
Discrete-Time System Analysis 
Using the Z-Transform 

The counterpart of the Laplace transform for discrete-time systems is the z­
transform. The Laplace transform converts integra-differential equations into alge­
braic equations. In the same way, the z-transforms changes difference equations into 
algebraic equations, thereby simplifying the analysis of discrete-time systems. The 
z-transform method of analysis of discrete-time systems parallels the Laplace trans­
form method of analysis of continuous-time systems, with some minor differences. 
In fact, we shall see that the z-transform is the Laplace transform in disguise. 

The behavior of discrete-time systems (with some differences) is similar to 
that of continuous-time systems. The frequency-domain analysis of discrete-time 
systems is based on the fact (praved in Sec. 9.4-2) that the response of a linear 
time-invariant discrete-time (LTID) system to an everlasting exponential zk is also 
the same exponential (within a multiplicative constant), given by H[z]zk. We then 
express an input f [k] as a sum of (everlasting) exponentials of the form zk. The 
system response to f[k] is then found as a sum of the system's responses to all these 
exponential components. The tool which allows us to represent an arbitrary input 
f[k] as a sum of (everlasting) exponentials of the form zk is the z-transform. 

11.1 The Z-Transform 

In the last Chapter, we extended the discrete-time Fourier transform to derive 
the pair of equations defining the z-transform as 

00 

F[z] == L f[k]z-k 
k=-oo 

t[k] = ~ f F[z]zk-l dz 
27rJ 
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(11.1) 

(11.2) 
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where the symbol f indicates an integration in counterclockwise direction around 
a closed path in the complex plane (see Fig. 11.1). As in the case of the Laplace 
transform, we need not worry about this, integral at this point because inverse z­
transforms of many signals of engineering interest can be found in a z-transform 
Table. The direct and inverse z-transforms can be expressed symbolically as 

F[z] = Z {I[k]} and j[k] = Z - l {F[z]} 

or simply as 

j[k] <==> F[z] 

Note that 

Z-l [Z{I[k]}] = j[k] and Z [Z-l{F[z]}] = F[z] 

Following the earlier argument, we can find an LTID system response to an 
input J[k] using the steps as follows: 

the system response to zk is H[z]zk 

j[k] = ~ f F[z]zk- l dz shows i[k] as a sum of everlasting exponential components 
27rJ 

and 

y[k] = ~ fF[z]H[z] zk-l dz shows y[k] a.s a sum of responses to exponential components 
27rJ 

= ~fY[z]zk-ldZ 
27rJ 

where 

Y[z] = F[z]H[z] 

In conclusion, we have shown that for an LTID system with transfer function H[z], 
if the input and the output are j[k] and y[kJ, respectively, and if 

j[k] <==> F[z] y[k] <==> Y[z] 

then 

Y[z] = F[z]H[z] 

We shall derive this result more formally later. 

linearity of the Z-Transform 

Like the Laplace transform, the z-transform is a linear operator. If 

h[k] <==> Fl[Z] and h[k] <==> Fz[z] 

then 

(11.3) 
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The proof is trivial and follows from the definition of the z-transform. This result 
can be extended to finite sums. 

The Unilateral Z- Transform 

For the same reasons discussed in Chapter 6, we first start with a simpler 
version of the z-transform, the unilateral z-transform, that is restricted only to 
the analysis of causal systems with causal inputs (signals starting at k = 0). The 
more general bilateral z-transform is discussed later in Sec. 11.7. In the unilateral 
case, the signals are restricted to be causal; that is, they start at k = O. The 
definition of the unilateral transform is the same as that of the bilateral [Eq. (11.1)] 
except that the limits of the sum are from 0 to 00 

00 

F[z] == L:f[k]z-k (11.4) 
k=O 

where z is complex in general. The expression for the inverse z-transform in Eq. 
(11.2) remains valid for the unilateral case also. 

The Region of Convergence of F[z] 
The sum in Eq. (11.1) [or (11.4)] defining the direct z-transform F[z] may not 

converge (exist) for all values of z. The values of z (the region in the complex 
plane) for which the sum in Eq. (11.1) converges (or exists) is called the region of 
convergence (or region of existence) of F[z]. This concept will become clear in 
the following example . 

• Example 11.1 
Find the z-transform and the corresponding region of convergence for the signal 

,ku[kJ. 
By definition 

00 

F[zJ = L: ,ku[kJz-k 
k=O 

Since u[kJ = 1 for all k ;:::: 0, 

DO k 

F[z] = L:G) 
k=O 

= 1 + (~) + G) 2 + (~) 3 + ... + ... (11.5) 

It is helpful to remember the following well-known geometric progression and its sum: 

2 3 1 l+x+x +x + ... =-­
I-x 

Use of Eq. (11.6) in Eq. (11.5) yields 

if Ixl < 1 

1 
F[zJ=--, 

1- - I~I < 1 
z 

z 

(11.6) 

(11. 7) 

'''I 
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Fig. 11.1 -lurk] and the region of convergence of its z-transform. 

Observe that F[z] exists only for Izl > i"Y1 . For Izl < 1,1, the sum in Eq. (11.5) does not 
converge; it goes to infinity. Therefore, the region of convergence (or existence) of F[z] is 
the shaded region outside the circle of radius i"Y1, centered at the origin, in the z-plane, as 
depicted in Fig. 1l .lb. • 

The region of convergence is required for evaluating f[k] from F[z], according to 
Eq. (11.2). The integral in Eq. (11.2) is a contour integral implying integration in a 
counterclockwise direction along a closed p a.th entered a t the origin and satisfying 
the condition Izl > hi. Thus, any circular pa.th centered at the origin and with a 
radius greater than l-yl (Fig. 11.1b) will suffice. We ca.n how that the integral in Eq. 
(11.2) along any such path (with a radius gr a.ter than h-I) yields the same result, 
namely f[k]. Such integration in the complex plane requires a background in the 
theory of functions of complex variables. We can avoid this integration by compiling 
a table of z-transforms (Table 11.1), where z-transform pairs are tabulated for a 
variety of signals. To find the inverse z-transform of say, z/(z - -y), instead of 
using the complex integration in (11.2), we consult the table and find the inverse 
z-transform of z/(z - ,) as -yku[k]. Although the table given here is rather short, 
it comprises the functions of most practical interest. 

The bilateral z-transform,is defined by Eq. (11.1) with the limits of the right­
hand sum from -00 to 00 instead of from 0 to 00 . The situation of the z-transform 
regarding the uniqueness of the inverse transform is parallel to that of the Laplace 
transform. For the bilateral case, the inverse z-transform is not unique unless the 
region of convergence is specified. For the unilateral case, the inverse transform is 
unique; the region of convergence need not be specified to determine the inverse z­
transform. For this reason, we shall ignore the region of convergence in the unilateral 
z-transform Table 11.1. 

Existence of the Z-Transform 

By defini t ion 

F[z] = f f[k]z-k = f f;~] 
k=O k=O 



672 11 Discrete-Time Systems Analysis Using the Z-Transform 

The existence of the z-transform is guaranteed if 

IF[z]1 :s; f I/[k1 1 < 00 

k=O Izl 

for some 14 Any signal I[k] that grows no faster than an exponential signal rok, 
for some ro, satisfies this condition. Thus, if 

then 

for some ro 

1 
1- .!:ll. Izl 

(11 .8) 

Izl > ro 

Therefore, F[z] exists for Izl > roo All practical signals satisfy (11.8) and are 
therefore z-transformable. Some signal models (e.g. ,k2) which grow faster than 
the exponential signal rok (for any ro) do not satisfy (11.8) and therefore are not z­
transformable. Fortunately, such signals are oflittle practical or theoretical interest . 

• Example 11.2 
Find the z-transforms of (a) 6[k] (b) u[k] (c) cos 13ku[k] (d) signal shown in Fig. 

11.2. 
Recall that by definition 

00 

F(z] = L J[k]Z-k 
k=O 

= frO] + J[1] + J[2] + J[3] + ... 
z Z2 z3 

(11 .9) 

(a) For f[k] = 8[k], frO] = 1 and f[2] = J[31 = J[4] = ... = O. Therefore 

6[k] -<==> 1 for all z (11.10) 

(b) For J[k] = u[k], J[O] =; i[l] = J[3] = ... = 1. Therefore 

1 1 1 
F[z] = 1 + ;- + z2 + z3 + ... 

From Eq. (11.6) it follows that 

1 I~I <-1 F[z]=--l 
1- -

z 
z JzJ > 1 z-l 

Therefore 
z 

u[k] -<==> z _ 1 JzJ> 1 (11.11) 

(c) Recall that cos 13k = (ei /3k + e-i /3 k) /2. Moreover, according to Eq. (11.7), 

±i/3k [ ] z 
e uk-<==> ±'/3 z - e ] 
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Therefore 

F[z =- --+ 1 [z z] 
J 2 z - ej {3 z - e- j {3 

z(z - cos (3) 
Izl > 1 

Z2 - 2z cos (3 + 1 

(d) Here J[OJ = f[lJ = f[2J = J[3J = J[4J = 1 and f[SJ = J[6J = . . . = O. Therefore, 
according to Eq. (11.9) 

1 1 1 1 
F[z] = 1 + - + - + - + -

Z Z2 z 3 z4 

We can also express this result in a closed form by summing the geometric progression 
on the right-hand side of the above equation, using the formula in Sec. B.7-4. Here the 
common ratio r = ~,M = 0, and N = 4, so that 

.t;[k I i2 [k] 
1 . 

{ 1 2 3 4 o 4 5 6 7 8 9 

Fig. 11.2 Fig. 11.3 
/::,. Exercise EI1.1 

(a) Find the z-transform of a signal shown in Fig. 11.3. (b) Using Pair 12a (Table 11.1) find 
the z-transform of I[k] = 20.65(V2)kcos (-ik -1.415) u[kj. 

A ( ) F[] z5 + z4 + +z3 + z2 + z + 1 z ( - 4 -10) 
nswers: a z = z9 or z _ 1 z - z 

(b) z(3.2z + 17.2) 
z2 - 2z + 2 \l 

11.1-1 Finding the Inverse Transform 

As in the Laplace transform, we shall avoid the integration in the complex 
plane required to find the inverse z-transform [Eq. (11.2)J by using the (unilateral) 
transform Table. Many of the transforms F[zJ of practical interest are rational 
functions (ratio of polynomials in z). Such functions can be expressed as a sum of 
simpler functions using partial fraction expansion. This method works because for 
every transformable f[kJ defined for k ~ 0, there is a corresponding unique F[zJ 
defined for /z/ > TO (where TO is some constant), and vice versa. 
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10 

11a 

11b 

12a 

12b 

12c 
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Table 11.1: (Unilateral) z-Transform Pairs 

5[k - j] 

u[k] 

ku[k] 

k3u[k] 

ik-1u[k - 1] 

iku[k] 

kiku[k] 

k2iku[k] 

F[z] 

k(k - l)(k - 2)··· (k - m + 1) k 
m I 'Y u[k] 

i m. 

lilk cos fJk u[k] 

lilk sin fJk u[k] 

rlilk cos (fJk + B)u[k] 

rlilk cos (fJk + B)u[k] i = lilej,B 

rlilk cos (fJk + B)u[k] 

_ .; A" I"f I'+B2 _ 2A".B 
r - hi"" ,,:I 

fJ = cos-1 -a B = tan-1 Aa-B 
11'1' Avhl2-a2 

z 

z-1 

z 
(z - 1)2 

z(z + 1) 
(z - 1)3 

z(z2 + 4z + 1) 
(z - 1)4 

1 

z-i 

z 

i Z 

(z - i)2 

iZ(Z + i) 
(Z-i)3 

z 

(Z -i)m+l 

z(z - 111 cos fJ) 
Z2 - (2111 cos fJ)z + lil 2 

zl1l sin fJ 
Z2 - (21il cos fJ)z + 1112 

rz[z cos B - 111 cos (fJ - B)] 
z2 - (2111 cos fJ)z + 1112 

(O.51·ej9 )z (0.5re-jli )z -'----'-- + . 
z - 'Y z -i* 

z(Az + B ) 
z2 + 2az + lil2 
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• Example 11.3 

Find the inverse z-transform of 

(a) 8z - 19 
(z - 2)(z - 3) 

(b) z(2z2 -,lIz + 12) 
(z - l)(z - 2)3 

2z(3z + 17) 
(c) (z _ 1)(z2 - 6z + 25) 

(a) Expanding F[z] into partial fractions yields 

F[z] = 8z - 19 3 5 
(z - 2)(z - 3) = z - 2 + z - 3 

From Table 11.1, Pair 6, we obtain 

f[k] = [3(2)k-l + 5(3)k- l] u[k - 1] (11.12a) 

If we expand rational F[z] into partial fractions directly, we shall always obtain an answer 
that is multiplied by u[k - 1] because of the nature of Pair 6 in Table 11.1. This form 
is rather awkward as well as inconvenient. We prefer the form t hat is multiplied by u[k] 
rather than u[k - 1]. A glance at Table 11.1 shows tbat the z-Lransform of every signal 
that is multiplied by u[k] has a factor z in the numerator. This obs rva.tion suggests that 
we expand F[z] into modified partial fractions, where each Lerm has a factor z in the 
numerator. This goal can be accomplished by expanding F[z]/z into partial fractions and 
then multiplying both sides by z. We shall demonstrate this procedure by reworking part 
(a) in Example 11.3. For this case 

F[z] 8z - 19 
-z- = -z (7"'z-_--,2:'7") 7"'( z-_--,3::7) 

= i -19/6) + (3/2) + (5/3) 
z z-2 z-3 

Multiplying both sides by z yields 

F[z] = _ 19. + ~ (_Z_) + ~ (_Z_) 
6 2 z-2 3 z-3 

From Pairs 1 and 7 in Table 11.1, it follows that 

(11.12b) 

The reader can verify that this answer is equivalent to that in Eq. (11.12a) by computing 
f[k] in both cases for k := 0, I, 2, 3,· .. , and then comparing the results. The form in Eq. 
(11.12b) is more convenient than that in Eq. (11.12a). For this reason, we shall always 
expand F[z]/z rather than F[z] into partial fractions and then multiply both sides by z 
to obtain modified partial fractions of F[z], whicb. have a factor z in the numerator. 

(b) 

and 

F[z] = Z(2Z2 - 11z + 12) 
(z - l)(z - 2)3 

F[z] 2z2 - lIz + 12 
-z- = (z - l)(z - 2)3 

k ao al a2 =--+ + +--z-l (z-2)3 (z-2)2 (z-2) 
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where 

Therefore 

F[z] 2z2 - lIz + 12 
-- = 

z (z - l)(z - 2)3 

-3 
z - 1 

(11.13) 

We can determine al and a2 by clearing fractions or by using the short cuts discussed in 
Sec. B.5-3. For example, to determine a2, we multiply both sides of Eq. (11.13) by z and 
let z --> 00. This yields 

0= -3 - 0 + 0 + a2 ==> a2 = 3 

This result leaves only one unknown, aI, which is readily deter~ined by letting z take any 
convenient value, say z = 0, on both sides of Eq. (11.13). This step yields 

12 1 al 3 
-=3+-+---
8 4 4 2 

Multiplying both sides by 8 yields 

Therefore 

and 

12 = 24 + 2 + 2aI - 12 ==> al = -1 

F[z] -3 2 
z z-l (z-2)3 

z z 
F[z] = -3-z ---1 - 2-(z-_-2)-3 

1 3 ---+-­
(z - 2)2 z - 2 

z +3_z_ 
(z - 2)2 Z - 2 

Now the use of Table 11.1, Pairs 7 and 10, yields 

f(k] = [-3 - 2 k(k 8- 1) (2)k - ~ (2)k + 3(2)k] u[k] 

= -[3 + ~(k2 + k - 12)2k]u[k] 

(c) Complex Poles 

2z(3z + 17) F[z] - ~-~---'------,­
- (z - 1)(z2 - 6z + 25) 

2z(3z + 17) 
(z - l)(z - 3 - j4)(z - 3 + j4) 

Poles of F[z] are 1, 3 + j4, and 3 - j4. Whenever there are complex conjugate poles, the 
problem can be worked out in two ways. In the first method we expand F[z] into (modi­
fied) first-order partial fractions. In the second method, rather than obtaining one factor 
corresponding to each complex conjugate pole, we obtain quadratic factors corresponding 
to each pair of complex conjugate poles. This procedure is explained below. 
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Method of First-Order Factors 

2(3z + 17) 2(3z + 17) 
(z - 1)(z2 - 6z + 25) , (z - l)(z - 3 - j4)(z - 3 + j4) 

We find the partial fraction of F[z]/z using the Heaviside "cover-up" method: 

F[z] 2 1.6e-j2.246 1.6ej2.246 
-- = -- + + --::----,-

z Z - 1 z - 3 - j4 z - 3 + j4 

and 
F[z] = 2_z_ + (1.6e-j2.246) z. + (1.6ej2 .246) z. 

z - 1 z - 3 - )4 z - 3 + )4 

The inverse transform of the first term on the right-hand side is 2u[k]. The inverse trans­
form of the remaining two terms (complex conjugate poles) can be obtained from Pair 12b 
(Table 11.1) by identifying ~ = 1.6, e = -2.246 rad., 'Y = 3+ j4 = 5ejO.927, so that bl = 5, 
f3 = 0.927. Therefore 

J[k] = [2 + 3.2(5)k cos (0.927k - 2.246)] u[k] 

Method of Quadratic Factors 

F[z] = 2(3z + 17) = _2_ + Az + B 
z (z - 1)(z2 - 6z + 25) z - 1 z2 - 6z + 25 

Multiplying both sides by z and letting z -> 00, we find 

0= 2+A~ A=-2 

and 
2(3z+17) 2 -2z+B 

.,.--:-:-';--o;----:::---'------=-= = -- + ~---'---
(z - 1)(z2 - 6z + 25) z - 1 z2 - 6z + 25 

To find B, we let z take any convenient value, say z = O. This step yields 

-34 B 
-=-2+-
25 25 

Multiplying both sides by 25 yields 

Therefore 

and 

-34 = -50 + B ~ B = 16 

_F[_z] = _2_ + ~-_2_z ....:.+_1....,6_ 
z z - 1 z2 - 6z + 25 

F[z] = ~ + z(-2z + 16) 
z - 1 Z2 - 6z + 25 

We now use Pair 12c where we identify A = -2, B = 16, bl = 5, a = -3. Therefore 

r = lOoi;~~192 = 3.2, f3 = COS-l(~) = 0.927rad., and 

e = tan- 1 C-::.1sO) = -2.246rad., so that 

J[k] = [2 + 3.2(5)k cos (0.927k - 2.246)] u[k] • 
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The procedure for finding partial fractions using MATLAB was demonstrated 
in chapter 6. The same program can be used in this case, except that we have 
to find the modified partial fractions here. This goal is readily accomplished by 
dividing F[z] by z and then taking the partial fractions. We shall demonstrate this 
procedure with an example. 

o Computer Example C11.1 
Solve Example 11.3a using MATLAB. 

num=[8 -19]; den=[conv([l -2],[1 -3]) 0]; 
[r, p, k]= residue(num,den) 
% We could also express den;[l -5 6 0] 

r ; 

p ; 

k ; 

1.6667 
1.5000 

-3.1667 

3 
2 

a 

[] 

Hence, 

F[z ] = -3.1667 + 1.5z + 1.6667z 0 
z-2 z-3 

6. Exercise El1.2 
Find the inverse z-transform of the following functions: 

z(2z -1) 
(a) (z _ l)(z + 0.5) 

9 
(e) (z+ 2)(z _ 0.5)2 

(b) 1 
(z - l)(z + 0.5) 

{d) 2 5z(z -1) 
z - 1.6z + 0.8 

Answer: (a) [~+ ~(-0.5)k] ulk] (b) -28lk] + [~+ ~(-0 . 5)k] ulk] 

(e) 188[k]- [0.72(-2)k + 17.28(0.5)k -14.4k(0.5)k]u[k] 

(d) ¥ ( ]s) k cos (0.464k + 0.464)u[k]. Hint: yD.8 = ]s. \l 

Inverse Transform by Expansion of F[z] in Power Series of z-l 

By definition 

00 

F[z] = Lf[k]z- k 
k=O 

= frO] + f[l] + f[2] + f[3] + ... 
z z2 z3 

= f[O]zo + f[l]z-l + f[2]z-2 + f[3]z-3 + ... 

This result is a power series in z-l. Therefore, if we can expand F [z] into a power 
series in z-l, the coefficients of this power series can be identified as J[O], f [1], f [2], 
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f[3], ... , and so on. A rational F[z] can be expanded into a power series of z-l by 
dividing its numerator by the denominator. Consider, for example, 

[ ] 
z2(7z,- 2) Fz = ~--__ ~--__ 77--___ 

(z - 0.2 )(z - 0.5 ){z - 1) 

7z3 - 2z2 
= ~----~---------

z3 - 1.7z2 + 0.8z - 0.1 

To obtain a series expansion in powers of z-l, we divide the numerator by the 
denominator as follows: 

Thus 

7 + 9.9z-1 + 11.23z-2+11.87z-3 + ... 
z3 - 1.7z2 + 0.8z - 0.1 )7z3 - 2z2 

7z3 - 11.9z2+ 5.60z- 0.7 

9.9z2- 5.60z+ 0.7 

9.9z2-16.83z+ 7.92 - 0.99z- 1 

11.23z-7.22 + 0.99z- 1 

11.23z-19.09 + 8.98z-1 

11.87 - 7.99z-1 

z2(7z-2) -1 -2 -3 
F[z] = ( )( )( ) = 7 + 9.9z + 11.23z + 11.87z + ... z - 0.2 z - 0.5 z - 1 

Therefore 

frO] = 7, f[l] = 9.9, f[2] = 11.23, f[3] = 11.87, ... , and so on. 

We give here a simple MATLAB program to find the first N terms of the inverse 
z-transform. 

o Computer Example C11.2 
Using MATLAB, find the first 10 values (f[OJ through f(9]) of the inverse z-transform 

of F[zJ in the above example. 

num=[7 -2 0 OJ; den=[l -1.7 0.8 -0.1]; 
f=dimpulse(num, den, 10) 
% We could also write den=conv(conv([l -0.2],[1 -0.5]), [1 -1]) 

f = 

7.0000 
9.9000 
11.2300 
11.8710 
12.1867 
12.3436 
12.4218 
12.4609 
12.4805 
12.4902 0 
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Although this procedure yields f[k] directly, it does not provide a closed-form 
solution. For this reason, it is not very useful unless we want to know only the first 
few terms of the sequence f[k]. 

6. Exercise El1.3 

Using long division to find the power series in z-l, show that the inverse z-transform of 

z/(z - 0.5) is (0.5)ku[kJ or (2)-ku [kJ. 'V 

Relationship Between h[k] and H[z] 

For an LTID system, if h[k] is its unit impulse response, then in Eq. (9.57b) 
we defined H[z], the system transfer function, as 

00 

H[z] = 2::= h[k]z-k 
k=-oo 

For causal systems, the limits on the sum are from k = 0 to 00. This equation 
shows that the transfer function H[z] is the z-transform of the impulse response 
h[k] of an LTID system; that is 

h[k] -¢==> H [z] (11.14) 

This important result relates the impulse response h[k], which is a time-domain 
specification of a system, to H[z], which is a frequency-domain specification of a 
system. The result is parallel to that for LTIC systems. 

6. Exercise Ell.4 

Redo Exercise E9.5 by taking the inverse z-transform of H[zJ. 'V 

11.2 Some properties of the Z-Transform 

The z-transform properties are useful in the derivation of z-transforms of many 
functions and also in the solution of linear difference equations with constant coef­
ficients. Here we consider a few important properties of the z-transform. 

Right Shift (Delay) 

If 

then 

and 

and 

f[k]u[k] -¢==> F[z] 

1 
f[k - l]u[k - 1] -¢==> -F[z] 

z 
(11.15a) 

1 
f[k - m]u[k - m] -¢==> -F[z] 

zm (l1.15b) 

1 
f[k - l]u[k] -¢==> -F[z] + f[-I] 

z 
(11.16a) 
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Repeated application of this property yields 

and 

Proof: 

f[k - 2]u[k] ¢===>~ [~F[Z] + f[-l]] + f[-2] 

1 1 
= z2 F [z] + -;f[-l] + f[-2] 

m 

J[k - m]u[k] ¢===> z-mF[z) + z-m LJ[-k]zk 
k=l 

00 

Z {I[k - m]u[k - m]} = Lf[k - m]u[k - m]z-k 
k=O 

681 

(l1.16b) 

(l1.16c) 

Recall that f[k - m)u[k - m] = 0 for k < m, so that the limits on the summation 
on the right-hand side can be taken from k = m to 00. Therefore 

00 

Z {I[k - m]u[k - m]} = L f[k - m]z-k 

To prove Eq. (l1.16c), we have 

k=m 

00 

= Lf[r]z-(r+m) 
r=O 

1 00 

= - '" f[r]z-r zm L...J 
r=O 

1 
=-F[z] zm 

00 00 

Z {f[k - m]u[k]} = Lf[k - m]z-k = L f[r]z-(r+m) 

Left Shift (Advance) 

If 

then 

k=O r=-m 

m 

= z-m Lf[-k)zk + z-mF[z) 
k=l 

f[k)u[k) ¢===> F[z) 

f[k + l)u[k) ¢===> zF[z)- zf[O) (1l.17a) 
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Repeated application of this property yields 

and 

f[k + 2]u[k] ¢==? z {z (F[z]- zf[Oj) - f[l]} 

= z2 F[z] - z2 f[O] - zf[ll 

m - l 

f[k + m]u[k] ¢==? zmF[zl- zm L J[k]z-k 
k=O 

Proof: By definition 

00 

Z {f[k + m]u[k]} = Lf[k + mlz-k 

k=O 

00 

= L f[rlz-(r-m) 
r=m 

00 

m-l 

= zmF[z]- zm L f[r]z-r 
r=O 

f[k] 

5 . ---------.---
.. -

.--

o 3 4 5 
k-~ 

Fig_ 11.4 Signal for Example 11.4 . 

• Example 11.4 
Find the z-transform of the signal J[k] depicted in Fig. 11.4. 

(11.17b) 

(11.17c) 

The signal J[k] can be expressed as a product of k and a gate pulse u[k] - u[k - 6] . 
Therefore 

f[k] = k {u[k]- u[k - 6]} 

= ku[k] - ku[k - 6] 
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We cannot find the z-transform of kU[k - 6J directly by using the right-shift property [Eq. 
(1l.15b)J. So we rearrange it in terms of (k - 6)u[k - 6J as follows: 

J[kJ = ku[kJ - [(k - 6)u[k - 6J + 6u[k - 6JJ 

We can now find the z-transform of the bracketed term by using the right-shift property 
[Eq. (1l.15b)J. Because u[kJ ¢==? z~l 

1 z 1 
u[ k - 6J ¢==? - -- = -=--0--'-

z6 z -1 z5(z-1) 

Also, because ku[kJ ¢==? (Z~1)2 

1 z 
(k - 6)u[k - 6J ¢==? 6" ( )2 

z z-l 
1 

Therefore 

F[zJ _ z _ 1 
- (z - 1)2 z5(z - 1)2 

6 

• 
6 Exercise Ell.5 

Using only the fact that u[k] = z~l and the right-shift property [Eq. (11.15)], find the 

z-transforms of the signals in Figs. 11.2 and 11.3. The answers are given in Example 1l .2d and 

Exercise E11.1a. \l 

Convolution 

The time convolution property and the frequency convolution property state 
that if 

h[k] {==;> Fl[Z] and h[k] {==;> F2[Z], 

then (time convolution) 

and (frequency convolution) 

(11.18) 

(11.19) 

Proof: These properties apply to causal as well as noncausal sequences. For 
this reason, we shall prove them for the more general case of noncausal sequences, 
where the convolution sum ranges from -00 to 00. To prove the time convolutiori, 
we have 

00 00 

= L z - k L h[m]h[k - m] 
k=-oo m=-CX) 
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Interchanging the order of summation, 

00 00 

Z [h[k] * h[k]] = L h[m] L h[k - m]z-k 
m=-oo k=-oo 

00 00 

= L h[m] L h[r]z-(r+m) 
m=-oo r=-CXJ 

00 00 

m=-oo T=-OO 

To prove the frequency convolution, we start with 

00 

Z {h[k]h[k]} = L h[k]h[k]z-k 
k=-oo 

1 00 f = - . L h[k]z-k FJ[u]uk- 1 du 
27rJ k=-oo 

Interchanging the order of summation and integration 

LTID System Response 
It is interesting to apply the time convolution property to the LTID input­

output equation y[k] = f[k]*h[k]. In Eq. (11.14), we have shown that h[k] ~ H[z]. 
Hence, according to Eq. (11.18), it follows that 

Y[z] = F[z]H[z] (11.20) 

Earlier in the chapter, we derived this important result using informal arguments. 

Multiplication by"/ 

If 

then 

Proof: 

f[k]u[k] ~ F[z] 

'If[k]u[k] ~ F [~] 

Z{,lf[k]u[k]} = f'lf[k]z-k = ff[k] (~) -k = F [~] 
k=O k=O I I 

(11.21) 
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.6. Exercise Ell.6 

Using Eq. (11.21), derive Pairs 7 and 8 in Table 11.1 from Pairs 2 and 3, respectively. \l 

Multiplication by k (Scaling in the z-Domain 

If 

then 

Proof: 

f[k]u[k] <===? F[z] 

d 
kf[k]u[k] <===? -z-F[z] 

dz 

d d = = 
-z-F[z] = -z- Lf[k]z-k = -z L -kf[k]z-k-l 

dz dz 
k=O k=O 

= 
= L kf[k]z-k = Z {kf[k]u[k]} 

k=O 

.6. Exercise Ell. 7 

(11.22) 

Using Eq. (11.22), derive Pairs 3 and 4 in Table 11.1 from Pair 2. Similarly, derive Pairs 8 

and 9 from Pair 7. \l 

Initial and Final Value 

For a causal f[k], 
frO] = lim F[z] 

z->oo 

This result follows immediately from Eq. (11.9) 

(1l.23a) 

We can also show that if (z - l)F(z) has no poles outside the unit circle, then 

lim f(N) = lim(z - l)F(z) 
N-+oo z-+l 

(11.23b) 

11.3 Z-Transform Solution of Linear Difference Equations 

The time-shifting (left- or right-shift) property has set the stage for solving 
linear difference equations with constant coefficients. As in the case of the Laplace 
transform with differential equations, the z-transform converts difference equations 
into algebraic equations which are readily solved to find the solution in the z­
domain. Taking the inverse z-transform of the z-domain solution yields the desired 
time-domain solution. The following examples demonstrate the procedure . 

• Example 11.5 
Solve 

y[k + 2] - 5y[k + 1] + 6y[k] = 3j[k + 1] + 5j[k] (11.24) 

if the initial conditions are y[-l] = Jt, y[-2] = *' and the input i[k] = (2)-k u [kj. 



686 11 Discrete-Time Systems Analysis Using the Z-Transform 

Table 11.2 

Z- Transform Operations 

Operation 

Addition 

Scalar multiplication 

J[k] 

/I[k] +h[k] 

aJ[k] 

F[z] 

aF[z] 

Right-shift 
1 

J[k - m]u[k - m] -F[z] zm 

Left-shift 

f[k -m]u[k] 

f[k - 1]u[k] 

f[k - 2]u[k] 

f[k - 3]u[k] 

J[k + m]u[k] 

f[k + l]u[k] 

f[k + 2]u[k] 

f[k + 3]u[k] 

Multiplication by f'k f'1e J[k]u[k] 

Multiplication by k kf[k]u[k] 

Time Convolution /I[k] * h[k] 

Frequency Convolution /I [k]h[k] 

Initial value frO] 

Final value 

1 I m Ie 
-F[z] + - """' I[-k]z zm zm~ 

Ie=l 

1 
-F[z] + 1[-1] 
z 

I 1 
-F[z] + - f[-1] + J[-2] z2 z 

1 I 1 
-F[z] + - 1[-1] + -1[-2] + 1[-3] z3 z2 z 

m - l 

zmF[z]- zm L f[k]z-k 
Ie=O 

zF[z] - zf[O] 

z2F[z]- z2f[0]- zf[1] 

z3 F[z] - z3 J[O]- Z2 J[I] - z1[2] 

d 
-z-F[z] 

dz 

H[z]F2[Z] 

2~j i FI [U]F2 [~] u-
1 du 

limz~oo F[z] 

lim.~l (z - I)F[z] poles of 

(z - 1)F[z] inside the unit circle. 
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As we shall see, difference equations can be solved by using the right-shift or the left­
shift property. Because the difference equation (11.24) is in advance-operator form, the 
use of the left-shift property in Eqs. (1l .17a) and (11.17b) may seem appropriate for its 
solution. Unfortunately, as seen from Eqs. (l1.lo7a) and (1l.17b), these properties require a 
knowledge of auxiliary conditions y[O], y[I)'···, y[n-l] rather than of the initial conditions 
y[-I]'y[- 2], .. ·,y[-n], which are generally given. This difficulty can be overcome by 
expressing the difference equation (11.24) in delay operator form (obtained by replacing k 
with k - 2) and then using the right-shift property. t Equation (11.24) in delay operator 
form is 

y[k] - 5y[k - 1] + 6y[k - 2] = 3f[k - 1] + 5J[k - 2] (11.25) 

We now use the right-shift property to take the z-transform of this equation. But before 
proceeding, we must be clear about the meaning of a term like y[k - 1]. Does it mean 
y[k - l]u[k - 1] or y[k - l]u[kJ? The answer becomes clear when we recognize that the 
use of the unilateral transform implies that we are considering the situa tion for k ~ 0, 
and that every signal in Eq. (11.25) must be counted from k = O. Therefore, the term 
y[k - j] means y[k - j]u[k]. Remember also that although we are considering the situation 
for k ~ 0, y[k] is present even before k = 0 (in the form of initial conditions). Now 

Also 

y[k]u[k] {==} Y[z] 

1111 
y[k - l]u[k] {==} ;Y[z] + y[-I] = ;Y[z] + 6 

1 1 1 11 37 
y[k - 2]u[k] {==} z2 Y[z] + ;y[-I] + y[-2] = z2 Y[z] + 6z + 36 

1 1 z 1 
J[k -1]u[k] {==} -F[z] + f[-I] = --- + 0 =--

z z z - 0.5 z - 0.5 

1 1 1 1 
J[k - 2]u[k] {==} 2'F[z] + - J[-1] + J[-2] = 2'F[z] + 0 + 0 = ( ) 

z z Z Z Z - 0.5 

Note that for causal input J[k], 

J[-1] = J[-2] = . .. = J[-n] = 0 

Hence 

1 
f[k - r]u[k] {==} -F[z] z r 

Taking the z-transform of Eq. (11.25) and substituting the above results, we obtain 

Y[z]- 5 [ .!.Y[z] + 11] + 6 [~Y[z] + 11 + 37] = _3_ + ~_5_--:-
z 6 z2 6z 36 z - 0.5 z(z - 0.5) 

(11 .26a) 

or 

(1 - ~ + ~) Y[z]- (3 _ g) = _3_ + ~_5----:----:-
z z2 Z z-0.5 z(z-0.5) 

(11.26b) 

t Another approach is to find y[O], y[l], y[2]' . . . ,y[n -1] from y[-l], y[-2]'· . . ,y[-n] iteratively, as 
in Sec. 9.1-1, and then apply the left-shift property to Eq. (11.24) 
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and 

(1_~+~) Y [z]=(3_11)+ 3z+5 
z z2 z z(z - 0.5) 

3z2 
- 9.5z + 10.5 
z(z - 0.5) 

Multiplication of both sides by z2 yields 

so that 

and 

Therefore 

and 

( 
2 _ ) _ Z (3z 2 

- 9.5z + 10.5) 
z 5z + 6 Y[z ] - (z _ 0.5) 

Y[z] = z(3z
2 

- 9.5z + 10.5) 
(z - 0.5)(z2 - 5z + 6) 

Y[z] 3z2 - 9.5z + 10.5 
z (z - 0.5)(z - 2)(z - 3) 

= (26/15) _ (7/3) + (18/5) 
z - 0.5 z - 2 z - 3 

. 26 ( z ) 7 ( Z ) 18 ( z ) 
Y[z ] = 15 z - 0.5 -"3 z - 2 + 5" z - 3 

(11.27) 

(11.28) 

• 
This example demonstrates the ease with which linear difference equations with 

constant coefficients can be solved by z-transform. This method is general; it can 
be used to solve a single difference equation or a set of simultaneous difference 
equations of any order as long as the equations are linear with constant coefficients. 

Comment 

Sometimes auxiliary conditions y[O], y[l], ... , y[n - 1] (instead of initial condi­
tions y [-1], y [- 2], ... , y [-n]) are given to solve a difference equation. In this case, 
the equation can be solved by expressing it in the advance operator form and then 
using the left-shift property (see Exercise E11.9 below). 

l:; Exercise El1.S 
Solve the equation below if the initial conditions are y[-1) = 2, y[-2) = 0, and the input 

l[kJ =u[kJ : 
y[k + 2J - ~y[k + 1J + ili[k) = 5f(k + 1)- f(kJ 

Answer:y[kJ= [12-15(~)k+¥(~)kJu[k] V 

l:; Exercise El1.9 
Solve the following equation if the auxiliary conditions are y[O] = 1, y[1J = 2, and the input 

I[k] = u[k]: 
y[k + 2J + 3y[k + 1] + 2y[kJ = f(k + 1] + 3f(kJ 
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Answer:y[kJ = [~ + 2(- 1)k - ~(_2)k] u[kJ \l 

Zero-Input and Zero-State Components 

In Example 11 .5 we found the total solution of the difference equation. It is 
relatively easy to separate the solution into zero-input and zero-state components. 
All we have to do is to separate the response into terms arising from the input and 
terms arising from initial conditions. We can separate the response in Eq. (11.26b) 
as follows: . 

Therefore 

initial condition terms 

3 5 
= --- + --:-----:-

z - 0.5 z(z - 0.5) , , 

terms arising from input 

(3z + 5) + -';----'--::­
z(z - 0.5) 
'--v-" 

initial condition terms input terms 

Multiplying both sides by z2 yields 

and 

(z2 - 5z+6)Y[z]= z(3z - 11) 
"--v---' 

initial condition terms 

+ z (3z + 5) 
z - 0.5 

"--v------' 
ilJpul; ~<lrm$ 

Y[z] = 
z(3z - 11) 
z2 - 5z + 6 
'---v---" 

zero-input response 

z(3z + 5) 
+ (z - 0.5)(z2 - 5z + 6) 

\, .I 

V 

zero·state response 

(11.29) 

(11.30) 

We expand both terms on the right-hand side into modified partial fractions to yield 

Y[z]- [5 C ~ 2) - 2 C ~ 3)] + [~~ C _ZO.5) - 232 C ~ 2) + 258 C ~ 3)] 
\, .I , ' 

v 
zero-input zero-state 

and 

y[k ] = [?(2)k ~ 2(3)~ - ,¥(2)k + ¥(~)k + ~(0.5)k,] u[k] 
~erO-lnput zero-state 

a conclusion, which agrees with the result in Eq. (11.28). 

l:::. Exercise El1.10 
Solve 

y[k + 2J - ~y[k + 1J + h[kJ = 5j[k + 1J - j[kJ 

if the initial conditions are y[-lJ = 2, y[-2J = 0, and the input j[kJ = u[kJ. Separate the response 
into zero-input and zero-state components. 
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Answer: 

'!I[k] = {[~ + 112 -18(~t + 6(~)k~ } u[k] 

zero-input zero-state 

11.3-1 Zero-State Response of LTID Systems: The Transfer Function 

Consider an nth-order LTID system specified by the difference equation 

Q[E]y[k] = P[E]J[k] (11.31a) 

or 

(En + an_1E n- l + ... + alE + ao)y[k] = 

(bnEn + bn_lEn- l + ... + hE + bo)f[k] (11.31 b) 

or 

y[k + n] + an- ly[k + n - 1] + ... + aly[k + 1] + aoy[k] 

= bnf[k + n] + ... + bIf[k + 1] + bof[k] (11.31c) 

We now derive the general expression for the zero-state response; that is, the system 
response to input f[k] when all the initial conditions y[-I] = y[-2] = ... = y[- n] = 
o (zero state). The input f[k] is assumed to be causal so that f[-I] = f[-2] = 
... = f[-n] = O. 

Equation (11.31c) can be expressed in the delay operator form as 

y[k] + an-ly[k - 1] + ... + aoy[k - n] 

= bnf[k] + bn-1f[k - 1] + ... + bof[k - n] (11.31d) 

Because y[-r] = f[-r] = 0 for r = 1, 2, ... , n 

1 
y[k - m]u[k] ¢=} -Y[z] 

zm 
1 

f[k - m]u[k] ¢=} -F[z] 
zm 

Now the z-transform of Eq. (11.31d) is given by 

m = 1,2, ... , n 

( 
an-l an-2 ao) [] ( bn - 1 bn -2 bo ) 1+--+--+·· ·+- Yz = bn +--+--+···+- F[z] 

Z z2 zn Z z2 zn 

Multiplication of both sides by zn yields 

(zn + an_IZn- 1 + ... + alz + ao)Y[z] 

= (bnz n + bn_IZn- 1 + ... + bIZ + bo)F[z] 



11.3 Z-Transform Solution of Linear Difference Equations 691 

F [z I >-
Y [z 1= F [z J H [z J 

H'~] 

Fig. 11.5 The transformed representation of an LTID system. 

Therefore 

(11.32) 

- P[z] [] 
- Q[z]F z (11.33) 

We have shown in Eq. (11.20) that Y[z] = F[z]H[z]. Hence, it follows that 

H[z] = P[z] = bnzn + bn_lZn- 1 + ... + bIZ + bo 
Q[z] zn + an_IZn - 1 + ... + aIZ + ao 

(11.34) 

As in the case of LTIC systems, this result leads to an alternative definition of 
the LTID system transfer function as the ratio of Y[z] to F[z] (assuming all initial 
conditions zero). 

H[z] == Y[z] = Z[zero-state response] 
F[z] Z[input] 

(11.35) 

Because Y[z], the z-transform of the zero-state response y[k]' is the product 
of F[z] and H[z], we can represent an LTID system in the frequency domain by 
a block diagram, as illustrated in Fig. 11.5. Just as in continuous-time systems, 
we can represent discrete-time systems in the transformed manner by representing 
all signals by their z-transforms and all system components (or elements) by their 
transfer functions. 

Observe that the denominator of H [z] is Q [z], the characteristic polynomial of 
the system. Therefore the poles of H[z] are the characteristic roots of the system. 
Consequently, the system stability criterion can be stated in terms of the poles of 
the transfer function of an LTID system as follows: 

1. An LTID system is asymptotically stable if and only if all the poles of its 
transfer function H [z] lie inside a unit circle (centered at the origin) in the 
complex plane. The poles may be repeated or unrepeated. 

2. An LTID system is unstable if and only if either one or both of the following 
conditions exist: (i) at least one pole of H [z] is outside the unit circle; (ii) there 
are repeated poles of H [z] on the unit circle. 

3. An LTID system is marginally stable if and . only if there are no poles of H[z] 
outside the unit circle, and there are some unrepeated poles on the unit circle. 
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f[k) u [k) 

F[z) 

f[k-l) u [k-l) 

L....;... __ -", Y[z) = -.L F [z I 
z 

Fig. 11.6 Ideal unit delay and its transfer function . 

• Example 11.6: The Transfer Function of a Unit Delay 
Show that the transfer function of a unit delay is liz. 
If the input to the unit delay is J[k]u[k], then its output (Fig. 11.6) is given by 

y[k] = J[k - l]u[k - 1] 

The z-transform of this equation yields [see Eq. (11.15a)] 

1 
Y[z] = -F[z] 

z 

= H[z]F[z] 

It follows that the transfer function of the unit delay is 

• Example 11.7 

1 
H[z] =-

z 
(11.36) 

• 
Find the response y[k] of an LTID system described by the difference equation 

y[k + 2] + y[k + 1] + 0.16y[k] = J[k + 1] + 0.32J[k] 

or 
(E2 + E + 0.16)y[k] = (E + 0.32)J[k] 

for the input J[k] = (-2) -ku[k] and with all the initial conditions zero (system in zero 
state initially). 

From the difference equation we find 

P[z] z + 0.32 
H[z] = Q[z] = z2 + z + 0.16 

For the input J[k] = (_2)-ku[k] = [(_2)-1]ku(k) = (-0.5)ku[k] 

z 
F[z] = z +0.5 

and 
Y H z(z + 0.32) 

[z] = F[z] [z] = (z2 + z + 0.16)(z + 0.5) 

Therefore 

Y[z] (z + 0.32) (z + 0.32) 
Z (z2 + z + 0.16)(z + 0.5) (z + 0.2)(z + 0.8)(z + 0.5) 

=~_~+_2_ 
z + 0.2 z + 0.8 z + 0.5 

(11.37) 
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so that 

Yz - - --- -- -- + 2 --2( z ) 8( Z ) (Z) 
[ ] - 3 z + 0.2 3 z + 0.8 z + 0.5 

(11.38) 

and 
y[kJ = [~(_0.2)k - ~(-0.8)k + 2( - 0.5)k] u[k] • 

o Computer Example e1l.3 
Solve Example 11.7 using MATLAB. Plot y[k] for 0 ::; k ::; 10. 

k=0:10j 
b=[O 1 0.32]j 
a=[l I 0.16]j 
f=(-2).'(-k)j 
y=fiiter(b,a,f) j 
stem(k,y) 
xlabel('k') jylabel(,y[k]') 0 

f':,. Exercise EI1.11 
A discrete-time system is described by the following transfer function: 

z - 0.5 
H[z J - -:-----:-:---:-

- (z + 0.5)(z - 1) 

(a) Find the system response to input l[kJ = 3-(k+l)u[kJ if all initial conditions are zero. (b) 
Write the difference equation relating the output y[kJ to input l[kJ for this system. 

Answers: (a) y[kJ = ~ [~ - O.B( - 0.5)k + 0.3 (~) k] u[kJ 

(b) y[k + 2J - 0.5y[k + 1J - 0.5y[kJ = I[k + 1] - 0.5/[k] '1 

11.4 System Realization 

We now discuss ways to realize an nth-order discrete-time system described by 
a transfer function 

[] 
bnzn + bn_1zn - 1 + ... + btz + bo 

H z = ------:-------­
zn + an_lZn - 1 + .. . + aiz + aD 

(11.39) 

This transfer function is identical to the general nth-order continuous-time transfer 
function H(s) in Eq. (6.70) with s replaced by z. It is reasonable to believe that the 
realization of H[z] in (11.39) would be identical to that of H(s) with s replaced by 
z. Fortunately this happens to be the case. In realizations of H (s) the basic element 
used was an integrator with transfer function l/s. In realizations of H[z] the basic 
element is unit delay with transfer function 1/ z. Therefore, all the realizations of 
H(s) studied in Sec. 6.6 are also the realizations of H[z] if we replace integrators 
by unit delays. To demonstrate this point, consider a realization of a third-order 
transfer function. 

[] 
b3Z3 + b2z2 + bIZ + bo 

Hz=---";:-------;;:----"----'­
z3 + a2z2 + aiz + aD 

(11.40) 

Figure 1l.7 shows Fig. 6.21 with all the integrators (with transfer function l/s) 
replaced with unit delays (with transfer function 1/ z). We shall now show that this 
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Fig. 11.7 A canonical realization of H[z]. 

realization indeed represents H[z] in Eq. (11.40). Let the signal at the output of 
the third delay be X[z]. Consequently, signals at the inputs of the second and the 
first delay are zX[z] and z2X[z]. The first summer output z3X[z] is equal to the 
sum of the four inputs to that summer. Therefore 

so that 

(11.41) 

Moreover, Y [z], the output of the second summer, is equal to the sum of four signals 
to that summer. Therefore 

From Eqs. (11.41) and (11.42), it follows that 

Y [z] = b3z 3 + b2z2 + bIZ + bo 

F[z] z3 + a2z2 + aIZ + ao 

(11.42) 

This result shows that Fig. 11.7 is indeed a realization of H[z] in Eq. (11.40). Sim­
ilarly, the cascade and parallel realizations of the continuous-time case are directly 
applicable to discrete-time systems, with integrators replaced by unit delays. The 
second canonical realization developed in Appendix 6.1 also applies to discrete-time 
case with 1/ s replaced by 1/ z. 
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• Example 11.8 
Realize the following transfer functions, using only the cascade form for part a and 

using only the parallel form for part b. . 
(a) H[z] = 4z + 28 (b) H[z] = 7z

2 
+ 37z + 51 

Z 2 + 6z + 5 (z + 2)(z + 3)2 
Identical transfer functions for continuous-time systems are realized in Figs. 6.27 and 

6.28. • 

6 Exercise El1.12 

Give the canonical realization of the following transfer functions. 
2 

(a) z+5 (b) 
z+8 

z+5 

() z (d) 2z + 3 
c z + 5 :;2 + 6z + 25 

Answer: See Example 6.18. Replace 1/ s by 1/ z and make appropriate changes in coefficients. \J 

11.5 Connection between the Laplace and the Z-Transform 

We now show that discrete-time systems also can be analyzed using the Laplace 
transform. In fact, we shall see that the z-transform is the Laplace transform in 
disguise and that discrete-time systems can be analyzed as if they were continuous­
time systems. 

So far we have considered the discrete-time signal as a sequence of numbers 
and not as an electrical signal (voltage or current). Similarly, we have considered a 
discrete-time system as a mechanism that processes a sequence of numbers (input) 
to yield another sequence of numbers (output). The system was built by using 
delays (along with adders and mUltipliers) that delay sequences of numbers, not 
electrical signals (voltages or currents). A digital computer is a perfect example: 
every signal is a sequence of numbers, and the processing involves delaying sequences 
of numbers (along with addition and multiplication). 

Consider a discrete-time system with transfer function H[z] and an input J[k], 
as shown in Fig. 11.8a. We can think of (o~ generate, for that matter) a correspond­
ing continuous-time signal J(t) consisting of impulses spaced T seconds apart. Let 
the kth impulse of strength be f[k] as depicted in Fig. 11.8b. Thus 

00 

i(t) = L f[k]8(t - kT) (11.43) 
k=O 

Figure 11.8 shows I[k] and corresponding J(t) . Let us now consider a system 
identical in structw:e to the discrete-time sy. tem with transfer function If[z], except 
that the delays in Hlz] are replaced by elements that delay continuous-time signals 
(such as voltages or currents).. If a continuous-time impulse 6(t) is applied to such 
a delay of T seconds, the output. will be oCt - 1'}. The continuous-time trarisfer 
function of such a delay is e-sT [see Eq. (6.54)]. Hence, the delay elements with 
transfer function 1/ z in the realizat.ion of H[z] will be replaced by the delay elements 
with transfer function e -sT in the realil'.ation of the corresponding jj (s). This step is 
the same as z being replaced by esT . Therefore, the transfer function of this system 
is If[z] with z replaced by e sT. Thus ires) = il[esT ]. Now whatever operations are 
performed by the discrete-time system H[z] on j[k] (Fig. 11.8a) are also performed 
by the corresponding continuous-time system H[e sT] on the impulse sequence i(t) 
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Fig. 11.8 Connection between the Laplace and z-transform. 

(Fig. 11.8b). The delaying of a sequence in H [z] would amount to the delaying 
of an impulse train in H [e 8T ]. The case of adding and multiplying operations is 
similar. In other words, one-to-one correspondence of the two systems is preserved 
in every aspect. Therefore, if y[k] is the output of the discrete-time system in Fig. 
11.8a, then iJ(t), the output of the continuous-time system in Fig. 11.8b, would be 
a sequence of impulses whose kth impulse strength is y[k]. Thus 

00 

iJ(t) = Ly[k]6(t ~ kT) (11.44) 

10=0 

The system in Fig. 11.8b, being a continuous-time system, can be analyzed by using 
the Laplace transform. If 

i(t) -¢=} F(s) and iJ(t) -¢=} Y (s) 

then 
- T -
Y(s) = H[e S ]F(s) (11.45) 
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Also 

Now, because the Laplace transform of b(t - kT) is e-skT 

00 

F(s) = L f[kle- SkT (11.46) 
k=O 

Similarly 

00 

yes) = Ly[kle-SkT (11.47) 
k=O 

Substitution of Eqs. (l1.46)and (11.47) in Eq. (11.45) yields 

By introducing a new variable z = esT, this equation can be expressed as 

00 00 

k=O k=O 
or 

Y[zl = H[z]F[z] 

where 
00 00 

F[z] = L f[k]z-k and Y[z] = Ly[klz-k 
k=O k=O 

It is clear from this discussion that the z-transform can be considered as a Laplace 
transform with a change of variable z = esT or s = (liT) lnz. On the other hand, 
we may consider the z-transform as an independent transform in its own right. 
Note that the transformation z = esT transforms the imaginary axis in the s-plane 
(s = jw) into a unit circle in the z-plane (z = esT = ejwT , or Izl = 1). The LHP 
and .RHP in the s-plane map into the inside and the outside, respectively, of the 
unit circle in the z-plane. 

11.6 Sampled-data (Hybrid) Systems 

Sampled-data systems are hybrid systems consisting of discrete-time as well 
as continuous-time subsystems. Consider, for example, a fire control system. In 
this case, the problem is to search and track a moving target and fire a projectile 
for a direct hit. The data obtained from the search and tracking radar is discrete­
time data because of a scanning operation, which results in sampling of azimuth, 
elevation, and the target velocity. This data is now fed to a digital (discrete-time) 
processor, which performs extensive computations. The computer output is th~m 
fed to a continuous-time plant, such as a gun mount, which accordingly positions 
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Discrete-time 
controller 

Continuous-time 
plant 
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T 

Ideal 
Sampler T 

Fig. 11.9 Typical sampled-data systems. 

y (I) 

(b) 

y (t) 

(c) 

itself at a certain position and fires. Another example is attitude-control problem 
in a spacecraft, where the information about the actual spacecraft attitude is fed 
back to a digital processor, which generates corrective input to be applied to the 
spacecraft, which is a continuous-time system. In automatic periodic quality check 
in production line, the discrete-data obtained from the periodic check, after some 
digital processing, generates the corrective input to be applied to a continuous-time 
plant. In complex control systems, use of digital processor as a controller or a 
compensator for continuous-time plants is growing rapidly. 

In time-sharing systems, where, for economic reasons, certain facilities are 
shared by several systems, the signals are, by nature, discrete-time or sampled. 
In regulator type control systems, where an output variable must be maintained 
at a constant value, the external disturbance and plant parameters variations are 
usually so slow that continuous monitoring (or feedback) is unnecessary. It is ade­
quate to sample the output periodically and then feed back this discrete-data. In 
such cases, feedback transducers, data-processing facilities and possibly long and 
expensive feedback communication facilities can be shared among several control 
systems. 

Figure 11.9 shows some typical sampled-data systems. Figure 11.9a contains 
a digital processor, whereas in Fig. l1.9b, the sampled signal is directly applied to 
D/ A converter (the hold circuit) without further digital processing. Figure 11.9c 
shows a practical system, where "the input signal itself is a discrete-time signal 
J[kJ, and the sampler is in the feedback path. This system is equivalent to that 
in Fig. 11.9b. How do we analyze such hybrid systems, where continuous-time and 
discrete-time signals intermingle? An effective strategy in such a situation is to 
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relate the samples of the output to those of the input. But, this procedure yields 
information about the output only at sampling instants. We can overcome this 
difficulty by taking the samples at instants in between samples using the modified 
z-trausform a explained later . 

In sampled-data systems, the discrete-time signals are often obtained as a result 
of sampling continuous-time signals. These samples are narrow pulses, which may be 
considered as impulses, provided the pulse width is small compared to the system 
t ime consta.ut. Thus, in the following discussion. a discrete-time signal, when it 
appears in conjunction with a continuous-time system, is a sequence of impulses 
rather than a sequence of numbers. B:ence, a discrete-time signal IlkJ can also be 
considered as continuous-time signal f(t) . where 

I(t) = Lf[k]6(t - kT) 
k 

Observe an interesting fact: in this representation a discrete-time unit impulse 
0[1.1) is the continuous-time unit impulse o(t). Thus, at !;he input of a discrete-time 
processor, a discrete-time signal IlkJ is just a sequenc of numbers. But at the input 
of a continuous-time system l[kJ is a sequence of impulses. There are appropriate 
converters at the interface of discrete-time and continuous-time systems to carry 
out signal conversion to appropriate forms. 

To begin with, consider a basic continuous-time system (Fig. 11.lOa) with 
transfer function R(s). The input J(t) is sampled and the sampled Signal I[k] is 
applied to the input of H(s). Although yet), the output of this system, is continuous, 
we shall endeavor to find the values of y (t) onJy at the discrete instants t = kT. 
Such an analysis is relatively simple using the method of z-transform. For this 
purpose, we consider as if the output is sampled by an hypothetical sampler shown 
dotted in Fig. Il.IOa. Now, we sball relate the input samples l[k] and the output 
samples V[kJ . Let h[k] be the unit impulse response relating the output samples 
to the input samples. In other words, y[kJ = /tlk] * J[k] . Recall also that an unit 
impulse 61k] is oCt) when considered in conjunction with a. continuous-time system. 
Hence, h[k), the unit impulse response is the sampled version of the system's unit 
impulse response k(t) . Thus, 

hlk] = h(kT) 

where T is the sampling interval. For instance, if H(s) = 8~>" then h(t) = e>.t and 

Therefore, the equivalent discrete-time transfer function H [z] of this system is given 
by 

H[zJ = Z{h[k)} 

= Z[e>.kT] 

z 
= -----.,.= 

z - e>.T 
(11.49) 

," 
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Y[z] = G[z)H[z]F[z] 
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.>-- ..... 

G[z) 

1 + G[z]H[z] 
F[z] 

Fig. 11.10 Computing the output in hybrid or sampled-data systems. 

Thus, H[z] is the discrete-time transfer function of H(s) = S~A that relates y[k] 
(the output samples) to the discrete-time input j[k].t 

If we have two systems with transfer functions G(s) and H(s) in cascade (Fig. 
11.10b), the equivalent transfer T[z] oft G[z]H[z], but is GH[z], where G[z], H[z] and 
G H [z] correspond to discrete-time transfer functions of G (s ), H (s) and G (s ) H (s ), 
respectively. For instance, if 

1 
G(s) = --2 

s+ 

Then, according to Eq. (11.49) 

z 
G[z] = -2T z-e 

and 

and 

1 
H(s) = -

s 

z 
H[z] =-­

z-l 

However, the continuous-time system transfer function is G(s)H(s), where 

G(s)H(s) = = - - - -1 1 [1 1] 
s(s + 2) 2 s s + 2 

And from Eq. (11.49) 

tUsing this procedure, we have listed H(s) and corresponding H[z] in Table 12.1 in Chapter 12. 
In this Table, H[z] is multiplied with a scaling factor T, which results in H[z] = z!.~T' For the 
purpose of the sampled data application, the extra factor T should be ignored throughout in Table 
12.1. 
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T[z] = -2
1 (_Z_ _ z -2T) t= G[z]H[z] 

z-l z,e 

In this case, we use the notation GH[z] for T[z]. Thus, GH[z] t= G[z]H[z], but is 
the discrete-time transfer function which corresponds to G (s ) H (s ). 

For the system in Fig. n.IOc, 

Y[z] = H[z]X[z] = H[z]G[z]F[z] 

For the system in Fig. I1.l0d, 

so that 

Moreover, 

Hence 

Consequently 

• Example 11.9 

E[z] = F[z] - W[z] 

W[z] = H[z]Y[z] 

Y[z] = G[z]E[z] 

= G[z] (F[z] - W[z]) 

= G[z](F[z]- H[z]Y[z]) 

G[z] 
Y[z] = [] [([z] I+GzHz 

__ G----!:-[ z~] _ 
T[z] = 1 + G[z]H[z] 

T[z] = G[z]H[z] 

Find the output samples y[k] for the sampled-data system illustrated in Fig. ll.lla 
when the input is a unit step function u(t), the sampling interval T = 0.5 second and 

z 
Gc[z] = --1 

z-
and 

1 
G(s) =­

s+4 
This system has a discrete-time controller and a continuous-time plant. t To find the 

transfer function of this system, we observe that 

Y[z] = G[z]X[z], X[z] = Gc[z]E[z], and 

Hence 

Y[z] = G~[z]G[z](F[z]- Y[z]) 

and the system transfer function T[z] is 

T[z] = Y[z] = Gc[z]G[z] 
F[z] 1 + Gc[z]G[z] 

E[z] = F[z] - Y[z] 

tThe block diagram in Fig. 11.11a. does not sho\v the appropriate converters required a~ the 
interface of discrete.-time and continuous-tJme systems; these are imp.lied. Thus, the output of the 
sample1', which consist;s of impulse sequence, is converted into seque lCe of numbers to act as the 
input to the disCrete-time controller. Similarly; the output of a. discrete-time controlleJ;', which is 
a sequence of numbel1l, is converted t,o a sequence of impulses to act as an input to the plant. 
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Fig. 11.11 The sampled-data system in Example 11.9. 

(a) 

9T 

For G(s) = 1/(s + 4) and T = 0.5, we find, from Eq. (11.49), G[z] = %-: - 2 = %-O~1353' 
Also Gc[z] = z/(z - 1) . Substitution of these expressions in T[z] yields 

Z2 

T[z] = (z - 0.394)(z - 0.174) 

The output Y[z] is given by Y[z] = T[z]F[z] . For the step input f(t) = u(t), the corre­
sponding sampled signal is u[kJ so that F[z] = z/(z - 1) . Hence, 

Z3 

Y[z] = T[z]F[z] = (z _ l)(z - 0.394)(z - 0.174) 

and 

Y[z] z2 
Z (z - 1)(z - 0.394)(z - 0.174) 

1 0.583 0.083 
= --- +--::-:-::::-:-

z - 1 z - 0.394 z - 0.174 
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Hence 

Y[z] = _z_ _ 0.583z + 0.083;:: 
z-l z-0.394 z-O.174 

and 

y[k] = 1 - 0.583(0.394)k + 0.083(0.174)k 

This response is depicted in Fig. 11.11. • 

11.6-1 Response Between Sampling Instants: The Modified Z-Transform 

T he above analysis yields t he output only at sampling instants. We can readily 
find t he resp onse between successive sampling instants by using the modjfied z­
transform. This goal can be accomplished by considering the response at another 
set of sa.mpling ins ta.nts t = (k + f.t )T, where 0 < p, < l. 

Consider the system in Fig. 11. lOa with H(s) = 1/(s-'\). The impulse response 
is h(t) = eAt and its samples at instants t = (k + p,)T are 

(1l.50a) 

The corresponding z-transfer function is 

[ ] 
_ AJ.LT z 

H z, p, - e AT 
z-e 

(1l.50b) 

In this manner, We can prepare a table of modified z-transform. When we use 
H[z, p,] instead of H[z] in our analysis, we obtain the response at instants t = 

(k + p,)T. By using different values of p, in the range 0 to T, we can obtain the 
complete response y (t) . 

• Example 11.10 

Find the output yet) for all t in Example 11.9. 

In Example 11.9, we found the response y[k] only at the sampling instants . To 
find the output values between sampling instants, we use the modified z-transform. The 
procedure is the same as before, except that we use modified z-transform corresponding 
to continuous-time systems and signals. For the system G(s) = l/s + 4 with T = 0.5, the 
modified z-transform [Eq. (11.50b) with .\ = -4, and T = 0.5] is 

[ ] 
_ AIJ.T Z _ -21J. Z 

H z, P, - e z _ e-2 - e z _ 0.1353 

Moreover to find the modified z-transform corresponding to J(t) = u(t) [A = 0 in Eq. 
(11.50a)J, we have F[z, p,] = z/(z - 1). Substitution of these expressions in those found in 
Example 11.9, we obtain 

Y[ ] _ -21J. [Z 0.583z 0.083z ] 
z, P, - e -z ---1 - z - 0.394 + -z-----=-0-,.1-=7:-:-4 
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From Eqs. (11.50), we obtain the inverse (modified) z-transform of this equation as 

y[(k + ~)Tl = e-2
" [1- 0.583(0.394)k + 0.083(-0.174)k] 

The complete response is also shown in Fig. 11.11. • 

Design of Sampled-Data Systems 

As with continuous-time control systems, sampled-data systems are designed to 
meet certain transient (PO, tn ts, etc.) and steady-state specifications. The design 
procedure follows along the lines similar to those used for continuous-time systems. 
We begin with a general second-order system. the relationship between closed­
loop pole locations and the corresponding transient parameters PO, tn ts, ... are 
determined. Hence, for a given transient specifications, an acceptable region in the 
z-plane where the dominant poles of the closed-loop transfer function T[z] should 
lie is determined. Next, we sketch the root locus for the system. The rules for 
sketching the root locus are the same as those for continuous-time systems. If the 
root locus passes through the acceptable region, the transient specifications can be 
met by simple adjustment of the gain K. If not, we must use a compensator, which 
will steer the root locus in the acceptable region. 

11. 7 The Bilateral Z-Transform 

Situations involving noncausal signals or systems cannot be handled by the 
(unilateral) z-transform discussed so far. Such cases can be analyzed by the bilat­
eral (or two-sided) z- transform defined by 

00 

F[z] == L i[k] z-k 
k=-oo 

The inverse z-transform is given by 

i[k] = ~ f F[z]zk-l dz 
27rJ 

These equations define the bilateral z-transform. The unilateral z-transform dis­
cussed so far is a special case, where the input signals are restricted to be causal. 
Restricting signals in this way results in considerable simplification in the region of 
convergence. Earlier, we showed that 

,lurk] {=} _z_ 
Z -"( 

(11.51) 

In contrast, the z-transform of the signal -"(ku[-(k + 1)], illustrated in Fig. 11.12a, 
is 
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t 
-y k u [-(k+ III 

-7 -5 -3 - I 

Fig. 11.12 -·y"ul-(k + 1)] and the region of convergence of its z-transform. 

Therefore 

-1 -1 

Z {-Iku[-(k + 1)J} = L -Ikz-k = L - (~f 
-(X) -00 

~ -[~+ (~ ) , + ( ~ ) 3 + .. j 
~ 1 [1+ ~ + (~) '; (~) \ j 

1 
=1---

1- !!.. 
I 

z 
= --

Z-I 

Z {-"/u[-(k + 1)J} = _ z_ Z-, 

I~I < 1 

Izl < hi 

Izl < hi (11.52) 

A comparison of Eqs. (11.51) with (11.52) shows that the z-transform of I'ku [k] is 
identical to that of - Iku[-(k + 1)]. The regions of convergence, however, are dif­
ferent. In the former case, F[z] converges for Ixl > 1,li in the latter, F[x] converges 
for Izl < hi (see Fig. 11.12b). Clearly, the inverse transform of F[z) is not unique 
unless the region of convergence is specified. If we restrict all our signals to be 
causal, however, this ambiguity does not arise. The inverse transform of zj(z - I) 
is Iku[k] even without specifying the region of convergence. Thus, in the unilat­
eral transform, we can ignore the region of convergence in determining the inverse 
z-transform of F[z] . 

• Example 11.11 
Determine the z-transform of 

ilk] = (O.9)ku[k] + (1.2)ku[-(k + 1)] 

= !Ilk] + h[k] 
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15 25 
k_ 

Fig. 11.13 Signal f[k] for Example 11.11. 

[m z-plane 

(b) 

From the results in Eqs. (11.51) and (11.52), we have 

z 
Fdz] = z - 0.9 Izl > 0.9 

F2[Z] = z -=-~.2 Izi < 1.2 

Re 

The common region where both Fdz] and F2[Z] converge is 0.9 < Izi < 1.2 (Fig. 1l.13a) . 
Hence 

z z 
= z - 0.9 - z - 1.2 

-0.3z 
(z - 0.9)(z - 1.2) 

0.9 < Izi < 1.2 (11 .53) 

The sequence f[k] and the region of convergence of F[z] are depicted in Fig. 11.13 . 

• 
• Example 11.12 

Find the inverse z-transform of 

F[z] = -%(.1: + 0.4) 
(z - 0.8)(z - 2) 

if the region of convergence is (a) Izi > 2 (b) Izi < 0.8 (c) 0.8 < Izl < 2. 

(a) 
F[z] -(z + 0.4) 

z (z - 0.8)(z - 2) 

1 2 
= z - 0.8 - z - 2 

and z z 
F[z] = -- - 2--

z - 0.8 z - 2 
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i 0 
k - k--5 10 15 

f[k] • I II 

-5 x 105 

_106 

(a) (b) 

i 
f[k] 

-10 

(e) 

Fig. 11.14 Three possible inverse transforms of F[z] in Example 11.12. 

Since the region of convergence is Izl > 2, both terms correspond to causal sequences and 

f[k] = [(0.8)k - 2(2)"] u[k] 

This sequence appears in Fig. 1l.14a. 

(b) In this case, Izl < 0.8, which is less than the magnitudes of both poles. Hence, 
both terms correspond to anticausal sequences, and 

J[k] = [_(0.8)k + 2(2)k] u [-(k + 1)] 

This sequence appears in Fig. Il.I4b. 

(c) In this case, 0.8 < Izl < 2; the part of F[z] corresponding to the pole at 0.8 is a 
causal sequence, and the part corresponding to the pole at 2 is an anticausal sequence: 

f[k] = (0.8)ku[k] + 2(2)ku[-(k + 1)] 

This sequence appears in Fig. 1l.14c. • 

0 

f[k] 

-20 

-40 

-60 
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6. Exercise Ell.13 
Find the inverse z-transform of 

~ > Izl > ~ 

Inverse Transform by Expansion of F[z] in Power Series of z 

We have 

F[z] = Lj[kJz-k 

k 

For an anticausal sequence, which exists only for k ::; -1, this equation becomes 

F[z] = j[-I]z + j[-2]z2 + j[-3]z3 + ... 

We can find the inverse z-transform of F[z] by dividing the numerator polynomial 
with the denominator polynomial, both in ascending powers of z, to obtain a poly­
nomial in ascending powers of z. Thus, to find the inverse transform of z/(z - 0.5) 
(when the region of convergence is Izl < 0.5), we divide z with -0.5 + z to obtain 
-2z - 4z2 - 8z3 - .... Hence, j[-IJ = -2, j[-2] = -4, j[-3J = -8 and so on. 

11.7-1 Analysis of LTID Systems Using the Bilateral Z-Transform 

Because the bilateral z-transform can handle noncausal signals, we can analyze 
noncausallinear systems using this transform. The zero-state response y[k] is given 
by 

y[k] = Z-l {F[z]H[z]} 

provided that F[zJH[zJ exists. The region of convergence of F[z]H[z] is the region 
where both F[z] and H[z] exist, a fact which means that the region is common to 
the convergence of both F[z] and H[zJ . 

• Example 11.13 
For a causal system specified by the transfer function 

z 
H[z] = z - 0.5 

find the zero-state response to input 

The z-transform of this signal is found from Example 11.12 (part c) as 

Therefore 

F[z] = -z(z + 0.4) 
(z - 0.8)(z - 2) 0.8 < Izl < 2 

_Z2(Z + 0.4) 
Y[z] = F[z]H[z] = (z _ 0.5)(z _ 0.8)(z - 2) 
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Since the system is causal, the region of convergence of H[z] is Izl > 0.5. The region of 
convergence of F[z] is 0.8 < Izl < 2. The common region of convergence for F[z] and H[z] 
is 0.8 < Izl < 2. Therefore 

Y[z] = -z2(z + 0.4) 
(z - 0.5)(z - 0.8)(z - 2) 0.8 < Izl < 2 

Expanding Y[z] into modified partial fractions yields 

Y[z]=---+- -- -- --z 8( z ) 8( z ) 
z - 0.5 3 z - 0.8 3 z - 2 

0.8 < Izl < 2 

The poles at 0.5 and 0.8 are enclosed within the ring of convergence and therefore cor­
respond to the causal part, and the pole at 2 is outside the ring of convergence and 
corresponds to the anticausal part of Y[z]. Therefore 

y[k] = [-(0.5)k + ~(0.8)kl u[k] + ~(2)ku[-(k + 1)] • 

• Example 11.14 
For the system in Example 11.13 find the zero-state response to input 

f[k] = (0.8)kU[k] + (0.6)ku[-(k + 1)1 
"--v---" v ' 

!I[k] h[k] 

The z-transforms of the causal and anticausal components h[k] and h[k] of the output 
are 

Z 
Fl[Z]=-­

Z - 0.8 

-z 
F2[Z] = -­

Z - 0.6 

Izl > 0.8 

Izl < 0.6 

Observe that a common region of convergence for Fl[Z] and F2[Z] does not exist. Therefore 
F[z] does not exist. In such a case we take advantage of the superposition principle and 
find Yl[k] and Y2[k], the system responses to h[k] and h[k], separately. The desired 
response y[k] is the sum of Yl[k] and Y2[k]. Now 

z 
H[z]=-­

z - 0.5 
Izi > 0.5 

Z2 

Ydz] = Fdz]H[z] = ( )( ) 
Z - 0.5 z - 0.8 

Izl > 0.8 

0.5 < Izi < 0.6 

Expanding Y1[z] and Y2[Z] into modified partial fractions yields 

Yl[Z] = -~ (_Z_) + ~ (_Z_) Izl > 0.8 
3 z - 0.5 3 z - 0.8 

Y2[z] = 5 (_Z_) _ 6 (_Z_) 0.5 < Izl < 0.6 
z - 0.5 z - 0.6 

Therefore 

Yl [k] = [- ~ (0.5)k + ~ (0.8)kJ u[k] 

Y2[k] = 5(0.5)ku[k] + 6(0.6)icu[-(k + 1)] 
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and 

y[k] = ydk] + Y2[k] 

= [~(O.5)k + ~(O.8)kl u[k] + 6(O.6)ku[- (k + I)] • 

!'::,. Exercise El1.14 
For a causal system in Example 11.13, find the zero-state response to input 

f[kJ = (~)k u[kJ + 5(3)ku[-(k + l)J 

Answer: [-( ~)k + 3( ~)k 1 u[kJ + 6(3)ku[-(k + l)J \l 

11.8 Summary 

In this chapter we discuss the analysis of linear, time-invariant, discrete-time 
(LTID) systems by z-transform. The z-transform is an extension of the DTFT 
with the frequency variable jn generalized to (J" + jn. Such an extension allows us 
to synthesize discrete-time signals by using exponentially growing (discrete-time) 
sinusoids. The relationship of the z-transform to the DTFT is identical to that of 
the Laplace transform to the Fourier. Because of the generalization of the frequency 
variable, we can analyze all kinds of LTID systems and also handle exponentially 
growing inputs. 

The z-transform changes the difference equations of LTID systems into alge­
braic equations. Therefore, solving these difference equations reduces to solving 
algebraic equations. 

The transfer function H [z] of an LTID system is equal to the ratio of the z­
transform of the output to the z-transform of the input when all initial conditions 
are zero. Therefore, if F[z] is the z-transform of the input t[k] and Y[z] is the 
z-transform of the corresponding output y[k] (when all initial conditions are zero), 
then Y[z] = H[z]F[z]. For a system specified by the difference equation Q[E]y[k] = 
P[ElJ[k]' the transfer function H[z] = p[z]/Q[z] . Moreover, H[z] is the z-transform 
of the system impulse response h[k]. We also showed in Chapter 9 that the system 
response to an everlasting exponential zk is H[z]zk. 

LTID systems can be realized by scalar multipliers, summers, and time delays . 
A given transfer function can be synthesized in many different ways. Canonical, 
cascade and parallel forms of realization are discussed. The realization procedure 
is identical to that for continuous-time systems. 

In Sec. 11.5, we showed that discrete-time systems can be analyzed by the 
Laplace transform as if they were continuous-time systems. In fact, we showed that 
the z-transform is the Laplace transform with a change in variable. 

In practice, we often have to deal with hybrid systems consisting of discrete­
time and continuous-time subsystems. Feedback hybrid systems are also called 
sampled-data systems. In such systems, we can relate the samples of the output to 
those of the input. However, the output is generally a continuous-time signal. The 
output values during the successive sampling intervals can be found by using the 
modified z-transform. 

The majority of the input signals and practical systems are causal. Conse­
quently, we are required to deal with causal signals most of the time. When all 
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signals are restricted to the causal type, the z-transform analysis is greatly simpli­
fied; the region of convergence of a signal becomes irrelevant to the analysis process. 
This special case of z-transform (which is restricted to causal signals) is called the 
unilateral z-transform. Much of the chapter deals with this transform. Section 
11.7 discusses the general variety of the z-transform (bilateral z-transform), which 
can handle causal and noncausal signals and systems. In the bilateral transform, 
the inverse transform of F [z] is not unique, but depends on the region of conver­
gence of F [z]. Thus, the region of convergence plays a crucial role in the bilateral 
z-transform. 

Problems 

11.1-1 Using the definition of the z-transform, show that 

(a) ,,("'-lu[k _ 1] ¢==}- _1_ 
z-,,( 

(b) u[k - m] ¢==}- ( z ) 
zm z-l 

'" (c) :;u[k] ¢==}- e'/z 
k. 

(d) (lnk~)'" u[k] ¢==}- cYz 

11.1-2 Using only the z-transform Table 11.1, show that 

(a) 2"'+lu[k - 1] + ek-lu[k] ¢==}- z~2 + e(/-e) 

11.1-3 

(b) k"(ku[k - 1] ¢==}- ( "(z)2 
z-,,( 

Hint: Express u[k - 1] in terms of u[k]. 

(c) [Tk cos (ik)] u[k - 1] ¢==}- z2~~5i:~~)25 
Hint: See the hint for part b. 

(d) k(k - l)(k - 2)2k- 3u[k - m] ¢==}- (z~~)4 for m=O, 1,2, or 3. 

Hint: Examine what happens to the function if u[k - m] is replaced by u[k] . 

Find the inverse z-transform of 

(a) 
z(z - 4) z(z - 2) 

Z2 - 5z + 6 (g) 
Z2 - Z + 1 

(b) 
z-4 

2z2 - 0.3z + 0.25 
z2 - 5z + 6 (h) 

z2 + 0.6z + 0.25 

(c) 
(e- 2 - 2)z 

2z(3z - 23) 
(z - e-2)(z - 2) (i) 

(z - 1)(z2 - 6z + 25) 

(d) 
z(2z + 3) z(3.83z + 11.34) 

(z - 1)(z2 - 5z + 6) (j) 
(z - 2)(z2 - 5z + 25) 

(e) 
z( -5z + 22) z2( _2Z2 + 8z - 7) 

(z + l)(z - 2)2 (k) 
(z - l)(z - 2)3 

(f) 
z(1.4z + 0.08) 

(z - 0.2)(z - 0.8)2 

11.1-4 Find the first three terms of J[k] if 

F z _ 2z
3 + 13z

2 + z 
[ ] - z3 + 7z2 + 2z + 1 
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J[k] 

1 

I I I • 
J[kJ 

4 
,.' 

.. ' 

0 m-J k- o 4 

Fig. Pll.2-1 Fig. Pll.2-2 

Find your answer by expanding F[zJ as a power series in z-l. 

11.1-5 By expanding 
-yz 

F[zJ = ( )2 z--y 

as a power series in z - l, show that f(k] = k-yku[kJ. 

11.2-1 For a discrete-time signal shown in Fig. P11.2-1 show that 

1- z - m 
F [z] = -:-l-_-Z--"'-l 

8 k--

11.2-2 Find the z-transform of the signal illustrated in Fig. P11.2-2. Solve this problem in 
two ways, as in Examples 1l.2d and 11.4. Verify that the two answers are equivalent. 

11.2-3 Using only the fact that -yku[kJ {==} Z~'"f and properties of the z-transform, find the 
z-transform of 

(a) k2-yku [k] 

(b) k3u[kJ 

(c) ak [u[kJ - u[k - m]] 

(d) ke-2ku[k - mJ 

11.2-4 Using only Pair 1 in Table 11.1 and appropriate properties of the z-transform, derive 
iteratively pairs 2 through 9. In other words, first derive Pair 2. Then use Pair 2 
(and Pair 1, if needed) to derive Pair 3, and so on . However, pair 6 should be derived 
after pair 7. 

11.3-1 Solve Prob. 9.4-9 by the z-transform method. 

11.3-2 Solve 

y[k + 1] + 2y[k] = f[k + 1J 

with y[OJ = 1 and f(kJ = e-(k-l)u[k] 

11.3-3 Find the output y[k] of an LTID system specified by the equation 

2y[k + 2] - 3y[k + 1] + y[kJ = 4f[k + 2] - 3f[k + 1J 

if the initial conditions are y[-l] = 0, y[-2J = 1, and the input f(k] = (4)-ku[kJ . 
11.3-4 Solve Prob. 11.3-3 if instead of initial conditions Y[-lJ, y[-2] you are given the aux­

iliary conditions y[O] = ~ and Y[l] = ¥. 
11.3-5 Solve 

4y[k + 2] + 4y[k + 1] + y[k] = f[k + 1] 

with y[-l] = 0, y[ - 2] = 1, and f(k] = u[k]. 
11.3-6 Solve 

y[k + 2] - 3y[k + 1] + 2y[k] = f(k + 1] 



Problems 

if y[-I] = 2, y[-2] = 3, and f[k] = (3)ku[k]. 

11.3-7 Solve 
y[k + 2] - 2y[k + 1] + 2y[k] = J[k] 

with y[-I] = 1, y[-2] = 0, and J[k] = u[k]. 

11.3-8 Solve 
y[k] + 2y[k - 1] + 2y[k - 2] = J[k - 1] + 2J[k - 2] 

with y[O] = 0, y[l] = 1, and f[k] = eku[k]. 

11.3-9 (a) Find the zero-state response of an LTID system with transfer function 

H[z] = z 
(z + 0.2)(z - 0.8) 

and the input J[k] = e(k+1lu[k]. 
(b) Write the difference equation relating the output y[k] to input J[k]. 

11.3-10 Repeat Prob. 11.3-9 if f[k] = u[k] and 

11.3-11 Repeat Prob. 11.3-9 if 

H[z] = 2z + 3 
(z - 2)(z - 3) 

H[z] = 6(5z - 1) 
6z2 - 5z + 1 

and the input J[k] is (a) (4)-ku [k] (b) (4)-(k-2)u[k - 2] (c) (4)-(k-2lu[kj 
(d) (4)-ku [k - 2]. 

11.3-12 Repeat Prob. 11.3-9 if J[k] = u[k] and 

H[z] = 2z -1 
z2 - 1.6z + 0.8 
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11.3-13 Find the transfer functions corresponding to each of the systems specified by difference 
equations in Probs. 11 .3-2, 11.3-3, 11.3-5, and 11 .3-8. 

11.3-14 Find h[k], the unit impulse response of the systems described by the following equa­
tions: 

(a) y[k] + 3y[k - 1] + 2y[k - 2] = J[k] + 3J[k - 1] + 3f[k - 2] 
(b) y[k + 2] + 2y[k + 1] + y[k] = 2J[k + 2]- J[k + 1] 
(c) y[k]- y[k - 1] + 0.5y[k - 2] = J[k] + 2f[k - 1] 

11.3-15 Find h[k], the unit impulse response of the systems in Probs. 11.3-9, 11.3-10, and 
11.3-12. 

11.4-1 Show a canonical, a cascade and a parallel realization of the following transfer func­
tions: 

(a) 

(b) 

(c) 

H[~] = z(3z - 1.8) 
z2 - z + 0.16 

H[z] = 5z + 2.2 
z2 + z + 0.16 

H[ ] 3.8z - 1.1 
z = (z _ 0.2)(z2 - 0.6z + 0.25) 

11.4-2 Give cascade and parallel realizations of the following transfer functions: 

z(1.6z - 1.8) (b) z(2z2 + 1.3z + 0.96) 
(a) (z _ 0.2)(z2 + z + 0.5) (z + 0.5)(z - 0.4)2 


