[e jwT ]. The filter featured in Eqs. (12.95) and 
(12.96) satisfies this condition only at the No values of w. Between samples, the 
frequency response, especially the phase response, could deviate considerably. If 
we want a linear phase characteristic, the procedure is slightly modified. First, we 
start with a zero phase (or a constant phase ± ~ ) response. For such a frequency 
response h[k] is an even (or odd) function of k (see Prob. 4.1-1). In either case, 
h[k] is centered at k = O. To realize this noncausal filter, we need to delay h[k] by 

(No - 1)/2 units. Such a delay amounts to multiplying H[e jwT] with e-jN02-1wT. 
Thus, the delay of h[k] does not alter the filter amplitude response, but the phase 
response changes by -(No -1)wT/2, which is a linear function of w. Hence, we are 
assured that the filter is realizable (causal) and has a linear phase. Thus, if we wish 

to realize a frequency response H[e jwT], we begin with H[ejwT]e-jN02-1WT and find 
the IDFT of its No samples. The resulting IDFT at k = 0, 1, 2, 3, ... , No - 1 is 
the desired impulse response, which is causal, and the corresponding phase response 
is linear. 

Note that woT = 't:, and the No uniform samples of H[ejWT]e-jN02-1WT are 

= H eJ NoT e -Jr7r NO 
[ 

. 2rrr] . ~ 
(12.97) 

Recall that the No samples H r are the uniform samples of the periodic extension 
of H [ejwT]e- j No;lWT. Hence, Eq. (12.97) applies to samples of the frequency range 
from 0 ::::: w ::::: ?f. The remaining samples are obtained by using the conjugate 
symmetry property Hr = HNo-r' The desired h[k] is the IDFT of Hr; that is, 

k = 0, 1, 2, ... , No - 1 (12.98) 

and 
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Fig. 12.21 Lowpass filter design using the frequency sampling method . 

No-l 

H[zl = L h[klz-k (12.99) 
k=O 

This procedure will now be explained by an example . 

• Example 12.12 

Using the frequency sampling method, design a sixth-order nonrecursive ideallowpass 
filter of cutoff frequency 2"r rad/s. 

The frequency response H[eiwTj of an ideal lowpass filter is shown (shaded) in Fig. 
12.21. In this case 

N - 7 No - 1 6 211" 211" 
0-, No - 7' wo = NoT = 7T 

The seven samples Hr in Eq. (12.97) are 

Thus 

The remaining three samples should be determined using the conjugate property of DFT, 
Hr = H No -r, that is Hr = H7- r . Thus 

The desired h[kJ is the IDFT of Hr given by [Eq. (12.98)J 

6 

h[kJ = L Hrei 2w;k k = 0, 1, 2, 3, "', 6 
r=O 

We may compute this IDFT by using the IFFT algorithm or by straightforward 
substitution of values of Hr in the above equation as 

2x 
T 
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6 

h[O) = ~ '" Hr = ~[1 + e- j67r
/

7 + ej67r
/

7
) = ~ (1 + 2 cos 671") = -0.1146 

70 7 7 7 
r = O 

6 

h[l] = ~ '" H re
j2;r = ~[l + e- j47r / 7 + ej47r / 7

) = ~ (1 + 2cos 471") = 0.0792 
70 7 7 7 

r = O 

6 
1 L jr,"r 1 -j27r/7 j2rr/7 1 ( 271") h[2]=- Hre 7 =-[l+ e +e )=- 1+2cos- =0.3209 
7 7 7 7 

r=O 

6 

1 '" 6"r 1 h[3) = "70 HreJ 
--., = "7 [1 + 1 + 1) = 0.4285 

r=O 

Similarly, we can show that 

h[4) = 0.3209, h[5] = 0.0792, and h[6] = -0.01146 

Observe that h[k) is symmetrical about its center point k = 3 as expected. Compare these 
values with those found by the impulse invariance method in Table 12.3 for a rectangular 
window. Although the two sets of values are different, they are comparable. What is the 
difference in the two filters? The impulse invariance filter optimizes the design with respect 
to all frequencies. It minimizes the mean squared value of the difference between the desired 
and the realized frequency response. The frequency sampling method, in contrast, realizes 
a filter whose frequency response matches exactly to the desired frequency response at 
No uniformly spaced frequencies. The mean squared error in this design will generally be 
higher than that in the impulse invariance method. 

The filter transfer function is 

H[ ] 46 
0.0792 0.3209 0.4285 0.3209 0.0792 0.1146 

z =-0.11 + --+--+--+--+-- - --
z z2 z3 z4 z5 z6 

and 

-0.1146z 6 + 0.0792z 5 + 0.3209z4 + 0.4285z3 + 0 .3209z2 + 0.0792z - 0.1146 
z6 

H[ejwT) = -0.1146 + 0 .0792e- jwT + 0.320ge- j2wT + 0.4285e- j3wT 

+ 0.320ge- j4wT + 0.0792e-j5wT _ 0.1146e- j6wT 

= e-j3wT [0.4285 + 0.6418 cos wT + 0.1584cos 2wT - 0.2292 cos 3wT) 

The magnitude of this response (Fig. 12.21) shows that the realized filter values match 
exactly the desired response at the No sample points. The time delay adds a linear phase 
-3Tw to the filter characteristic. • 

o Computer Example C12.11 
Using MATLAB, find h[k) and the corresponding H[ejwT) for the frequency sampling 

filter in Example 12.12. 

NO=7; 
H=[1 1 0 0 0 0 1]; 
for i=I:NO 
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r=i-l; 
Hr(i)=H(i) *exp( -j*r*pi* (NO-I) /NO); 

end 
k=O:6 
hk=ifft(Hr); 
subplot(2,1,1); 
stem(k,hk) ; 
xlabel('k') ;ylabel('h[k]'); 
M=512 
hE=[hk zeros(1,M-7)] 
HE=fft(hE); 
subplot(2,1,2); 
r=O:M-l; 
W=r.*2*pi/512 
plot(W,abs(HE»; 
xlabel('W');ylabel(,F(W)');grid; 0 

An Alternate Method Using Frequency Sampling Filters 

775 

We now show an alternative approach to the frequency sampling method, which 
uses an No-order comb filter in cascade with a parallel bank of No - 1 first-order 
filters. This structure forms a frequency sampling filter. We start with Eqs. (6.55). 
The transfer function H[z] of the filter is first obtained by taking the z-transform 

of h[k] in Eq. (12.98): 

No-l 

H[z] = L h[k]z-k 
k=O 

~o Nfl [Nfl Hr/~l z-k 
k=O r=O 

No-l No-l 

~ L Hr L (ej~z-l)k 
No r=O k=O 

The second sum on the right-hand side is a geometric series, and using the result 

in B.7-4, we have 

Hence, 

z NU -1 
Hlz] = N N o z 0 

-----HJ [.::1 

(12 .100) 
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Observe that we do not need to perform IDFT (or IFFT) computations to obtain the 
desired filter transfer function. All we need is the values of the frequency samples 
Hn which are given. Equation (12.100) shows that the desired filter is realized as 
a cascade of two filters with transfer functions Hdz] and H2[Z] . Also, Hdz] is the 
transfer function of an No-order comb filter (see Example 12.9). The second filter 
with transfer function H 2 [z] is a parallel combination of n + 1 first-order filters, 

·21f r 

whose poles lie on the unit circle at e1 "NQ (r = 0, I, 2,···, No -1). For the lowpass 
or bandpass filters many coefficients Hr appearing in H2[Z] are zero. Recall that 
in Example 12.12 (lowpass filter) four out of seven coefficients are zero. Thus, in 
practice the final filter is usually much simpler than it appears in Eq. (12.100). As 
a result, this method may require a fewer number of computations (multiplications 
and additions) compared to those in the filter obtained by the direct method (using 
IDFT). 

The poles of the frequency sampling filter are complex in general because they 
lie on the unit circle. Therefore, we must combine the conjugate poles to form 
quadratic transfer functions to realize them. All these points will be clarified by 
designing the filter in Example 12.12 by this method . 

• Example 12.13 

and 

Redo Example 12.12 using the method of frequency sampling filter. 
In this case n = 6, No = n + 1 = 7. Also 

Substituting these values in the transfer function H[z] of the desired filter in Eq. (12.100), 
we obtain 

Z 7 - 1 [z ze -j67r /7 ze]61r/T ] 
H[z] = -- -- + + ---=-=-= 7z7 z-l z_ejZ7r /7 z- - j21f/7 

'--v--' , , 
Hdz) H;[z) 

We combine the last two terms on the right-hand side corresponding to complex conjugate 
poles to obtain 

[ z7_1 [ z Z(2ZCOS 6;-2COS S;) ] 
Hz]=-- --+ . 

7z7 z-l zZ-(2cos¥z+1) 

z7_1 [ z 1.802Z(Z-1)] 
= -;:;-;r z - 1 - z2 - 1.247z + 1 

'--v--' , ~ 

Hl[Z] H~z} 

We can realize this filter by placing the comb filter HI[z] in cascade with Hz[z], which 
consists of a first-order and a second-order filter in parallel. • 

Pole-Zero Cancellation in Frequency Sampling Filters 

In the method of frequency sampling filters, we make an intriguing observation 
that the required nonrecursive (FIR) filter is realized by a cascade of H dz] and 
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Hdz]. However, H2[zl is recursive (IIR). This strange fact should alert us to the 
possibility of something interesting going on in this filter. For a nonrecursive filter 
there can be no poles other than those at the origin [see Eq. (12.69a)1. In the 
frequency sampling filter [Eq. (12.100)]' in cdntrast, H2[zl has No poles at ejrflo 

(r = 0, 1, 2, "', n). All these poles lie on the unit circle at equally spaced points. 
These poles simply cannot be in a nonrecursive filter. They must somehow get 
canceled along the way somewhere. This is precisely what happens. The zeros of 
Hdzl are exactly where the poles of H2[zl are because 

No ( jOh)( jh)( j2h) ( jnh) Z - 1 = z - e No Z - e No Z - e NO ••• z - e NO 

Thus, the poles of H 2 [z 1 are canceled by the zeros of H d z], rendering the final filter 
nonrecursive. 

Pole-zero cancellation in this filter is a potential cause for mischief because 
such a perfect cancellation assumes exact realization of both Hl[zl and H2[zl. Such 
a realization requires the use of infinite precision arithmetic, which is a practical 
impossibility because of quantization effects. Imperfect cancellation of poles and 
zeros means there will still be poles on the unit circle, and the filter will not have a 
finite impulse response. More serious, however, is the fact that the resulting system 
will be marginally stable. Such a system provides no damping of the round-off noise 
that is introduced in the computations. In fact, such noise tends to increase with 
time, and may render the filter useless. 

We can partially mitigate this problem by moving both the poles (of H2[Z]) and 
zeros (of Hl[Z]) to a circle of radius r = 1 - t, where t is a small positive number 
---> O. This artifice will make the overall system asymptotically stable. 

Spectral Sampling with Windowing 

The frequency sampling method can be modified to take advantage of win
dowing. We first design a frequency sampling filter using a value No' that is much 
higher than the design value No. The result is a filter that matches with the desired 
frequency response at a very large number (No') of points. Then we use a suitable 
No-point window to truncate the No'-point impulse response. This procedure yields 
the final design of a desired order. 

12.9 Summary 

The response of an LTID system with transfer function H[zl to an everlasting 
sinusoid of frequency n is also an everlasting sinusoid of the same frequency. The 
output amplitude is IH [ejflll times the input amplitude, and the output sinusoid is 
shifted in phase with respect to the input sinusoid by LH [ejfll radians. The plot of 
IH [ejflll vs n indicates the amplitude gain of sinusoids of various frequencies and is 
called the amplitude response of the system. The plot of LH [ejfll vs n indicates the 
phase shift of sinusoids of various frequencies and is called the phase response. The 
frequency response of an LTID system is a periodic function of n with period 27r. 
This periodicity is the result of the fact that discrete-time sinusoids with frequencies 
differing by an integral multiple of 27r are identical. 

Frequency response of a system is determined by locations in the complex plane 
of poles and zeros of its transfer function. We can design frequency selective filters by 



778 12 Frequency Response and Digital Filters 

proper placement of its transfer function poles and zeros. Placing a pole (or a zero) 
near the point e jOo in the complex plane enhances (or suppresses) the frequency 
response at the frequency n = no. Using this concept, a proper combination of 
poles and zeros at suitable locations can yield desired filter characteristics. 

Digital filters are classified into recursive and nonrecursive filters. The duration 
of the impulse response of a recursive filter is infinite; that of the nonrecursive filter 
is finite. For this reason, recursive filters are also called infinite impulse response 
(IIR) filters, and nonrecursive filters are called finite impulse response (FIR) filters. 

Digital filters can process analog signals using AID and D I A converters. Pro
cedures for designing a digital filter that behaves like a given analog filter are dis
cussed. A digital filter can simulate the behavior of a given analog filter either 
in time-domain or in frequency-domain. This situation leads to two different de
sign procedures, one using a time-domain equivalence criterion and the other a 
frequency-domain equivalence criterion. 

For recursive or IIR filters, the time-domain equivalence criterion yields the 
impulse invariance method, and the frequency-domain equivalence criterion yields 
the bilinear transformation method. The impulse invariance method is handicapped 
by the aliasing problem, and cannot be used for highpass and bandstop filters. 
The bilinear transformation method, which is generally superior to the impulse 
invariance method, suffers from the frequency scale warping effect. However, this 
effect can be neutralized by prewarping. 

For nonrecursive or FIR filters, the time-domain equivalence criterion leads to 
the method of windowing (Fourier series method), and the frequency-domain equiv
alence criterion leads to the method of frequency sampling. Because nonrecursive 
filters are a special case of recursive filters, we expect the performance of recursive 
filters to be superior. This statement is true in the sense that a given amplitude 
response can be achieved by a recursive filter of an order smaller than that required 
for the corresponding nonrecursive filter. However, nonrecursive filters have the 
advantage that it can realize an arbitrarily shaped amplitude response and a linear 
phase characteristic. Recursive filters are good for a piecewise constant amplitude 
response and they can realize linear phase only approximately. To realize a linear 
phase characteristic in nonrecursive filters, the impulse response h[k] must be either 
symmetric or antisymmetric about its center point. 
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Problems 

12.1-1 Find the amplitude and phase response of the digital filters depicted in Fig. P12.1-1. 

12.1-2 Find the amplitude and the phase response of the filters shown in Fig. P12.1-2. 
Hint: Express H[e j o] as e-j2

.50 H",[e j o]. 

12.1-3 For an LTID system specified by the equation 

y[k + 1] - O.5y[k] = J[k + 1] + O.S/[k] 

(a) Find the amplitude and the phase response. 

(b) Find the system response y[k] for the input J[k] = cos (O.5k - j). 

.. ~ 
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y [k] y [k] 

(a) 

L....---{'OAJ------' 

l\ }----------, 

(c) 

Fig. P12.1-1. 

(a) 

f[k] y [k] 

(b) 

f[k] y [k] 

Fig. P12.1-2. 

12.1-4 For an asymptotically stable LTID system, show that the steady-state response to in
put ejOku[kj is H[ejrljejrlku[kj. The steady-state response is that part of the response 
which does not decay with time and persists forever . 
Hint: Follow the procedure parallel to that used for continuous-time systems in Sec. 
7.1-1. 

12.1-5 (a) A digital filter has the sampling interval T = 50fLS. Determine the highest 

(b) 


